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34. Pólya’s Enumeration Theorem
We started examining the number of essentially distinct colorings of an object with questions of the form

“How many necklaces can be made with 3 black beads and white beads?” We were able to answer these
questions in a fairly ad hoc manner using the Lemma that is not Burnside’s.

A closer examination of this method of counting led to the previous lecture’s result: If the cycle index
ζG(x1, . . . , xn) of a group G of permutations of a set X is known, then X has ζG(r, r, . . . , r) essentially
G-distinct r-colorings.

While this more recent result is more universal, and in particular deals with all r-coloring in the same
manner, it is not really a generalization of the earlier ad hoc counting results: We can easily compute that
there are 6 essentially distinct necklaces with four beads, which can either be black or white, but this does
not tell us how many necklaces are possible with a specified number of black and white beads.

Below are representatives of the 6 essentially distinct black and white colorings of the vertices of the
square, which you might recognize as the first column of the example worked out in the previous lecture:

•

b4

• ◦

b3w

• ◦

b2w2

◦ ◦

b2w2

• ◦

bw3

◦ ◦

w4

◦

• • • • • • • ◦ • ◦ ◦ ◦

Each representative is labeled with an expression of the form biwj , where i is the number of black beads and
j the number of white for that coloring. We have chosen a somewhat suggestive notation: Instead of having
b3w be simply a shorthand for “there are three black beads and one white here,” we’ll view the expression
b3w as a monomial in the formal variables b and w. This formalism allows us to manipulate the labelings as
if they were polynomials, and in particular, add all the labelings:

UD(b, w) = b4 + b3w + b2w2 + b2w2 + bw3 + w4

= b4 + b3w + 2b2w2 + bw3 + w4.

Here, UD is the generating function for the number of distinct 2-colorings of the square, a formal polynomial
in the variables b and w.

Note that every monomial that makes up UD is of total degree 4.1 This makes sense, as the exponent on
b is the number of black beads in a given coloring, while the exponent on w is the number of white beads;
as there are a total of 4 beads to color either black or white, the observation follows.

Of greater interest is the again obvious2 Observation that the coefficient of the term biwj in UD is
the number of colorings with i black beads a and j white. Of course, UD was defined by taking the sum
of monomials with one terms for each essentially distinct coloring, so again this should not be surprising.
However, these easy observations are actually hinting at a much deeper counting method, one that relies on
the new way of packaging information that is the generating function.

Recall the notation from the previous lecture: X a finite set of size n, G a permutation group of X,
F = {f1, f2, . . . , fr} a set of r colors, and Ω the set of colorings ω : X → F . We generalize the generating
function UD above by thinking of the fi as formal variables, not just elements of a set. Thus expressions of
the form f1f

3
2 f

3
3 , f2

1 f
4
3 + f3

2 f
3
4 , etc., make sense.

Definition 1. Suppose that ω : X → F is a coloring that assigns ai elements of X to the color fi. The
indicator of ω is the polynomial in the formal variables {fi}:

ind(ω) = fa1
1 fa2

2 . . . far
r .

1By definition, the total degree of a monomial xn1
1 xn2

2 . . . x
nk
k is n1 + n2 + . . . + nk. If every monomial of a polynomial

p(x1, x2, . . . , xk) is of the same degree d, we say p is homogeneous of degree d.
2At least in retrospect.

1



For example, in each of the six colorings listed above, the expression biwj is the indicator of the corre-
sponding coloring.

We are interested in answering the question, “How many essentially distinct colorings of a set X are
possible subject to the condition that ai elements of X are sent to color fi?” We’ll actually introduce a more
general notion3 in order to find the general solution.

Definition 2. Let A ⊆ Ω be a set of r-colorings of X. Define the generating function of A to be the
polynomial UA in the variables {f1, f2, . . . , fn}, defined by

UA(f1, f2, . . . , fn) =
∑
ω∈A

ind(ω).

By construction of UA, the coefficient of the monomial fa1
1 fa2

2 . . . fan
n is the number of colorings of A that

send ai elements of X to the color fi.
The following observation is just a definition-check:

Lemma 3. If ω ∈ Ω, then ind(ω) is a monomial of degree n = |X|, and consequently UA is a homogeneous
polynomial of degree n for any ∅ 6= A ⊆ Ω.

Example 4. Let X = {x1, x2, . . . , xn}, F = {b, w}, and A = Ω. Then the coefficient of biwj is the number
of ways i elements of X can be colored black and j = n− i elements can be colored white; by definition of
binomial coefficients, this number is

(
n
i

)
=
(
n
j

)
. Thus

UΩ(b, w) =

n∑
i=0

(
n

i

)
biwn−i = (b+ w)n,

where the last equality is of course just a restatement of the Binomial Theorem. From another point of
view: Generating functions are actually not a new concept for us, and we’re now just generalizing the ideas
inherent in the Binomial, Trinomial, etc. Theorems.

The main structure advantage of thinking in terms of generating functions is that we can now avail
ourselves of the algebraic properties of polynomials: We can add, subtract, multiply, and (sometimes) divide
them, which in general can have powerful implications for whatever it is we’re interested in counting. For
now, we’re most interested in the fact that polynomials can also be composed ; the effect of this observation
lead to the following elegant solution to all of our counting problems.

Theorem 5 (Pólya’s Enumeration Theorem). Let X, G, F , Ω be as above, and let D ⊆ Ω be a set of

representatives of the Ĝ-orbits on Ω.4 If ζG(x1, x2, . . . , xn) is the cycle index of G and αi = f i1 +f i2 + . . .+f ir
for 1 ≤ i ≤ n, the generating function for D is

UD(f1, f2, . . . , fn) = ζG(α1, α2, . . . , αn).

Example 6. In the case of the 2-colorings (with f1 = b and f2 = w) of the square: We calculated last time
that the cycle index of D8 is

ζD8
(x1, x2, x3, x4) =

1

8
(x4

1 + 3x2
2 + 2x4 + 2x2

1x2).

Since we only have two colors to worry about, it is relatively easy to evaluate ζD8
with xi = αi := bi + wi:

ζD8(α1, α2, α3, α4) =
1

8

(
(b+ w)4 + 3(b2 + w2)2 + 2(b4 + w4) + 2(b+ w)2(b2 + w2)

)
= b4 + b3w + 2b2w2 + bw3 + w4,

which is fortuitously the generating function UD(b, w) we calculated in the introduction.

3I.e., we’re equipping ourselves to deal with more general sets of colorings than just “all essentially distinct” ones.
4Recall from the previous lecture that Ĝ is the group of permutations of Ω induced by G. A “set of representatives of the

orbits” is then a set of colorings of X, such that no two are equivalent under the induced G-action, and any other coloring is
equivalent to one of our set.
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One might argue that Pólya’s Theorem has the potential to not be well defined: If A is one set of
representatives of the Ĝ-orbits of Ω, and A′ is a second, does it necessarily follow that UA = UA′?

Lemma 7. For all ω ∈ Ω and g ∈ G, the indicators of ω and ĝ(ω) are equal:

ind(ω) = ind(ĝ(ω)).

Thus ind is constant on the Ĝ-orbits of Ω, so UA does not depend on the choice of representatives A.

Proof. Both ind(ω) and ind(ĝ(ω)) are degree n monomials in the variables f1, f2, . . . , fr:

ind(ω) = fa1
1 fa2

2 . . . far
r and ind(ĝ(ω)) = f

a′
1

1 f
a′
2

2 . . . f
a′
r

r ,

where ω (resp. ĝ(ω)) sends ai (resp. a′i) elements of X to the color fi. Recall that the coloring ĝ(ω) is
defined by the formula

(ĝ(ω))(x) = ω(g−1(x))

for all x ∈ X. Thus if x1, x2, . . . , xa1
are the elements of X colored f1 by ω, then g(x1), g(x2), . . . , g(xa1

)
are precisely the elements of X colored f1 by ĝ(ω). Of course, the same is true with a1 replaced by ai and
f1 by fi for any 1 ≤ i ≤ r, so we see that ω and ĝ(ω) send the same number of elements of X to each color
(though the particular elements so colored can of course change). Because ind is defined simply in terms of
the number of elements sent to each color, we conclude that ai = a′i for all 1 ≤ i ≤ r. The result follows.

This Lemma suggests a generalization of the Lemma that is not Burnside’s that will be useful in the
proof of Pólya’s Theorem:

Theorem 8 (Weighted Burnside). Let X be a set with permutation group G, R a ring,5 and let f : X → R
be constant on all G-orbits, i.e., f(x) = f(g(x)) for all x ∈ X and g ∈ G. If D ⊆ X is a set set of
representatives of G\X, then ∑

x∈D
f(x) =

1

|G|
∑
g∈G

∑
x∈Xg

f(x).

Proof. Note that if f(x) = 1 for all x ∈ X, this reduces to the statement of Burnside we had encountered a
few lectures ago. This suggests, correctly, that we might get some mileage from the proof technique we used
earlier.

Define E := {(x, g) ∈ X × G|g(x) = x}. We will calculate S :=
∑

(x,g)∈E
f(x) in two different ways

(depending on the order of summing x and g), the equality of the two results will lead to the different sides
of the desired equality.

Fix x and define Cx :=
∑
g∈G

(x,g)∈E

f(x). Since the summand f(x) does not change with g, we see that

Cx is just f(x) · |{g ∈ G|(x, g) ∈ E}| = f(x) · |Gx|. Since S =
∑
x∈X

Cx, we have S =
∑
x∈X

f(x) · |Gx|. If

X1, X2, . . . , Xk are are the G-orbits, and x1, . . . , xk are the representatives of Xi that live in D, then (since
both f(x) and |Gx| are constant on G-orbits), we see

S =
∑
x∈X

f(x) · |Gx| =
∑
xi∈D

∑
x∈Xi

f(x) · |Gx| =
∑
xi∈D

f(x) · |Gx| · |Xi| =
∑
xi∈D

f(x) · |G| = |G|
∑
x∈D

f(x).

For the second method of computing S, fix g ∈ G and set Rg :=
∑
x∈X

(x,g)∈E

f(x). By definition of E, this is just

∑
x∈Xg ; since S =

∑
g∈G

Rg, we conclude S =
∑
g∈G

∑
x∈Xg

f(x) = |G|
∑
x∈D

f(x). The result follows.

5Recall that this simply means a set equipped with an addition and commutative multiplication governed by the axioms we
described governing the arithmetic of Z at the beginning of the course. The relevant examples are R = Z, Q, R, and polynomial
rings like Z[x] or Z[f1, f2, . . . , fr], the latter being the ring of polynomials with variables {fi}, where addition and multiplication
defined in the obvious manner.
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We can now fit all the pieces together.

Proof (Pólya’s Enumeration Theorem). Recall that D is a set of representatives of Ĝ\Ω. By the definition
of the generating function for D, we have

UD(f1, f2, . . . , fr) =
∑
ω∈D

ind(ω).

As ind is constant on Ĝ-orbits of Ω the weighted version of the Lemma that is not Burnside’s implies

UD(f1, f2, . . . , fn) =
1

|Ĝ|

∑
ĝ∈Ĝ

∑
x∈Ωĝ

ind(ω) =
1

|G|
∑
g∈G

∑
x∈Ωĝ

ind(ω)

 ,
where the second equality uses the fact that the map G → Ĝ is an injection. Let’s focus our attention on
the sum set off in square brackets.

Inside the square brackets, the element g ∈ G is fixed, hence ĝ is as well. By definition of the generating
function, the bracketed term is actually UΩĝ (f1, f2, . . . , fr), i.e., the generating function for the colorings
fixed by ĝ. What does such a coloring look like?

For ω ∈ Ω, we have ω ∈ Ωĝ if and only if ĝ(ω) = ω if and only if for all x ∈ X

ĝ(ω)(x) = ω(g−1(x)) = ω(x).

It follows that ω is a ĝ-fixed coloring if and only if ω is constant on each cycle of g: If one can get from x to
y by repeated application of g, ω must assign both x and y the same color.

If g has cycle type [1c12c2 . . . ncn ]6, set k :=
n∑

i=1

ci, so that k is the number of g-orbits of X.7 In particular,

X is partitioned X = X1 qX2 q . . . qXk, where the Xi are the distinct g-cycles of X. By the above, any
ĝ-fixed coloring ω must be constant on each of the Xi, but any of the r colors of F are possible choices on
each g-cycle.

Therefore, if `i := |Xi| and ω assigns color fj to Xi, those `i elements contribute a total of f `ij to ind(ω).
Taking all of the g-cycles into account, and allowing for all choices of color on each Xi, it follows that

UΩĝ (f1, f2, . . . , fr) = (f `11 + f `12 + . . .+ f `1r ) · (f `21 + f `22 + . . .+ f `2r ) · . . . · (f `k1 + f `k2 + . . .+ f `kr ).

Said differently, when we expand out this product, in each of the k parenthetical sums we have r choices of
color; if we choose color fj in the ith spot, that corresponds to the coloring that is fj on Xi. As we range
over all possible choices of how to expand the terms of the product, we get all the possible choices of how to
color Xi with the r colors available, and the claim follows.

Recall that for g ∈ G, the cycle type of g gives rise to the monomial ζg(x1, x2, . . . , xn) = xc11 x
c2
2 . . . xcnn .

If we evaluate ζg at xi = αi = f i1 + f i2 + . . .+ f ir, we get

ζg(α1, α2, . . . , αn) = (f1 + f2 + . . .+ fr)c1 · (f2
1 + f2

2 + . . .+ f2
r )c2 · . . . · (fn1 + fn2 + . . .+ fnr )cn

Compare this to the expression for UΩg̃ . In that expression, we may assume that the `i are clustered such
that `1 = `2 = . . . = `c1 ; `c1+1 = `c1+2 = . . . = `c1+c2 ; etc. In other words, the first c1 terms represent the
g-cycles of length 1, the next c2 terms the g-cycles of length 2, etc. In these terms, it is clear that

UΩĝ (f1, f2, . . . , fr) = ζg(α1, α2, . . . , αn).

6Recall that this means that, when written in terms of disjoint cycles, g has c1 cycles of length 1, c2 cycles of length 2, etc.
7Note the distinction between G-orbits and g-orbits: In the latter case, we simply mean those element of X that can be

joined by repeated application of the permutation g; in the former, we may use any permutation of G to move around X.
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Returning to the beginning, we have

UD(f1, f2, . . . , fn) =
1

|G|
∑
g∈G

∑
x∈Ωĝ

ind(ω)


=

1

|G|
∑
g∈G

UΩg̃ (f1, f2, . . . , fr)

=
1

|G|
∑
g∈G

ζg(α1, α2, . . . , αn)

= ζG(α1, α2, . . . , αn),

and the Theorem is proved.

Example 9. Let’s look at an example that would be a pain to work out by hand, but fairly easy with this new
technology: How many essentially distinct necklaces can be made with 3 red, 4 blue, and 4 green beads? We
start by noting that there are 11 beads total, so we’re dealing with the group of symmetries of the regular
11-gon, known as D22. By inspection,8 we compute

ζD22
=

1

22
(x11

1 + 10x11 + 11x1x
5
2).

By Pólya’s Enumeration Theorem, the generating function for the number of essentially distinct 3-colorings
of the vertices of the 11-gon is given by

ζD22
(r+b+g, r2+b2+g2, . . . r11+b11+g11) =

1

22

(
(r+b+g)11+10(r11+b11+g11)+11(r+b+g)·(r2+b2+b2)5

)
.

We could, in principal, expand this out, collect like terms, and then read off the coefficient of r3b4g4 (which
would give us our numerical answer). . . or we could just read off only that coefficient directly. There are
three terms that can contribute different sorts of monomials; if we figure out the contribution of r3b4g4 from
each separately, we can add them together and get the total coefficient.

(r + b + g)11 has an r3b4g4-coefficient of
(

11
3,4,4

)
= 11!

3!·4!·4! by the Trinomial Theorem. The middle term

cannot contribute any terms of the desired form, which just leaves the term 11(r + b + g) · (r2 + b2 + b2)5.
Ignoring the lead coefficient of 11 for a moment, we ask for the coefficient of r3b4g4 in (r+b+g)(r2 +b2 +g2)5.
Think of this as 6 terms being multiplied by one another, where we must pick a single summand from each.
Clearly we must pick r from the term r + b+ g (so that the total r-degree will be odd), meaning that from
the remaining five terms we must pick one copy of r2, two copies of b2, and two copies of g2. Again by the
Trinomial Theorem, there are

(
5

1,2,2

)
= 5!

1!·2!·2! such possible choices.

Putting this all together, the coefficient of r3b4g4 in UD is

1

22

(
11!

3! · 4! · 4!
+ 11 · 5!

1! · 2! · 2!

)
= 540,

up to the possibility that I made a multiplication error. Thus there are 540 essentially distinct necklaces
with 3 red, 4 blue, and 4 green beads.

8Do this!
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