Spring 2024 Math 102, SECTION 11 Quiz 3

Name: \qquad
Time limit: 20 minutes

Consider the parametric curves

$$
\begin{aligned}
& C_{1}: \mathbf{r}_{1}(t)=(t+1) \mathbf{i}+(2 t+1) \mathbf{j}+\left(2 t^{3}-1\right) \mathbf{k}, \quad t \in \mathbb{R}, \\
& C_{2}: \mathbf{r}_{2}(t)=(2-t) \mathbf{i}+\left(3-4 t+t^{2}\right) \mathbf{j}+\left(1-t^{2}\right) \mathbf{k}, t \in \mathbb{R},
\end{aligned}
$$

in \mathbb{R}^{3}.

1. (2 points) Show that the point $(2,3,1)$ is on both curves C_{1} and C_{2}.
2. (8 points) Find an equation of the plane E which is tangent to both C_{1} and C_{2} at the point $(2,3,1)$.
