Physics 371: Problem Set 3

Instructor: Balázs Hetényi
Office: SA224
Extension: 1972
E-mail: hetenyi@fen.bilkent.edu.tr
Due date: $8^{\text {th }}$ of March, 2013.

Liouvillian derivation of reversible molecular dynamics algorithms

a.) Using the Liouville formalism derive the Verlet algorithm for a particle in one dimension moving in a potential $V(x)$.
b.) Given a system with two particles, one with mass m the other with mass M ($m \ll M$), interacting via a potential $V(x, X)$, derive an MD algorithm in which the time step used to propagate the particle with the smaller mass is δt, that for the larter mass is Δt, where ($\Delta t=n \delta t$, with n integer).

Metropolis Monte Carlo algorithm and detailed balance

Given a probability distribution $P(x)$ and a transition matrix $T\left(x \mid x^{\prime}\right)$, representing the probability to move to position x^{\prime} from the position x. In the Metropolis Monte Carlo method a random move is proposed which is accepted or rejected according to some acceptance probability. In this case the transition matrix can be represented as the product of two matrices $T\left(x \mid x^{\prime}\right)=M\left(x \mid x^{\prime}\right) A\left(x \mid x^{\prime}\right)$, where $M\left(x \mid x^{\prime}\right)$ denotes the transition probability of the random move, $A\left(x \mid x^{\prime}\right)$ denotes the acceptance probability given that the system moved from position x to x^{\prime}.

Using the detailed balance relation, which can be written $P(x) T\left(x \mid x^{\prime}\right)=P\left(x^{\prime}\right) T\left(x^{\prime} \mid x\right)$, derive an explicit form for the acceptance ratio $A\left(x \mid x^{\prime}\right)$ assuming that
a.) $M\left(x \mid x^{\prime}\right)$ is symmetric.
b.) $M\left(x \mid x^{\prime}\right)$ is not symmetric.

