Cauchy problem for the second member of a P_{IV} hierarchy

U Mugan 1 and A Pickering 2

1 Bilkent University, Department of Mathematics, 06800 Bilkent, Ankara, Turkey
2 Universidad Rey Juan Carlos, ESCET, Departamento de Matemática Aplicada, Madrid 28933, Spain

E-mail: mugan@fen.bilkent.edu.tr, andrew.pickering@urjc.es

Abstract. A rigorous method, the Inverse Monodromy Transform, for studying the Riemann-Hilbert (RH) problem associated with the classical Painlevé equations, $P_I – P_{VI}$, is applied to the second member of a fourth Painlevé hierarchy. We show that the Cauchy problem for the second member of this P_{IV} hierarchy admits, in general, a global meromorphic solution in x. Moreover, for a particular choice of the monodromy data the associated RH-problem can be reduced to a set of scalar RH-problems and a special solution which can be written in terms of the Airy function is obtained.

PACS numbers: 02.30.Hq, 02.30.Gp, 02.30.Zz

AMS classification scheme numbers: 34M40, 34M50, 34M55, 34M05

1. Introduction

In this article, we will apply the Inverse Monodromy Transform (IMT) method to the second member of a P_{IV} hierarchy. This method is an extension of the Inverse Scattering Transform (IST) for partial differential equations (PDE) to ordinary differential equations (ODE). The IMT can be thought as a nonlinear analogue of Laplace’s method used to find the solution of linear ODE’s. Flashka and Newell [1], and in a series of articles Jimbo, Miwa and Ueno [2] considered Painlevé equations as isomonodromic conditions for linear systems of ordinary differential equations having both regular and irregular singular points. Solving such an initial value problem is basically equivalent to solving an inverse problem for an associated isomonodromic linear equation. The inverse problem can be formulated in terms of the monodromy data which can be obtained from the initial data. Flashka and Newell [1] applied this method to P_{II} and to a special case of P_{III}, and they formulated the inverse problem in terms of a system of singular integral equations. In [2], the inverse problem is solved in terms of formal infinite series uniquely determined in terms of certain monodromy data. Ablowitz
and Fokas [3], and Fokas, Mugan and Ablowitz [4] formulated the inverse problems for \(\text{P} \text{II} \), and \(\text{P} \text{IV}, \text{P} \text{V} \) respectively, in terms of a matrix, singular, discontinuous Riemann-Hilbert (RH) boundary value problem defined on a complicated self-intersecting contour. A rigorous methodology for studying the RH-problems appearing in the IMT was introduced by Fokas and Zhou [5], and they showed that the Cauchy problems for \(\text{P} \text{II} \) and \(\text{P} \text{IV} \) in general admit global solutions meromorphic in \(x \). The above rigorous methodology was applied to \(\text{P}_1, \text{P}_\text{III}, \text{P}_\text{V} \) in [6], and to \(\text{P}_\text{VII} \) in [7]. In the recent monograph by Fokas, Its, Kapaev and Yu.Novokshenov [8] the inverse monodromy transform for \(\text{P}_1 - \text{P}_\text{V} \) is discussed in great detail.

Equations \(\text{P}_1 - \text{P}_\text{VII} \) are of course second order ODE’s. The original classification programme of Painlevé foresaw a step-by-step classification of equations having the Painlevé property: after second-order, then third-order, then fourth-order, and so on. Much current interest in the Painlevé equations derives from the important observation in [9] of a link between completely integrable PDE’s and ODE’s having the Painlevé property. Given that sitting above completely integrable PDE’s such as the Korteweg-de Vries (KdV) and modified Korteweg-de Vries (mKdV) equations are their respective hierarchies, the way was then open to the derivation of hierarchies of higher order analogues of the Painlevé equations. However, even though Airault derived a \(\text{P}_\text{II} \) hierarchy (i.e., having \(\text{P}_\text{II} \) as first member) almost thirty years ago [10] (see also [1]), it is only within the last ten years or so that interest in Painlevé hierarchies has really taken off. Topics studied have included lifting up to higher order members of the hierarchies properties of the Painlevé equations themselves, for example, Bäcklund and auto-Bäcklund transformations, Hamiltonian structures, coalescence limits and special integrals. In the present paper we prove the existence of a globally meromorphic solution for a member of a Painlevé hierarchy which is not the standard one (as obtained from the 3-reduced KP hierarchy) related to 1+1 dimensional evolution equations that correspond to non-isospectral scattering problems. This then provides evidence that the equations contained in such non-standard hierarchies are indeed of Painlevé type. The equation considered is the second member of a \(\text{P}_\text{IV} \) hierarchy obtained, using the approach developed in [11], in [12].

The IMT method consists of two basic steps, the direct and inverse problems. The direct problem consists of establishing the analytic structure of the eigenfunction \(\Phi(\lambda, x) \) of an associated linear equation in the complex \(\lambda \)-plane. In the case of the second member of the \(\text{P}_\text{IV} \) hierarchy, the linear ODE has a regular singular point at \(\lambda = 0 \), and an irregular singular point with rank \(r = 3 \) at \(\lambda = \infty \). The eigenfunction \(\Phi(\lambda, x) \), for large \(\lambda \), has a unique asymptotic expansion in certain sectors of the \(\lambda \)-plane. According to the Stokes phenomenon these sectionally analytic eigenfunctions are related via Stokes matrices. In the neighborhood of the regular singular point \(\lambda = 0 \), the solution can be obtained via convergent power series. The eigenfunction is normalized in the neighborhood of \(\lambda = 0 \), and is related to the eigenfunction in the neighborhood of \(\lambda = \infty \) through the connection matrix. The set which consists of the entries of the Stokes matrices and connection matrix is called the set of monodromy data.
Clearly, the monodromy data are independent of \(\lambda \) and also it can be shown that they are independent of \(x \). The crucial part of the direct problem is to show that only four of the monodromy data are arbitrary. This can be shown by using the product condition around all singular points (consistency condition) and certain equivalence relations. Hence, for given four initial data for the second member of the P_{IV} hierarchy the four independent monodromy data can be obtained. In the inverse problem, a matrix RH-problem over a self-intersecting contour can be formulated by using the results obtained from the direct problem. The jump matrices for the RH-problem are uniquely defined in terms of the monodromy data. The RH-problem is discontinuous at the points of the discontinuities of the associated linear problem. These discontinuities can be avoided by inserting the circle around \(\lambda = 0 \) and performing a small clockwise rotation. The new RH-problem is continuous and equivalent to a certain Fredholm integral equation. Once the solution of the new RH-problem is obtained, the solution of the original one can easily be established. In order to have a regular RH-problem, we choose the parameters of the second member of the P_{IV} hierarchy. However, this is without loss of generality since there exist Schlesinger transformations [13] which shift the parameters.

Since the eigenfunction \(\Phi(\lambda, x) \) is defined as the solution of the RH-problem, once the solution of the RH-problem is obtained the associated linear ODE can be used to obtain the solution \(u \) of the second member of the P_{IV} hierarchy. This procedure parameterizes the general solution of the second member of the P_{IV} hierarchy in terms of the relevant monodromy data and shows that the general solution is meromorphic in \(x \). For certain choices of the monodromy data the RH-problem can be solved in closed-form. We will show that for a particular choice of the monodromy data, the solution of the second member of the P_{IV} hierarchy can written in terms of the Airy function. An exhaustive investigation of all such cases will be given elsewhere.

The second member of the P_{IV} hierarchy corresponds to the system [12]:

\[
\begin{align*}
\frac{d^2u}{dx^2} &= 3uu_x - u^3 - 6uv - 2g_2xu + 2c_1(u_x - 2v - u^2) + 4c_2, \\
\frac{dv}{dx} &= 2 \left[\frac{(uv + \frac{1}{2}v_x + c_1v - \alpha_2 + \frac{1}{2}g_2)^2 - \frac{1}{4}b^2}{v + \frac{1}{2}u^2 - \frac{1}{2}u_x + g_2x + c_1u} \right] - 2(uv)_x, \\
&\quad - 2v \left(v + \frac{1}{2}u^2 - \frac{1}{2}u_x + g_2x \right) - 2c_1(v_x + uv).
\end{align*}
\]

A scalar equation in \(u \) can be obtained by eliminating \(v \) between these two equations; we will refer to this scalar equation also as the second member of the P_{IV} hierarchy.

The second member of the P_{IV} hierarchy can also be obtained as the compatibility condition of the following system of linear equations [14]:

\[
\begin{align*}
\frac{\partial \Phi}{\partial \lambda} &= (B_2\lambda^2 + B_1\lambda + B_0 + B_{-1}\lambda^{-1})\Phi, \\
\frac{\partial \Phi}{\partial x} &= (A_1\lambda + A_0)\Phi,
\end{align*}
\]
The direct problem consists basically of establishing the analytic structure of the solution matrix \(\Phi \) of (2) with respect to \(\lambda \), in the entire complex \(\lambda \)-plane. To achieve this goal, we use (2.a) which implies the existence of a regular singular point at \(\lambda = 0 \), and an irregular singular point with rank \(r = 3 \) at \(\lambda = \infty \).

Solution of (2.a) about \(\lambda = 0 \):

Since \(\lambda = 0 \) is a regular singular point of (2.a), two linearly independent solutions \(\Phi^0(\lambda) = (\Phi^0_{(1)}(\lambda), \Phi^0_{(2)}(\lambda)) \) in the neighborhood of \(\lambda = 0 \) can be obtained via a convergent power series,

\[
\Phi^0(\lambda) = G_0 \left(I + \hat{\Phi}^0_1 \lambda + \hat{\Phi}^0_2 \lambda^2 + \ldots \right) \left(\frac{1}{\lambda} \right)^{D_0}, \quad \beta \neq n, \ n \in \mathbb{Z}, \ 0 < |\lambda| < \infty,
\]

where

\[
G_0 = \begin{pmatrix}
\kappa_1 wL & \kappa_2 wL \\
\kappa_1(H + \frac{\beta}{2}) & \kappa_2(H - \frac{\beta}{2})
\end{pmatrix}, \quad D_0 = -\frac{\beta}{2} \sigma_3,
\]

where \(\kappa_1, \kappa_2 \) are constants with respect to \(\lambda \), and \(\hat{\Phi}^0_1 \) satisfies \(\hat{\Phi}^0_1 + [D_0, \hat{\Phi}^0_1] = G_0^{-1} B_0 G_0 \).

If we impose the condition \(\det G_0 = 1 \), and use that \(\Phi^0(\lambda) \) solves (2.b), we find that \(\kappa_1 \) and \(\kappa_2 \) satisfy the following equations:

\[
\kappa_1 = \frac{\rho}{wL} \exp \left[\int^x \frac{1}{L} \left(H + \frac{\beta}{2} \right) dx' \right], \quad \kappa_2 = -\frac{1}{\beta \rho} \exp \left[-\int^x \frac{1}{L} \left(H + \frac{\beta}{2} \right) dx' \right],
\]

where \(\rho \) is a constants with respect to \(x \). If \(\beta = n, \ n \in \mathbb{Z} \), then two linearly independent solution are \(\Phi^0_{(1)}(\lambda) \) and

\[
\Phi^0_{(2)}(\lambda) = \tau (\ln \lambda) \Phi^0_{(1)}(\lambda) + \lambda^{-\beta/2} \chi(\lambda),
\]
where \(\chi = \chi_0 + \chi_1 \lambda + \chi_2 \lambda^2 + \ldots \) and \(\tau \) is a constant with respect to \(\lambda \), and proportional to the coefficient of \(\lambda^{2\beta-1} \) in \(\Phi_0^{(1)}(\lambda) \). For example, when \(\beta = \pm 1 \)

\[
\tau \kappa_1 wL^2 = (\chi_0)_{11} \left[-L^2(v_x + uv + 2c_1v) + 2L(v + x) \left(H - \frac{1}{2} \right) - \left(H - \frac{1}{2} \right)^2 (u + 2c_1) \right].
\]

(9)

Note that the logarithm will disappear if \(\tau = 0 \); when \(\beta = \pm 1 \) this implies

\[
L^2(v_x + uv + 2c_1v) - 2L(v + x) \left(H - \frac{1}{2} \right) + \left(H - \frac{1}{2} \right)^2 (u + 2c_1) = 0.
\]

(10)

Equation (10) defines a three-parameter family of solutions of (1).

The monodromy matrix \(M_0 \) about \(\lambda = 0 \) is defined as

\[
\Phi^0(\lambda e^{2\pi i}) = \Phi^0(\lambda)M_0, \quad M_0 = e^{-2\pi i\alpha_0}, \quad \beta \neq n.
\]

(11)

Solution of (2.a) about \(\lambda = \infty \):

\(\lambda = \infty \) is an irregular singular point of (2.a) with rank \(r = 3 \), and hence the solution of (2.a) possesses a formal expansion of the form \(\Phi(\lambda) \sim \Phi^\infty(\lambda) = (\Phi_{(1)}^\infty(\lambda), \Phi_{(2)}^\infty(\lambda)) \), as \(\lambda \rightarrow \infty \), in certain sectors \(S_j^\infty, \ j = 1, \ldots, 6 \) in \(\lambda \)-plane. The formal expansion \(\Phi^\infty(\lambda) \) near \(\lambda = \infty \) is given by

\[
\Phi^\infty(\lambda) = \hat{\Phi}(\lambda) \lambda^{D^\infty} e^{Q(\lambda)} = (I + \hat{\Phi}_1^\infty \lambda^{-1} + \hat{\Phi}_2^\infty \lambda^{-2} + \ldots, \lambda^{D^\infty} e^{Q(\lambda)},
\]

where

\[
\hat{\Phi}_1^\infty = \begin{pmatrix} \ldots & w \frac{7}{2w} \ldots \end{pmatrix}, \quad D^\infty = \frac{1}{2}(2\sigma_1 - 1)\sigma_3, \quad Q(\lambda) = -\left(\frac{2}{3} \lambda^3 + c_1 \lambda^2 + x\lambda \right) \sigma_3.
\]

(13)

The relevant sectors \(S_j^\infty, \ j = 1, \ldots, 6 \) are determined by \(\text{Re}[\left(\frac{2}{3} \lambda^3 + c_1 \lambda^2 + x\lambda \right)] = 0 \) and are given in figure 1. The non-singular matrices \(\Phi_j(\lambda), \ j = 1, \ldots, 6 \) satisfy

\[
\Phi_{j+1}(\lambda) = \Phi_j(\lambda)G_j, \quad \lambda \in S_{j+1}^\infty, \quad \Phi_1(\lambda) = \Phi_6(\lambda e^{2\pi i})G_6 M^{-1}_\infty, \quad \lambda \in S_1^\infty,
\]

(14)

where the Stokes matrices \(G_j \) and the monodromy matrix \(M_\infty \) are given as

\[
G_{2j-1} = \begin{pmatrix} 1 & a_{2j-1} \ 0 & 1 \end{pmatrix}, \quad G_{2j} = \begin{pmatrix} 1 & 0 \ a_{2j} & 1 \end{pmatrix}, \quad j = 1, 2, 3, \quad M_\infty = e^{2\pi i D_\infty}
\]

(15)

and the sectors are

\[
S_j^\infty : \frac{\pi}{6}(2j - 3) \leq \text{arg} \ z < \frac{\pi}{6}(2j - 1), \quad |z| > 0.
\]

(16)

The entries \(a_j \) of the Stokes matrices \(G_j \) are constant with respect to \(\lambda \).

Since \(\Phi^0, \Phi_1 \) are locally analytic solutions of the linear equation (2.a), they are related with a constant (with respect to \(\lambda \)) matrix \(E \) which is called connection matrix,

\[
\Phi_1(\lambda) = \Phi^0(\lambda)E, \quad E = \begin{pmatrix} \alpha_0 & \beta_0 \\ \gamma_0 & \delta_0 \end{pmatrix}, \quad \det E = 1,
\]

(17)

where the \(\det E = 1 \) condition follows from the normalization of \(\Phi^0 \) to have unit determinant. Branch cuts associated with the branch points \(\lambda = 0, \infty \) are chosen along
Cauchy problem for the second member of a PIV hierarchy

0 ≤ |λ| < 1 and 1 < |λ| < ∞, arg λ = −π/6 respectively, and are indicated in figure 1.

Clearly, the Stokes matrices G_j, $j = 1, ..., 6$, and the connection matrix E are constant matrices with respect to $λ$, but it can be shown that they are also independent of x [1].

Therefore, the analytic structure of the solution matrix $Φ$ of (2) is characterized by the monodromy data $MD = \{a_1, a_2, a_3, a_4, a_5, a_6, α_0, β_0, γ_0, δ_0\}$. The monodromy data, MD satisfy the following product condition around all singular points, or consistency condition:

$$\prod_{j=1}^{6} G_j M_{-1}^{-1} = E^{-1} M_{0}^{-1} E.$$ \hspace{1cm} (18)

If $Φ$ solves (2) with u satisfying the second member of the PIV hierarchy, then $\bar{Φ} = R^{-1} Φ R$ where $R = diag(r^{1/2}, r^{-1/2})$ and r is non-zero complex constant, also solves (2) with u satisfying the second member of the PIV hierarchy. But the connection matrices \bar{E} and the Stokes matrices \bar{G}_j for $\bar{Φ}$ are $\bar{E} = R^{-1} E R$, and $\bar{G}_j = R^{-1} G_j R$ respectively. Thus, r may be chosen to eliminate one of the parameters, e.g. $r = β_0$.

Also, changing the arbitrary integration constant $ρ$ (see eq. (7)) amounts to multiplying $Φ_0^{(1)}$ and $Φ_0^{(2)}$ by arbitrary nonzero complex constants $ε$ and $ε^{-1}$ respectively. This maps E to $diag(ε, ε^{-1})E$. Thus, $ε$ may be chosen to eliminate one of the entries of the connection matrix E. The freedom in choosing E has no effect on the solution of the RH-problem. Therefore, together with the consistency condition (18), and $det E = 1$, these considerations imply that all the monodromy data can written in terms of four of them.

3. Inverse Problem

In this section, we formulate a regular, continuous RH-problem over the intersecting contours for the sectionally analytic function $Ψ(λ)$. $Ψ(λ)$ also depends on x; for simplicity in the notation we dropped x. We let $1/2 < α < 3/2$, and $0 < β < 2$...
in order to have integrable singularities at $\lambda = 0$ and $\lambda = \infty$. That is, in order to have a regular RH-problem. However, this is without loss of generality, since there exist Schlesinger transformations [13] which shift the parameters α and β by half integer and by integer respectively. Hence, the Schlesinger transformations allow one to completely cover the parameter space.

Since Φ_0 and Φ_∞ are holomorphic at $\lambda = 0, \infty$ respectively, in order to formulate a continuous RH-problem, we insert the circle C_0 with radius $r < 1$ about the point $\lambda = 0$ (see figure 2). The jump matrices across the contours can be obtained from the definition of the Stokes matrices G_j (equations (15)) and the definition of the connection matrices E (equation (17)).

The jumps different from unity across the contours as indicated in figure 2 are given by

\[
\begin{align*}
C_2 & : \Phi_1 = \Phi_1 G_1, & AB & : \Phi_1 = \Phi_0 E, \\
C_3 & : \Phi_3 = \Phi_2 G_2, & BC & : \Phi_2 = \Phi_0 E G_1, \\
C_4 & : \Phi_4 = \Phi_3 G_3, & CD & : \Phi_3 = \Phi_0 E G_1 G_2, \\
DE & : \Phi_4 = \Phi_0 E G_1 G_2 G_3, & C_5 & : \Phi_5 = \Phi_4 G_4, \\
EF & : \Phi_5 = \Phi_0 E \prod_{j=1}^{4} G_j, & C_6 & : \Phi_6 = \Phi_5 G_5, \\
FA & : \Phi_6 = \Phi_0 E \prod_{j=1}^{5} G_j, & C_1 & : \Phi_1(z) = \Phi_6(z e^{2\pi i}) G_6 M_\infty^{-1}.
\end{align*}
\]

In order to define a continuous RH problem, we define a sectionally analytic function $\Psi(\lambda)$ as follows:

\[
\Phi_j = \Psi_j e^{Q(\lambda) \lambda^D_\infty}, \quad j = 1, \ldots, 6, \quad \Phi_0 = \Psi_0 e^{Q(\lambda) \left(\frac{1}{\lambda} \right)^{D_0}},
\]

where $Q(\lambda) = - \left(\frac{2}{3} \lambda^3 + c_1 \lambda^2 + x \lambda \right) \sigma_3$, and $\Psi \rightarrow I$ as $\lambda \rightarrow \infty$.

Figure 2
Cauchy problem for the second member of a P\(_IV\) hierarchy

The orientation as indicated in figure 2 allows the splitting of the complex \(\lambda\)-plane in + and − regions. Then (19) imply certain jumps for the sectionally analytic function \(\Psi\) which is represented by \(\Psi^0\) and \(\Psi_j\), \(j = 1, \ldots, 6\), in the regions indicated in figure 2, and we obtain the following RH-problem:

\[
\Psi^+(\hat{\lambda}) = \Psi^-(\hat{\lambda}) \left[e^{Q(\hat{\lambda})} V e^{-Q(\hat{\lambda})} \right] \quad \text{on } C, \quad \Psi = I + O\left(\frac{1}{\lambda}\right) \ \text{as } \lambda \to \infty, \tag{21}
\]

where \(C\) is the sum of all the contours, and the jump matrices \(V\) are given in terms of the monodromy data as follows:

\[
\begin{align*}
V_{C_2} &= \lambda^{D_\infty} G_1^{-1} \lambda^{-D_\infty}, & V_{AB} &= \lambda^{-D_0} E \lambda^{-D_\infty}, \\
V_{C_3} &= \lambda^{D_\infty} G_2 \lambda^{-D_\infty}, & V_{BC} &= \lambda^{D_\infty} (EG_1)^{-1} \lambda^{D_0}, \\
V_{C_4} &= \lambda^{D_\infty} G_3^{-1} \lambda^{-D_\infty}, & V_{CD} &= \lambda^{-D_0} EG_1 G_2 \lambda^{-D_\infty}, \\
V_{DE} &= \lambda^{D_\infty} \left[E \prod_{j=1}^3 G_j \right]^{-1} \lambda^{D_0}, & V_{C_5} &= \lambda^{D_\infty} G_4 z^{-D_\infty}, \\
V_{EF} &= \lambda^{-D_0} \left[E \prod_{j=1}^4 G_j \right] \lambda^{-D_\infty}, & V_{C_6} &= \lambda^{D_\infty} G_5^{-1} \lambda^{-D_\infty}, \\
V_{FA} &= \lambda^{D_\infty} \left[E \prod_{j=1}^5 G_j \right]^{-1} \lambda^{D_0}, & V_{C_1} &= \lambda^{D_\infty} G_6 M^{-1} \lambda^{-D_\infty}.
\end{align*}
\]

Since we have the branch cut along the contour \(C_1\), the subscript + appearing in the definition of \(V_{FA}\) indicates that we consider the relevant boundary values from + region, that is, \(z_+ = |\lambda| e^{2i\pi}\).

By construction \(\Psi\) satisfies the continuous RH-problem and this can be checked by the product of the jump matrices \(V\) at the intersection points of the contours. The product of the jump matrices at the intersection points \(B, C, D, E, F\) identically equals the identity matrix \(I\), and at the point \(A\) equals \(I\) because of the consistency condition (18) of the monodromy data.

The RH-problem (21) is equivalent to following Fredholm integral equation

\[
\Psi^-(\lambda) = I + \frac{1}{2i\pi} \int_C \frac{\Psi^-(\hat{\lambda}) \left[V(\hat{\lambda}) V^{-1}(\lambda) - I \right]}{\hat{\lambda} - \lambda} \ d\hat{\lambda}, \tag{23}
\]

where \(C\) is the sum of all the contours. The Cauchy problem for the second member of the P\(_IV\) hierarchy always admits a global meromorphic solution in \(x\). These solutions can be obtained by solving associated RH-problem of the form \(\Psi^+(\hat{\lambda}) = \Psi^-(\hat{\lambda}) [e^{Q(\hat{\lambda})} V e^{-Q(\hat{\lambda})}]\) where the jump matrices \(V\) are given in terms of the monodromy data, which are such that four of them are arbitrary. Once the solution \(\Psi\) of the associated RH-problem is obtained, the solution \(u\) of the second member of the P\(_IV\) hierarchy is obtained from

\[
u = -2 \frac{\partial}{\partial x} \ln(\Psi_{-1})_{12}, \tag{24}
\]

where

\[
\Psi = I + \Psi_{-1} \lambda^{-1} + \Psi_{-2} \lambda^{-2} + \ldots, \quad \text{as } \lambda \to \infty, \tag{25}
\]
Cauchy problem for the second member of a P_{IV} hierarchy

and $(\Psi_{-1})_{12}$ is $(1, 2)$ entry of Ψ_{-1}.

For a special choice of the monodromy data, the jump matrix V of the RH-problem (21) can be reduced to a triangular matrix, and hence the RH-problem can be reduced to a set of scalar RH-problems. The closed form solution of the set of scalar RH-problems can be obtained by using the Plemelj formulae. We consider the following case; an exhaustive investigation of all such cases will be given elsewhere. Let

$$a_2 = a_3 = a_4 = 0, \quad \beta_0 = \gamma_0 = 0.$$ \hspace{1cm} (26)

Without loss of generality, we let $E = I$. Then the consistency condition of the monodromy data (18) implies that

$$a_5 = -a_1 = a, \quad a_6 = 0, \quad 2\alpha - \beta - 1 = 2n, \quad n \in \mathbb{Z}.$$ \hspace{1cm} (27)

Let $n = 0$, and $\beta = 0$, then $\alpha = 1/2$, and the RH-problem (21) is reduced to one along the contour C as indicated in the figure 3, with an upper-triangular jump matrix

$$\Psi^+(\hat{\lambda}) = \Psi^-(\hat{\lambda}) \begin{pmatrix} 1 & -ae^{-2q(\hat{\lambda})} \\ 0 & 1 \end{pmatrix}, \quad \text{on } C, \quad \Psi = I + O\left(\frac{1}{\lambda}\right) \quad \text{as } \lambda \to \infty,$$ \hspace{1cm} (28)

where $q(\lambda) = \frac{2}{3} \lambda^3 + c_1 \lambda^2 + x \lambda$.

Letting $\Psi = (\Psi_1, \Psi_2)$, the above RH-problem reduces to the following set of scalar RH-problems:

$$\Psi_1^+ = \Psi_1^-, \quad \Psi_2^+ - \Psi_2^- = -ae^{-2q(\hat{\lambda})}\Psi_1^-.$$ \hspace{1cm} (29)

With the choice $\beta = 0$, the boundary condition on Ψ implies that

$$\Psi_1 = \Psi_1^+ = \Psi_2^- = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$ \hspace{1cm} (30)

Then, using Plemelj formulae, the solution of (29.b) is given as

$$\Psi_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \frac{1}{2i\pi} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \int_C \frac{ae^{-2n(\hat{\lambda})}}{\hat{\lambda} - \lambda} d\hat{\lambda}.$$ \hspace{1cm} (31)
Therefore, the solution of the RH-problem (28) is
\[
\Psi(\lambda) = \begin{pmatrix} 1 & \Lambda(\lambda) \\ 0 & 1 \end{pmatrix}, \quad \Lambda(\lambda) \doteq -\frac{a}{2i\pi} \int_C \frac{e^{-2q(\lambda)}}{\lambda - \lambda} d\lambda.
\] (32)

If one expands Λ in powers of $1/\lambda$ the coefficient of the $O(1/\lambda)$ term is the integral representation of the Airy function $Ai(-x)$ for $c_1 = 0$. Therefore, for $\beta = c_1 = 0$ and $\alpha = 1/2$, the solution u of the second member of the PIV hierarchy is expressible rationally in terms of the Airy function (see the equation (24)).

4. Derivation of the linear problem

In this section, we show that once the sectionally analytic function Ψ satisfying the RH-problem (21) is known, then the coefficients A and B of the Lax pair (2) can be determined and hence the solution u of the second member of the PIV hierarchy. Note that the sectionally analytic functions Φ and Ψ are defined as Φ_j and Ψ_j, $j = 1, ..., 5$ respectively, and Φ and Ψ are related via (20).

Since Φ and Φ_λ admit the same jumps it follows that $B = \Phi_\lambda \Phi^{-1}$ is holomorphic in $C/\{0\}$. Moreover, $\Phi \sim \exp \left[-\left(\frac{2}{3} \lambda^3 + c_1 \lambda^2 + x \lambda \right) \sigma_3 \right] \lambda^{\hat{1}(2\alpha-1)\sigma_3}$, as $\lambda \to \infty$. Therefore, $B(\lambda) = B_2 \lambda^2 + B_1 \lambda + B_0 + B_{-1} \lambda^{-1}$. Equation (20), and $\Phi_\lambda = B \Phi$ give
\[
\Psi_\lambda - (2\lambda^2 + 2c_1 \lambda + x) \Psi \sigma_3 + \frac{1}{2\lambda} (2\alpha - 1) \Psi \sigma_3 = (B_2 \lambda^2 + B_1 \lambda + B_0 + B_{-1} \lambda^{-1}) \Psi,
\]
\[
\Psi_\lambda - (2\lambda^2 + 2c_1 \lambda + x) \Psi \sigma_3 + \frac{\beta}{2\lambda} \Psi \sigma_3 = (B_2 \lambda^2 + B_1 \lambda + B_0 + B_{-1} \lambda^{-1}) \Psi,
\] (33)

near $\lambda = \infty$, and $\lambda = 0$ respectively. As $\lambda \to \infty$, Ψ has the expansion
\[
\Psi = I + \Psi_{-1} \lambda^{-1} + \Psi_{-2} \lambda^{-2} + \Psi_{-3} \lambda^{-3} + \ldots
\] (34)

Substituting (34) into (33.a) yields
\[
O(\lambda^2) : B_2 = -2\sigma_3, \quad O(\lambda) : B_1 = -2c_1 \sigma_3 + 2[\sigma_3, \Psi_{-1}],
\]
\[
O(1) : B_0 = -x \sigma_3 + 2[\sigma_3, \Psi_{-2}] + 2[\sigma_3, \Psi_{-1}] (c_1 I - \Psi_{-1}),
\] (35)
\[
O(\lambda^{-1}) : B_1 \Psi_{-2} + B_0 \Psi_{-1} + B_{-1} = 2[\sigma_3, \Psi_{-2}] + \left[\frac{1}{2}(2\alpha - 1)I - 2c_1 \Psi_{-2} - x \Psi_{-1} \right] \sigma_3.
\]

If we define w and v as
\[
w = 2(\Psi_{-1})_{12}, \quad v = 2w(\Psi_{-1})_{21},
\] (36)
then (35.b) implies
\[
B_1 = 2 \begin{pmatrix} -c_1 & w \\ -x & c_1 \end{pmatrix}.
\] (37)

Equations (35.c) and (36) yield
\[
(B_0)_{11} = -(B_0)_{22} = -(x + v).
\] (38)
Cauchy problem for the second member of a PIV hierarchy

Similar considerations imply that \(A(\lambda) = A_1 \lambda + A_0 \). Equation (20), and \(\Phi_x = A\Phi \) give

\[
\frac{\partial \Psi}{\partial x} - \Psi \sigma_3 \lambda = (A_1 \lambda + A_0)\Psi.
\] (39)

Substituting (34) into (39) gives

\[
O(\lambda) : A_1 = -\sigma_3, \quad O(1) : A_0 = [\sigma_3, \Psi_{-1}],
\]

\[
O(\lambda^{-1}) : (\Psi_{-1})_x = [\sigma_3, \Psi_{-1}]\Psi_{-1} - [\sigma_3, \Psi_{-2}],
\]

\[
O(\lambda^{-2}) : (\Psi_{-2})_x = [\sigma_3, \Psi_{-1}]\Psi_{-2} - [\sigma_3, \Psi_{-3}].
\] (40)

Using \((\Psi_{-1})_{12}\) and \((\Psi_{-1})_{21}\) as given in equation (36), we find \(A_0 \) as given in equation (3). Using equation (40.c) in (35.c), we find

\[
B_0 = -z\sigma_3 + 2c_1[\sigma_3, \Psi_{-1}] - 2(\Psi_{-1})_x,
\] (41)

and hence

\[
(B_0)_{12} = w(u + 2c_1), \quad (B_0)_{21} = -\frac{1}{w}(v_x + uv + 2c_1 v).
\] (42)

On the other hand, equations (42) and (35.c) imply

\[
2w(\Psi_{-2})_{22} - 4(\Psi_{-2})_{12} = w_x, \quad 4(\Psi_{-2})_{21} - \frac{2v}{w}(\Psi_{-1})_{11} = \frac{1}{w}(v_x + uv).
\] (43)

Then, from equation (35.d), we obtain

\[
(B_{-1})_{11} = -(B_{-1})_{22} = -\frac{1}{2}(v_x + 2uv + 2c_1 v - 2\alpha + 1) \equiv -H.
\] (44)

As \(\lambda \to 0 \), equation (33.b) implies

\[
B_{-1} = \frac{\beta}{2}\Psi(0)\sigma_3[\Psi(0)]^{-1},
\] (45)

thus

\[
\det B_{-1} = -\frac{\beta^2}{4}, \quad \text{and} \quad \text{tr } B_{-1} = 0.
\] (46)

These equations together with the expression for \((B_{-1})_{11}\) yields \(B_{-1} \) as given in equation (3).

Acknowledgments

UM is partially supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK).

The work of AP is supported in part by the Ministry of Education and Science of Spain under contract MTM2006-14603, the Spanish Agency for International Cooperation under contract A/010783/07, the Universidad Rey Juan Carlos and Madrid Regional Government under contract URJC-CM-2006-CET-0585, and the Junta de Castilla y León under contract SA034A08.

The authors thank the anonymous referees for their helpful and illuminating suggestions.
References

Jimbo M and Miwa T 1981 Monodromy preserving deformation of linear ordinary differential equations with rational coefficients.3 Physica D 4 26–46;