BİLKENT UNIVERSITY

Mathematics Department

Math 116 Intermediate Calculus III Summer School 2006-2007

SECOND MIDTERM EXAM

10:00 am - 12:00 pm (120 minutes)

June 30, 2007

Question 1. (10+10=20 points)

(a) Find the area of the region in the first quadrant bounded by the parabolas $y = x^2$, $4y = x^2$ and the lines y = 1, y = 9.

Solution. First we draw the picture of the region. In the first quadrant, $y = x^2$ becomes $x = \sqrt{y}$ and $4y = x^2$ becomes $x = 2\sqrt{y}$. So

(b) Sketch the region of integration for $I = \int_0^4 \int_{\sqrt{x}}^2 \sqrt{x} \, e^{y^4} \, dy \, dx$ and then evaluate the double integral.

Solution. We reverse the order of integration.

$$y = \sqrt{x}$$
 becomes $x = y^2$. So

$$I = \int_0^2 \int_0^{y^2} \sqrt{x} e^{y^4} dx dy$$

$$= \int_0^2 \frac{2}{3} x^{3/2} e^{y^4} \Big|_0^{y^2} dy = \frac{2}{3} \int_0^2 y^3 e^{y^4} dy$$

$$= \frac{2}{3} \cdot \frac{1}{4} e^{y^4} \Big|_0^2 = \frac{e^{16} - 1}{6}.$$

Question 2 (10+10=20 points)

(a) Evaluate
$$I = \int_0^2 \int_0^{\sqrt{2x-x^2}} y \sqrt{x^2 + y^2} \, dy \, dx$$
.

Solution. We use polar coordinates.

$$y = \sqrt{2x - x^2} \Rightarrow x^2 + y^2 = 2x \Rightarrow r = 2\cos\theta$$
. So

$$I = \int_0^{\pi/2} \int_0^{2\cos\theta} r \sin\theta \cdot r \cdot r \, dr \, d\theta$$

$$= \int_0^{\pi/2} \sin\theta \cdot \frac{r^4}{4} \Big|_0^{2\cos\theta} d\theta = \int_0^{\pi/2} \sin\theta \cdot \frac{16}{4} \cdot \cos^4\theta \, d\theta$$

$$= -4 \cdot \frac{\cos^5\theta}{5} \Big|_0^{\pi/2} = \frac{4}{5}.$$

(b) Let R be the rectangular region $a \le x \le b$, $c \le y \le d$. Prove that for any twice continuously differentiable function f(x,y) one has:

$$\iint_{R} \frac{\partial^{2} f(x,y)}{\partial x \partial y} dA = f(b,d) - f(a,d) - f(b,c) + f(a,c).$$

Solution.

$$\iint_{R} \frac{\partial^{2} f(x,y)}{\partial x \partial y} dA = \int_{c}^{d} \int_{a}^{b} \frac{\partial^{2} f(x,y)}{\partial x \partial y} dx dy$$

$$= \int_{c}^{d} \frac{\partial f(x,y)}{\partial y} \Big|_{x=a}^{x=b} dy$$

$$= \int_{c}^{d} \left(\frac{\partial f(b,y)}{\partial y} - \frac{\partial f(a,y)}{\partial y} \right) dy$$

$$= f(b,y)\Big|_{c}^{d} - f(a,y)\Big|_{c}^{d}.$$

$$= f(b,d) - f(b,c) - f(a,d) + f(a,c)$$

Question 3 (20 points) Evaluate $I = \iiint_D x \, dV$ where D is the solid in the first octant bounded by z = 0, z = 1 - y, $y = \sqrt{x}$ and x = 0.

Solution. The pictures of the solid and its base in the xy-plane are shown below.

Question 4 (8+8+6=20 points) Let
$$I = \int_0^2 \int_0^{\sqrt{4-y^2}} \int_0^{\sqrt{x^2+y^2}} x \, dz \, dx \, dy$$
.

- (a) Write I in cylindrical coordinates.
- (b) Write I in spherical coordinates.
- (c) Evaluate I by using either (a) or (b).

Solution. The solid lies in the first octant, it is bounded by the cylinder $x^2 + y^2 = 4$, the yz-plane and the xz-plane on the side, by the cone $z = \sqrt{x^2 + y^2}$ from the top, and the xy-plane from the bottom. So

(a)
$$I = \int_0^{\pi/2} \int_0^2 \int_0^r r \cos \theta \ r \ dz \ dr \ d\theta$$
.

(b) The cone $z = \sqrt{x^2 + y^2}$ becomes $\rho = \frac{\pi}{4}$. The cylinder $x^2 + y^2 = 4$

becomes $\rho = 2/\sin \phi$. So

$$I = \int_0^{\pi/2} \int_{\pi/4}^{\pi/2} \int_0^{2/\sin\phi} \rho \sin\phi \, \cos\theta \, \rho^2 \, \sin\phi \, d\rho \, d\phi \, d\theta.$$

(c) We use (a).

$$I = \int_0^{\pi/2} \int_0^2 r^2 \cos \theta \ z \Big|_0^r dr \ d\theta = \int_0^{\pi/2} \int_0^2 r^3 \cos \theta \ dr \ d\theta$$
$$= \int_0^{\pi/2} \frac{r^4}{4} \Big|_0^2 \cos \theta \ d\theta = 4 \int_0^{\pi/2} \cos \theta \ d\theta = 4 \sin \theta \Big|_0^{\pi/2} = 4.$$

Question 5 (20 points) Evaluate $I = \iint_R \frac{e^{2x-y}}{x+y} dA$, where R is the region bounded by the lines y = 2x, y = 2x + 5, y = 2 - x and y = 4 - x.

Solution. We set u = x + y and v = 2x - y. Then $\frac{\partial(u,v)}{\partial(x,y)} = -3$, so $\frac{\partial(x,y)}{\partial(u,v)} = -\frac{1}{3}$ Now we draw the original region in the xy-plane and the transformed region in the uv-plane.

Then

$$I = \int_{2}^{4} \int_{-5}^{0} \frac{e^{v}}{u} \left| -\frac{1}{3} \right| dv du = \frac{1}{3} \left(e^{v} \Big|_{-5}^{0} \right) \left(\ln u \Big|_{2}^{4} \right)$$
$$= \frac{1}{3} (e^{0} - e^{-5}) \left(\ln 4 - \ln 2 \right) = \frac{(\ln 2) \left(e^{5} - 1 \right)}{3 e^{5}}.$$