Midterm, PHYS-552 Course: Advanced Statistical Mechanics

Fundamentals:

Problem 1) Suppose in a certain department the laser printer has a 50% chance of functioning properly on any given day. Calculate the probability that in a given workweek (5 days) the printer will function three of the five days (not necessarily consecutive). (5 pts.) (Extra credit: which department?)

Problem 2) The Hamiltonian of a quantum-mechanical system is given by $H\left(p_{1}, \ldots, p_{N}: q_{1}, \ldots, q_{N}\right)$, where N denotes the number of particles. Write the path-integral expression for the grand-canonical partition function. (5 pts.)

Problem 3) Given a classical system with Hamiltonian $H\left(p_{1}, \ldots, p_{N} ; q_{1}, \ldots, q_{N}\right)$, and given some observable $A\left(p_{1}, \ldots, p_{N} ; q_{1}, \ldots, q_{N}\right)$ write an expression for the time correlation function of this observable in the canonical ensemble. (5 pts .)

Problem 4) Given a classical system with Hamiltonian,

$$
H\left(p_{1}, p_{2} ; q_{1}, q_{2}\right)=\frac{p_{1}^{2}}{2 m}+\frac{p_{2}^{2}}{2 m}+\frac{k}{2}\left(q_{1}-q_{2}\right)^{2}
$$

comment on the applicability of the virial and equipartition theorems. (5 pts.)

Applications:

Problem 1) Consider a single particle with mass m in some volume V. Write the probability density in phase space for this particle as a function of the three velocity components. Calculate the probability that the energy of the particle is some particular value E, in other words, calculate the probability $P(E)$. (20 pts.)

Problem 2) Consider a one-dimensional one-particle system with Hamiltonian $H(p, q)$, and some observable quantity $A(p, q)$. Show that

$$
\int \mathrm{d} p \mathrm{~d} q A(p . q)[\exp (-i \hat{L} t) \rho(p, q)]=\int \mathrm{d} p \mathrm{~d} q[\exp (i \hat{L} t) A(p . q)] \rho(p, q)
$$

where \hat{L} denotes the Liouville operator, and $\rho(p . q)$ denotes the density in phase space. (20 pts .)
Problem 3) Consider a quantum system consisting of N independent spins. The energy for a single spin is given by ϵM with $M=-J, \ldots, J$. Calculate the canonical partition function, the internal energy, and the entropy if this system. Investigate the high and low temperature limits, as well as the limit $J \rightarrow \infty$. Comment on the possibility of negative temperature. (20 pts .)

Problem 4) Consider an ensemble of systems all with fixed particle number N, but with volume V and energy E which are allowed to fluctuate. Suppose that the ensemble consists of \tilde{N} members in contact with each other, but otherwise isolated. Let $n_{r s}$ denote the number of systems with energy E_{r} and volume V_{s}. Assume that the possible volumes (V_{s}) are a discrete set. (20 pts.)
A. Calculate the probability that the system occupies a state with energy E_{r} and volume V_{s}. in terms of the variables E_{r} and V_{s}, and the corresponding partition function Ω. You should have two unknown constants in these expressions.
B. Define a potential $\tilde{q}=\ln \Omega$. By expanding the differential $\mathrm{d} \tilde{q}$, identify the unknown constants from part A., and show that $\tilde{q}=\frac{G}{k_{B} T}$, where G denotes the Gibbs free energy, k_{B} indicates the Boltzmann constant, and T stands for the temperature.
C. Suppose you have an ensemble of systems in which the particle number N and energy E are fixed, and only the volume is allowed to fluctuate. Derive an expression for the entropy in this case.

