BİLKENT UNIVERSITY
 Department of Mathematics

Date: 6 November 2012
NAME:
SOLUTION KEY. \qquad
STUDENT NO: \qquad
Fall 2012-13, A.Gheondea, A.Degtiarev, U.Muğan,
SECTION: 01 (AG) 02 (AD) 03 (UM)

Math 240.01-03, Differential Equations, Midterm Exam \# 1

1	2	3	4	5	TOTAL
20	20	20	20	20	100

(Do not write anything on the above table)

1) Find the general solution of $\left(x^{2}+x y+y^{2}\right) d x-x^{2} d y=0$.

Homogenous type D.E. Let $v=y / x, x \neq 0$. The the given D.E. yields

$$
v+x v^{\prime}=1+v+v^{2}
$$

which is separable the D.E. Since

$$
\frac{1}{1+v^{2}} \frac{d v}{d x}=\frac{1}{v} .
$$

Integrating above equation gives:

$$
\arctan v=\ln |x|+c, \quad c=\text { constant } .
$$

So the implicit solution of the given D.E. for $x \neq 0$ is,

$$
\arctan \frac{y}{x}=\ln |x|+c
$$

\qquad
2) Find the general solution of $2 x y d x+\left(2 x^{2}+3 y\right) d y=0$.
(20 points)

The given D.E. can be transformed to an exact type D.E. by using an integrating factor $\mu=\mu(y)$.

$$
\frac{M_{y}-N_{x}}{M}=\frac{1}{y},
$$

then $\mu(y)=y$. Then there exists $F(x, y)=c=$ constant, such that $F_{x}=\mu M$ and $F_{y}=\mu N$.

$$
F_{x}=2 x y^{2}, \quad F_{y}=2 x^{2} y+3 y^{3} .
$$

Integrating the first equation gives

$$
F(x, y)=x^{2} y^{2}+h(y)
$$

where $h(y)$ is an arbitrary function of y. By using $F_{y}=2 x^{2} y+3 y^{3}$, we obtain

$$
h^{\prime}(y)=3 y^{3} .
$$

So, $h(y)=y^{3}$.
Therefore the implicit solution of the given D.E. is

$$
F(x, y)=x^{2} y^{2}+y^{3}=c, \quad c=\text { constant } .
$$

\qquad
3) Solve the following initial value problem:

$$
y^{\prime \prime}+2 y\left(y^{\prime}\right)^{3}=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

The solution is $y=1$, and this is obvious. (To be on the safe side, you should also refer to the uniqueness theorem, which does apply to this equation, as it is of the form $y^{\prime \prime}=f(t ; y ; y 0)$.) If you want to do it "by the book", OK, here it is. Let $y^{\prime}=v(y)$, so that $y^{\prime \prime}=v \frac{d v}{d y}$.

The equation becomes

$$
v \frac{d v}{d y}+2 y v^{3}=0
$$

hence

$$
v=0
$$

or

$$
\frac{d v}{d y}+2 v y^{2}=0
$$

In the former case, $y^{\prime}=0$, hence $y=$ constant and, using the initial values, $y=1$. The latter equation is separable. When separating the variables (dividing by v^{2}), we observe again that $v=0$ is a solution. Due to the uniqueness theorem, it is the only solution satisfying $v(1)=0$. Hence, as before, $y=1$. If you still want to take it further, you have:

$$
\frac{d v}{v^{2}}=-2 y d y, \quad \frac{1}{v}=y^{2}+c, \quad v=\frac{1}{y^{2}+c}
$$

Among these solutions, there is none satisfying $v(1)=0$. (And, due to the uniqueness theorem, there should not be!)
\qquad
4) Find necessary and sufficient condition on the coefficient functions $M(x, y)$, and $N(x, y)$ for the differential equation $M(x, y) d x+N(x, y) d y=0$ to have an integrating factor of the form $\mu(x y)$. Assume that M and N are continuously differentiable on the whole plane.

We want a function $\mu(t)$ such that the equation

$$
\mu(x y) M(x, y) d x+\mu(x y) N(x, y) d y=0,
$$

is exact, i.e., $(\mu M)_{y}=(\mu N)_{x}$. Since, $\frac{\partial}{\partial x} \mu(x y)=y \mu^{\prime}(x y)$, and $\frac{\partial}{\partial y} \mu(x y)=x \mu^{\prime}(x y)$, (where 'stands for the ordinary univariate derivative), we have

$$
x \mu^{\prime} M+y \mu M_{y}=y \mu^{\prime} N+\mu N_{x} .
$$

hence,

$$
\frac{\mu^{\prime}}{\mu}=\frac{N_{x}-M_{y}}{x M-y N} .
$$

The right hand side is a function of xy only. Hence, the latter equation has a solution if and only if the function

$$
f(x, y):=\frac{N_{x}-M_{y}}{x M-y N},
$$

depends on $x y$ only. Well, if you want to make it even more formal, a function $f(x, y)$ depends on $x y$ only if and only if $x f_{x}=y f_{y}$ (of course, assuming sufficient differentiability). Thus, the condition is

$$
x\left(\frac{N_{x}-M_{y}}{x M-y N}\right)_{x}=y\left(\frac{N_{x}-M_{y}}{x M-y N}\right)_{y} .
$$

NB: This computation (except the last part) merely mimics what is done in the textbook for the cases $\mu(x)$ and $\mu(y)$.
\qquad
5) Classify the the following differential equations.
e.g. Linear in y, Homogenous, Separable, Exact,

DO NOT find the solutions and write ONLY ONE answer in each box.
a) $\left(1+x^{2}+y^{2}+x^{2} y^{2}\right) d y=y^{2} d x$
b) $x^{2} y^{\prime}=x^{2} y^{2}-x y-4$
c) $(x+y)^{2} d x+\left(2 x y+x^{2}-1\right) d y=0$
d) $(\sqrt{x}+\sqrt{y})^{2} d x=x d y$
e) $2 \frac{d y}{d x}=\frac{y}{x}-\frac{x}{y^{2}}$

Ans: Separable

Ans: Riccati

Ans: Exact

Ans: Homogenous

Ans: Bernoulli, or Exact with $\mu(x)$
($4 \times 5=20$ points $)$

You can use the space below for your own calculations

