MATH 101-007 Quiz 11 Solutions

Determine whether each of the following series converges or diverges. Show all your work.
a. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\pi^{n+1}}{e^{n}}$.

Solution 1. We write this series as

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\pi^{n+1}}{e^{n}}=\sum_{n=1}^{\infty}(-\pi)\left(-\frac{\pi}{e}\right)^{n}
$$

This is a geometric series with $a=-\pi$ and $r=-\frac{\pi}{e}$. Since $r<-1$, that is r does not satisfy $-1<r<1$, the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\pi^{n+1}}{e^{n}}$ is divergent.

Solution 2. We use Ratio Test.

$$
\rho=\lim _{n \rightarrow \infty} \frac{\left|(-1)^{n+2} \frac{\pi^{n+2}}{e^{n+1}}\right|}{\left|(-1)^{n+1} \frac{\pi^{n+1}}{e^{n}}\right|}=\lim _{n \rightarrow \infty} \frac{\pi^{n+2}}{e^{n+1}} \frac{e^{n}}{\pi^{n+1}}=\frac{\pi}{e} .
$$

Since $\rho=\frac{\pi}{e}>1$, the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\pi^{n+1}}{e^{n}}$ is divergent by the ratio Test.
Solution 3. We have $a_{n}=(-1)^{n+1} \frac{\pi^{n+1}}{e^{n}}=(-1)^{n+1} \pi\left(\frac{\pi}{e}\right)^{n}$. Since $\frac{\pi}{e}>1, \lim _{n \rightarrow \infty}\left(\frac{\pi}{e}\right)^{n}=$ ∞. Since $(-1)^{n+1}$ alternates the sign as + and,$- \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}(-1)^{n+1} \pi\left(\frac{\pi}{e}\right)^{n}$ doesn't exist. Thus $\lim _{n \rightarrow \infty} a_{n} \neq 0$, so by the n-th Term Test the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\pi^{n+1}}{e^{n}}$ is divergent.
b. $\sum_{n=1}^{\infty} \frac{n+10}{\sqrt{n^{5}+1}}$.

Solution. We have $a_{n}=\frac{n+10}{\sqrt{n^{5}+1}}>0$. We use Limit Comparison Test. We choose $b_{n}=\frac{n}{\sqrt{n^{5}}}=\frac{1}{n^{3 / 2}}$. Then

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n+10}{\sqrt{n^{5}+1}} \frac{\sqrt{n^{5}}}{n}=\frac{n+10}{n} \sqrt{\frac{n^{5}}{n^{5}+1}}=1 .
$$

Since $0<L<\infty$, the series $\sum a_{n}$ and $\sum b_{n}$ behave the same.
The series $\sum_{n=1}^{\infty} b_{n}=\sum \frac{1}{n^{3 / 2}}$ is convergent $\left(p=\frac{3}{2}>1\right)$. So by the Limit Comparison Test the series $\sum_{n=1}^{\infty} \frac{n+10}{\sqrt{n^{5}+1}}$ is also convergent.

