PHYS-552: Advanced Statistical Mechanics

February 14, 2012

Due date: 20th of February, 2012

1 Efficiency of the Carnot cycle for an ideal gas

Compute the efficiency for the Carnot engine operating between a hot reservoir at temperature T_{h} and a cold reservoir at temperature T_{c} and using an ideal gas as its working substance. The equation of state of the ideal gas is

$$
\begin{equation*}
P V=N k_{B} T \tag{1}
\end{equation*}
$$

and the internal energy is given by

$$
\begin{equation*}
E=\frac{3}{2} N k_{B} T \tag{2}
\end{equation*}
$$

Express the answer in terms of the two temperatures.

2 Efficiency of a magnetic engine

A Carnot engine operating between a hot reservoir at temperature T_{h} and a cold reservoir at temperature T_{c} uses a paramagnetic substance as its working substance.

- Show that the internal energy, and therefore the heat capacity C_{M} is independent of the magnetization. In other words show that

$$
\begin{equation*}
\left(\frac{\partial E}{\partial M}\right)_{N, T}=0 \tag{3}
\end{equation*}
$$

In the following assume that C_{M} is constant.

- Sketch a typical cycle in the $M-H$ plane for the Carnot engine.
- Calculate the heat absorbed, the work done, and the efficiency of this engine. Express the latter in terms of temperatures.

The equation of state is $M=N D H / T$, where M denotes the magnetization, N denotes the size of the system, H denotes therefore magnetic field. D is a constant depending on material parameters.

3 Pathria and Beale: Problem 1.7

Study the statistical mechanics of an extreme relativistic gas characterized by the sintle-particle energy states

$$
\begin{equation*}
\epsilon\left(n_{x}, n_{y}, n_{z}\right)=\frac{h c}{2 L}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)^{\frac{1}{2}} \tag{4}
\end{equation*}
$$

along the lines discussed in class or section 1.4 in the book. Show that the ration C_{P} / C_{V} in this case is $4 / 3$.

4 Pathria and Beale: Problem 1.9

Making use of the fact that the entropy $S(N, V, E)$ of a thermodynamic quantity is extensive, show that

$$
\begin{equation*}
S=\left(\frac{\partial S}{\partial N}\right)_{V, E} N+\left(\frac{\partial S}{\partial V}\right)_{N, E} V+\left(\frac{\partial S}{E}\right)_{V, N} E \tag{5}
\end{equation*}
$$

5 Pathria and Beale: Problem 1.13

If the two gases considered in the mixing process of Section 1.5 were initially at different temperatures, say T_{1} and T_{2}, what would the entopy of mixing be in that case? Would this contribution depend on whether the molecules are different or identical?

