Math 102, Calculus II, Spring 2024, Sec. 3 \& 13, HTK Quiz 4, Tue., Mar. 26

1. Find the equation of the plane that contains the points $(1,2,3)$ and $(3,2,1)$ and that is parallel to the line $\mathbf{r}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}+t(3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k})$.
2. Find the equation of the plane that contains the points $(3,4,5)$ and $(5,4,3)$ and that is parallel to the line $\mathbf{r}=\alpha \mathbf{i}+\beta \mathbf{j}+\gamma \mathbf{k}+t(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})$.
3. Find the equation of the plane that contains the points $(3,5,7)$ and $(7,5,3)$ and that is parallel to the line $\mathbf{r}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}+t(-1 \mathbf{i}+2 \mathbf{j}+5 \mathbf{k})$.
4. Find the equation of the plane that contains the points $(-1,2,5)$ and $(5,2,-1)$ and that is parallel to the line $\mathbf{r}=\alpha \mathbf{i}+\beta \mathbf{j}+\gamma \mathbf{k}+t(3 \mathbf{i}+5 \mathbf{j}+7 \mathbf{k})$.
5. Find the length of the curve $\mathbf{r}(t)=e^{t} \cos t \mathbf{i}+e^{t} \sin t \mathbf{j}+8 \mathbf{k}, 0 \leq t \leq 1$.
6. Find the length of the curve $\mathbf{r}(t)=t \cos t \mathbf{i}+t \sin t \mathbf{j}+\frac{2 \sqrt{2}}{3} t^{3 / 2} \mathbf{k}, 0 \leq t \leq 1$.
