BILKENT UNIVERSITY Department of Mathematics

MATH 225, LINEAR ALGEBRA and DIFFERENTIAL EQUATIONS, Solution of Homework set¹ # 15-A

U. Muğan

July 2, 2008

Homework problems from the 2nd Edition, SECTION 4.6

4) Yes, the three vectors are mutually orthogonal, since

 $\vec{v_1}.\vec{v_2} = 3 + 4 + 9 - 12 - 4 = 0, \quad \vec{v_1}.\vec{v_3} = 6 + 4 + -12 - 2 + 4 = 0, \quad \vec{v_2}.\vec{v_3} = 18 + 4 - 12 + 6 - 16 = 0.$

7) Let $\vec{u} = CB$, $\vec{v} = CA$ and $\vec{w} = AB$, then $a = |\vec{u}|$, $b = |\vec{v}|$ and $c = |\vec{w}|$ so as to verify that $a^2 + b^2 = c^2$. For given vectors $a^2 = 19$, $b^2 = 25$ and $c^2 = 44$.

17) Denote by **A** the matrix having the given vectors as its row vectors, and by **E** the reduced echelon form of **A**. From **E** we find the general solution of the homogeneous system $\mathbf{A}\tilde{\mathbf{x}} = \tilde{\mathbf{0}}$ in terms of parameters s, t, \ldots . We then get basis vectors $\vec{u}_1, \vec{u}_2, \ldots$ for the orthogonal complement V^{\perp} by setting each parameter in turn equal to 1 (and the others then equal to 0). The echelon form **E** of the given matrix **A** is

$$\mathbf{E} = \begin{bmatrix} 1 & 0 & -7 & 19 \\ 0 & 1 & 3 & 5 \end{bmatrix}.$$

$$x_1 = s, \quad x_4 = t, \quad x_2 = -3s + 5t, \quad x_1 = 7s - 19t.$$

Therefore

$$\vec{u}_1 = (7, -3, 1, 10), \quad \vec{u}_2 = (-19, 5, 0, 1).$$

19) Similar to the previous problem, the reduced row echelon form E of A is

 $\mathbf{E} = \begin{bmatrix} 1 & 0 & 13 & -4 & 11 \\ 0 & 1 & -4 & 3 & -4 \end{bmatrix}.$

 $x_3 = r$, $x_4 = s$, $x_5 = t$, $x_2 = 4r - 3s + 4t$, $x_1 = -13r + 4s - 11t$.

Therefore

$$\vec{u}_1 = (-13, 4, 1, 0, 0), \quad \vec{u}_2 = (4, -3, 0, 1, 0), \quad \vec{u}_3 = (-11, 4, 0, 0, 1).$$

26) Because

$$\vec{u}.\vec{v} = |\vec{u}||\vec{v}|\cos\theta,$$

it follows that $\vec{u}.\vec{v} = |\vec{u}||\vec{v}|$ if and only if $\cos \theta = 1$, in which case $\theta = 0$, so the two vectors are collinear.

28) If W is the orthogonal complement of V, then every vector in V is orthogonal to every vector in W. Hence V is contained in W^{\perp} . But it follows from $(\dim V + \dim V^{\perp} = n)$ that the two subspaces

¹I made every effort to avoid the calculation errors and/or typos while I prepared the solution set. You are responsible to check all the solutions and correct the errors if there is any. If you find any errors and/or misprints, please notify me.

V and W^{\perp} have the same dimension. Because one contains the other, they must therefore be the same subspace, so $W^{\perp} = V$ as desired.

30) If $\vec{u}.\vec{v} = 0$ and $\vec{u} + \vec{v} = \vec{0}$ then

$$0 = \vec{u}.(\vec{u} + \vec{v}) = \vec{u}.\vec{u} + \vec{u}.\vec{v} = \vec{u}.\vec{u}$$

so it follows that $\vec{u} = \vec{0}$ and then $\vec{u} + \vec{v} = \vec{0}$ implies that $\vec{v} = \vec{0}$ also.

31) We want to show that any linear combination of vectors $\vec{u}_1, \vec{u}_2, ..., \vec{u}_p$ of vectors in S is orthogonal to every linear combination of vectors $\vec{v}_1, \vec{v}_2, ..., \vec{v}_q$ in T. But if each \vec{u}_i is orthogonal to each \vec{v}_j so $\vec{u}_i \cdot \vec{v}_j = 0$, then it follows that

$$(a_1\vec{u}_1 + a_2\vec{u}_2 + \dots + a_p\vec{u}_p)(b_1\vec{v}_1 + b_2\vec{v}_2 + \dots + b_q\vec{v}_q) = \sum_{i=1}^p \sum_{j=1}^q a_ib_j\vec{u}_i\vec{v}_j = 0,$$

so we see that the two linear combinations are orthogonal, as desired.

32) Suppose that the linear combination

$$a_1\vec{u}_1 + a_2\vec{u}_2 + b_1\vec{v}_1 + b_2\vec{v}_2 = 0,$$

and we want to deduce that all four coefficients a_1, a_2, b_1, b_2 must necessarily be zero. For this purpose, let

$$\vec{u} = a_1 \vec{u}_1 + a_2 \vec{u}_2$$
, and $\vec{v} = b_1 \vec{v}_1 + b_2 \vec{v}_2$.

Then the vectors \vec{u} and \vec{v} are orthogonal by Problem 31, so by Problem 30 the fact that $\vec{u} + \vec{v} = \vec{0}$ implies that

$$\vec{u} = a_1 \vec{u}_1 + a_2 \vec{u}_2 = \vec{0}$$
, and $\vec{v} = b_1 \vec{v}_1 + b_2 \vec{v}_2 = \vec{0}$.

Now the assumed linear independence of $\{\vec{u}_1, \vec{u}_2\}$ implies that $a_1 = a_2 = 0$, and the assumed linear independence of $\{\vec{v}_1, \vec{v}_2\}$ implies that $b_1 = b_2 = 0$. Thus we conclude that all four coefficients are zero, as desired.

33) This is the same as Problem 32 (which was solved in the class), except with

$$\vec{u} = a_1 \vec{u}_1 + a_2 \vec{u}_2 + \dots + a_k \vec{u}_k$$
, and $\vec{v} = b_1 \vec{v}_1 + b_2 \vec{v}_2 + \dots + b_m \vec{v}_m$

34) It follows immediately from Problem 33 and from $(\dim V + \dim V^{\perp} = n)$ that the union of a basis for the subspace V and a basis for its orthogonal complement V^{\perp} is a linearly independent set of n vectors, and is therefore a basis for the n-dimensional vector space \mathbf{R}^n .

35) This is one of the fundamental theorems of linear algebra. The nonhomogeneous system

$$\mathbf{A}\vec{x} = \vec{b}$$

is consistent if and only if the vector \vec{b} is in the subspace $\operatorname{Col}(\mathbf{A}) = \operatorname{Row}(\mathbf{A}^T)$. But \vec{b} is in $\operatorname{Row}(\mathbf{A}^T)$ if and only if \vec{b} is orthogonal to the orthogonal complement of $\operatorname{Row}(\mathbf{A}^T)$. But $\operatorname{Row}(\mathbf{A}^T)^{\perp} = \operatorname{Null}(\mathbf{A}^T)$, which is the solution space of the homogeneous system

$$\mathbf{A}^T \vec{y} = \vec{0}$$

Thus we have proved (as desired) that the nonhomogeneous system $\mathbf{A}\vec{x} = \vec{b}$ has a solution if and only if the constant vector \vec{b} is orthogonal to every solution \vec{y} of the nonhomogeneous system $\mathbf{A}^T\vec{y} = \vec{0}$.