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Question 1. (10+10=20 points)

(a) Find the area of the region in the first quadrant bounded by the parabolas

y=a? 4y =2?and the linesy =1, y=29.

Solution. First we draw the picture of the region.
In the first quadrant, y = 2 becomes z = VY and
4y = x* becomes = = 2,/y. So
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(b) Sketch the region of integration for I = / / V7 ¢’ dy dz and then
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evaluate the double integral.



Solution. We reverse the order of integration.
y = /T becomes = = y%. So
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Question 2 (10410=20 points)
2 pV2x—122
(a) Evaluate I :/ / yv 2+ y? dyde.
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Solution. We use polar coordinates. y
y=2r—a2?= 2> +y?> =22 = r=2cosb. So A
r = 2cosf
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(b) Let R be the rectangular region a < x < b, ¢ <y < d. Prove that for

any twice continuously differentiable function f(z,y) one has:

// 8x6y dA f<b d) f<a7 d) - f<b> C) + f(a, C).
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Question 3 (20 points) Evaluate I = /// x dV where D is the solid in
D
the first octant bounded by z =0, z=1—y, y=+/r and z =0.

Solution. The pictures of the solid and its base in the xy-plane are shown
below.
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Question 4 (84+8+6=20 points) Let / = / / / x dz dx dy.
0

(a) Write [ in cylindrical coordinates.
(b) Write [ in spherical coordinates.
(c) Evaluate I by using either (a) or (b).

Solution. The solid lies in the first octant,it is bounded by the cylinder
2% + y? = 4, the yz-plane and the zz-plane on the side, by the cone z =
\/x2 + y? from the top, and the xy-plane from the bottom. So
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(b) The cone z = /2% +y? becomes p = Z. The cylinder 2% + y* = 4



becomes p = 2/sin¢. So
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Question 5 (20 points) Evaluate I = // n
T4y
bounded by the linesy =2z, y=2x+5, y=2—zandy=4—ux.

dA7 where R is the region
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Solution. We set u = z +y and v = 22 — y. Then = —3, so
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transformed region in the uv-plane.
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