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MATH 101-007 Quiz 11 Solutions

Determine whether each of the following series converges or diverges. Show all your work.
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Solution 1. We write this series as
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This is a geometric series with a = —m and r = —Z. Since r < —1, that is r does not

satisfy —1 < < 1, the series Y | (—1)"+1 T "~ is divergent.

Solution 2. We use Ratio Test.
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Since p = I > 1, the series >~ (—1)"" - "™ is divergent by the ratio Test.

Solution 3. We have a, = (—1)""'Zo = (—1)"tig (Z)". Since T > 1, lim,_,o (Z)"
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co. Since (—1)"*! alternates the sign as + and —, lim,, .. a, = hm,HOO 1)t (g

doesn’t exist. Thus lim,, ,, a, # 0, so by the n-th Term Test the series > ,1( 1)t
is divergent.
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Solution. We have a, = Tt 0. We use Limit Comparison Test. We choose

b, = = # Then
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Since 0 < L < oo, the series > a, and > b, behave the same.
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The series Z by, Z —53 1s convergent (p =32 >1). So by the Limit Comparison Test
n

n+ 10
the series Z i is also convergent.
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