Current Response as a Geometric Phase: Interpretation of Conductivity in Variational Wavefunctions B. Hetényi Bilkent University, Ankara, TURKEY

Background

Kohn (PR, 1964) derived an expression for the DC conductivity in crystalline systems, by taking the zero frequency limit of the frequency dependent conductivity

 $D = \frac{\pi}{L} \frac{\partial^2 E(\Phi = 0)}{\partial L^2}$

• Drude (D_{f}) and superfluid (D_{f}) weights have

"identical" expressions

- Scalapino, White, and Zhang (PRL, 1991)
 - *D* derivative is adiabatic (perturbed system

remains in the same state)

D derivative is "envelope" (perturbed system

Connection to Polarization Theory

- Due to the ill-defined nature of the position in periodic systems polarization can not be written as a simple average over the dipole moment
- Modern theory of polarization (Resta,RMP)

1996): $P = \frac{ie}{2\pi} \int dK \langle \Psi(K) | \partial_K | \Psi(K) \rangle$

• The variable *K* in polarization plays a similar role to the variable *X* for the current response •The discrete analog of *P* can be written:

$$P = \frac{eL}{2\pi} \text{Imln} \langle \Psi | e^{i2\pi X/L} | \Psi \rangle$$

Projected wavefunctions

<u>Gutzwiller wavefunction</u>

Form of Gutzwiller wavefunction:

 $|\Psi_G(\gamma)\rangle = e^{-\Gamma\hat{D}}|FS\rangle$

double occupations *D* are projected out of the Fermi sea (|FS>).

Normalized spread:

 \hat{W}^m

where the total position operator X is defined as a sawtooth wave:

remains in the lowest energy state) <u>*D*</u> and <u>*D*</u> in variational theory Dc and Ds for a finite temperature system can

be defined (Zotos, Castella, and Prelovsek, 1996) as

$$D_{c} = \frac{\pi}{L} \sum_{i} P_{i} \frac{\partial^{2} E_{i}(\Phi = 0)}{\partial \Phi^{2}} \qquad P_{i} = e^{-\beta E_{i}}$$
$$D_{s} = \frac{\pi}{L} \frac{\partial^{2} \sum_{i} P_{i}(\Phi = 0) E_{i}(\Phi = 0)}{\partial \Phi^{2}} \qquad P_{i}(\Phi) = e^{-\beta E_{i}(\Phi)}$$

In variational theory the Boltzmann weights are replaced by

 $P_i = |\langle \tilde{\Psi} | \Psi_i \rangle|^2$

where $\tilde{\Psi}$ denotes the variational wavefunction, Ψ_i denotes the eigenstates of the system Hamiltonian

•Difficulty with *D*_{_}: need perturbed eigenstates

<u>Current response as a phase</u>

The persistent current can be expressed as a geometric phase Definition of current $J(\Phi) = \partial_{\Phi} E(\Phi) = \langle \Psi(\Phi) | \partial_{\Phi} \hat{H}(\Phi) | \Psi(\Phi) \rangle.$

<u>The Discrete Case</u>

The discrete analog for the phase corresponding to the current $J(\Phi)$ can be obtained by discretizing the integral over *X*:

($\boldsymbol{\Phi}$ was taken to be zero without loss of generality) Can be rewritten with the help of the total position shift operator

 $\hat{U}(\Delta X)|\Psi(X)\rangle = |\Psi(X + \Delta X)\rangle$ Definition: • Using $\hat{U}(\Delta X)$ the current can be written

 $J(0) = \lim_{\Delta X \to 0} \frac{1}{m} \frac{1}{\Delta X} \operatorname{Im} \ln \langle \Psi(0) | \hat{U}(\Delta X) | \Psi(0) \rangle.$

<u>Construction of Shift Operators</u>

For discrete systems shift operators can be constructed via the **permutation operator**:

$$X = \sum_{\substack{m=-L/2\\m \neq 0}}^{L/2-1} \left(\frac{1}{2} + \frac{\hat{W}^m}{\exp\left(i\frac{2\pi m}{L}\right) - 1} \right)$$

with $\hat{W} = e^{i2\pi \hat{X}/L}$.

For the Fermi Sea the normalized spread approaches 1/12 as L->∞.

Size L	Fermi	Γ=1.0	Г=2.0
	sea		
12	0.08275	0.079(1)	0.0412(9)
24	0.08312	0.0830(6)	0.0682(6)
36	0.08327	0.0831(5)	0.0797(5)
48	0.08330	0.0833(4)	0.0824(4)
60	0.08331	0.0829(3)	0.0830(3)
∞	1/12		

Table I. Fermi sea and Gutzwiller results
 (variational Monte Carlo, Yokoyama and Shiba (JP3J, 1987)).

For large L the normalized spread converges to 1/12 for the Fermi sea and both Gutzwiller wavefunctions.

• **Current response**: it holds that

Since $\hat{H}(\Phi) = \sum_{i=1}^{N} \frac{(\hat{p}_i + \Phi)^2}{2m} + V(x_1, ..., x_N).$ $\partial_{\Phi} \hat{H}(\Phi) = \sum_{i=1}^{N} \frac{(\hat{p}_i + \Phi)}{m}$

The current can be rewritten as

 $J(\Phi) = \frac{N\Phi}{m} - \frac{i}{m} \sum_{i=1}^{N} \langle \Psi(\Phi) | \frac{\partial}{\partial x_i} | \Psi(\Phi) \rangle$

The wavefunction can be written in terms of the total position as

 $\langle x_1, ..., x_N | \Psi(\Phi; X) \rangle = \Psi(x_1 + X, ..., x_N + X; \Phi).$ Using *X* we can write

$$\sum_{i=1}^{N} \frac{\partial}{\partial x_i} \Psi(x_1 + X, \dots, x_N + X; \Phi) = \partial_X \Psi(x_1 + X, \dots, x_N + X; \Phi).$$

The current response can thus be written as

$J(\Phi) = \frac{N\Phi}{}$	$\int^{L} \mathrm{d}X \langle \Psi(\Phi;X) \partial_{X} \Psi(\Phi;X) \rangle$
$\mathbf{U}(\mathbf{L})$	

 $P_{ij} = 1 - (c_i^{\dagger} - c_j^{\dagger})(c_i - c_j)$

The permutation operator satisfies identities $P_{ij}c_j = c_i P_{ij}, P_{ij}c_i = c_j P_{ij}, P_{ij}c_i^{\dagger} = c_i^{\dagger} P_{ij}, P_{ij}c_i^{\dagger} = c_i^{\dagger} P_{ij}.$

• To construct $\hat{U}(\Delta X)$ one can take a product of lattice site permutation operators as:

 $\hat{U}(\Delta X) = P_{12}P_{23}...P_{L-1L}$

for which it holds that

 $\hat{U}(\Delta X)c_i = \begin{cases} c_{i-1}U(\Delta X), & i = 2, ..., L\\ c_L \hat{U}(\Delta X), & i = 1. \end{cases}$

in other words it shifts the position of particles module *L*.

• On momentum states the action of $\hat{U}(\Delta X)$ is:

 $\hat{U}(\Delta X)\tilde{c}_k = e^{i\Delta Xk}\tilde{c}_k\hat{U}(\Delta X)$

•As a result the current can also be written as $J(0) = \lim_{\Delta X \to 0} \frac{1}{m} \frac{1}{\Delta X} \operatorname{Im} \ln \langle \Psi(0) | e^{i \Delta X \hat{K}} | \Psi(0) \rangle.$

 $\left[\hat{U}(\Delta X), e^{-\Gamma D}\right] = 0$

Since shifting the positions of all particles will not change the number of doubly occupied sites $\hat{U}(\Delta X)|\Psi(\gamma)\rangle = e^{-\gamma\sum_{i}n_{i\uparrow}n_{i\downarrow}}\hat{U}(\Delta X)|FS\rangle = e^{i\Delta X\sum_{i}k_{i}}|\Psi(\gamma)\rangle,$

Current response for the Gutzwiller wavefunction is identical to that of the Fermi sea.

Conclusion can be generalized to simple Jastrow-type projections diagonal in coordinate space.

<u>Other projected wavefunctions</u>

Baeriswyl-Gutzwiller wavefunction

$$|\Psi_{BG}(\alpha,\gamma)\rangle = e^{-\alpha\hat{T}}e^{-\gamma\hat{D}}|FS\rangle.$$

Since $\hat{U}(\Delta X)$ commutes with both projectors, the current response will again be that of the Fermi sea.

 $m = mL J_0$

The second term in the expression for the current is a Berry phase. The variable *X* can be viewed as an external parameter, the adabatic cycle arises by taking the system across the periodic cell.

where $\hat{K} = \sum \hat{k}_i$ the total momentum. This expression is analogous to the one for the polarization with the roles of *X* and *K* reversed.

Baeriswyl wavefunction, Gutzwiller-Baeriswyl wavefunction:

current response determined by $|\Psi_{\infty}\rangle$. Non-trivial behavior: non-centrosymmetric or phase-dependent projectors.

 $|\Psi_B(\alpha,\gamma)\rangle = e^{-\alpha\hat{T}}|\Psi_{\infty}\rangle, \ |\Psi_{GB}(\alpha,\gamma)\rangle = e^{-\gamma\hat{D}}e^{-\alpha\hat{T}}|\Psi_{\infty}\rangle.$

[1] B. Hetényi, accepted (see also arXiv.org:1208.0671), J. Phys. Soc. Japan 82 023701 (2012).