PHYS566: Problem Set 2

Problem 1: Consider the ice model such that $a=b=c=1$. Assume a lattice of linear dimension N with periodic boundary conditions. Using the line representation work out the solution for $n=0, n=1$, and $n=2$, where n denotes the number of vertical lines entering the horizontal line representing the transfer matrix from below, or exiting from it to above. Use the ansatz wavefunction $g\left(x_{1}, x_{2}\right)=A_{12} z_{1}^{x_{1}} z_{2}^{x_{2}}+A_{21} z_{2}^{x_{1}} z_{1}^{x_{2}}$.

Problem 2: Consider the anisotropic spin-1/2 Heisenberg model (XXZ model) in one dimension with periodic boundary conditions. The Hamiltonian is given by

$$
\hat{H}=\sum_{i=1}^{N} S_{x}^{i} S_{x}^{i+1}+S_{y}^{i} S_{y}^{i+1}+J S_{z}^{i} S_{z}^{i+1} .
$$

Using the fact that this Hamiltonian conserves the z-component of the total spin, find the solutions for $m=0, m=1$, and $m=2$, where m denotes the number of up-spins in a configuration in which all other components are down-spins.

