Date: 12 July 2010 Time: 08:40-10:30

MATH 114 MIDTERM 2 SOLUTIONS

Q 1. Let f be a function of two variables with continuous first and second order partial derivatives, and let g be a differentiable function of one variable. Let $z=f\left(x^{2} g(y), x+y^{2}\right)$. Given that

$$
g(3)=-1, g^{\prime}(3)=-3, f_{1}(-4,11)=2, f_{11}(-4,11)=-4, f_{12}(-4,11)=-2, f_{22}(-4,11)=3,
$$

find

$$
\left.\frac{\partial^{2} z}{\partial y \partial x}\right|_{(x, y)=(2,3)}
$$

Solution. Let $u=x^{2} g(y), v=x+y^{2}$. Then we have $z=f(u, v)$. By the Chain Rule

$$
\begin{gathered}
\frac{\partial z}{\partial x}=f_{1}(u, v) \frac{\partial u}{\partial x}+f_{2}(u, v) \frac{\partial v}{\partial x} \\
= \\
\frac{\partial^{2} z}{\partial y \partial x}=\left(f_{1}(u, v) 2 x g(y)+f_{2}(u, v) .\right. \\
=\left[f_{11}(u, v) \frac{\partial u}{\partial y}+f_{12}(u, v) \frac{\partial v}{\partial y}\right) 2 x g(y)+f_{1}(u, v) 2 x g^{\prime}(y)+f_{21}(u, v) \frac{\partial u}{\partial y}+f_{22}(u, v) \frac{\partial v}{\partial y} \\
\left.=f_{12}(u, v) 2 y\right] 2 x g(y)+f_{1}(u, v) 2 x g^{\prime}(y)+f_{21}(u, v) x^{2} g^{\prime}(y)+f_{22}(u, v) 2 y
\end{gathered}
$$

Next we substitute $x=2, y=3$. At this point we have $u=4 g(3)=-4$ and $v=2+9=11$.
Thus

$$
\begin{aligned}
\left.\frac{\partial^{2} z}{\partial y \partial x}\right|_{(x, y)=(2,3)} & =\left[f_{11}(-4,11) 4 g^{\prime}(3)+f_{12}(-4,11) 6\right] 4 g(3)+f_{1}(-4,11) 4 g^{\prime}(3) \\
& +f_{21}(-4,11) 4 g^{\prime}(3)+f_{22}(-4,11) 6 \\
& =[(-4) \cdot 4 \cdot(-3)+(-2) \cdot 6] 4 \cdot(-1)+2 \cdot 4 \cdot(-3)+(-2) \cdot 4 \cdot(-3)+3 \cdot 6 \\
& =(48-12) \cdot(-4)+(-24)+24+18=-144+18=-126 .
\end{aligned}
$$

Q 2. Find the values of the constants a, b and c such that the directional derivative of $f(x, y, z)=a x y^{2}+b y z+c z^{2} x^{3}$ at the point $(1,2,-1)$ has a maximum value of 64 in a direction parallel to the z-axis.

Solution. We know that maximum directional derivative is obtained in the direction of $\nabla f(1,2,-1)$. It is given that this direction is parallel to the z-axis. Thus $\nabla f(1,2,-1)=$ $t \mathbf{k}$ for some scalar t. Maximum directional derivative is
$\nabla f(1,2,-1) \cdot \frac{\nabla f(1,2,-1)}{|\nabla f(1,2,-1)|}=\frac{\nabla f(1,2,-1) \cdot \nabla f(1,2,-1)}{|\nabla f(1,2,-1)|}=\frac{|\nabla f(1,2,-1)|^{2}}{|\nabla f(1,2,-1)|}=|\nabla f(1,2,-1)|$.
Thus $|\nabla f(1,2,-1)|=64$, that is $|t \mathbf{k}|=64$, that is $|t|=64$, which gives $t=64$ or $t=-64$.
On the other hand

$$
\begin{aligned}
\nabla f(x, y, z) & =\left(a y^{2}+3 c z^{2} x^{2}\right) \mathbf{i}+(2 a x y+b z) \mathbf{j}+\left(b y+2 c z x^{3}\right) \mathbf{k} \Rightarrow \\
\nabla f(1,2,-1) & =(4 a+3 c) \mathbf{i}+(4 a-b) \mathbf{j}+(2 b-2 c) \mathbf{k}
\end{aligned}
$$

Since $\nabla f(1,2,-1)=t \mathbf{k}$, we have that

$$
4 a+3 c=0,4 a-b=0,2 b-2 c=t .
$$

This system has solution

$$
b=4 a, c=-\frac{4 a}{3}, t=\frac{32 a}{3} \text { or } a=\frac{3 t}{32}, b=\frac{3 t}{8}, c=-\frac{t}{8} .
$$

So

$$
\begin{aligned}
t=64 & \Rightarrow a=6, b=24, c=-8 \\
t=-64 & \Rightarrow a=-6, b=-24, c=8 .
\end{aligned}
$$

Q 3. Find and classify all the critical points of the following function:

$$
f(x, y)=x^{2} y+y^{3}-3 y^{2} .
$$

Solution. First we find the critical points.

$$
\begin{align*}
& f_{1}(x, y)=2 x y=0 \tag{1}\\
& f_{2}(x, y)=x^{2}+3 y^{2}-6 y \tag{2}
\end{align*}
$$

From (1), we get $x=0$ or $y=0$.
When we substitute $x=0$ in (2), we get $3 y^{2}-6 y=0$, which has roots $y=0, y=2$.
Thus we have points $P_{1}(0,0)$ and $P_{2}(0,2)$.
When we substitute $y=0$ in (2), we get $x=0$, that is the point $(0,0)$ which is already found.

Thus critical points are: $P_{1}(0,0)$ and $P_{2}(0,2)$.
Next we apply the Second Derivative Test.

$$
f_{11}(x, y)=2 y, f_{12}(x, y)=2 x, f_{22}(x, y)=6 y-6
$$

$H(0,0)=\left|\begin{array}{rr}0 & 0 \\ 0 & -6\end{array}\right|=0$. Thus no information. But we'll check this point some other way,
$H(0,2)=\left|\begin{array}{rr}4 & 0 \\ 0 & -6\end{array}\right|=-24<0$, so a saddle point at $P_{2}(0,2)$.
Back to $P_{1}(0,0)$. We take (x, y) near $(0,0)$. Then $x \approx 0$ and $y \approx 0$. So

$$
\Delta=f(x, y)-f(0,0)=x^{2} y+y^{3}-3 y^{2} .
$$

When $x=0, \Delta=y^{3}-3 y^{2}=y^{2}(y-2)<0$. Thus on $x=0$, we have $f(x, y)<f(0,0)$.
When $y=\frac{1}{3} x^{2}$, then $x^{2}=3 y^{2}$, and so $\Delta=y^{3}>0$. Thus on $y=\frac{1}{3} x^{2}$, we have $f(x, y)>f(0,0)$. So there is a saddle point at $P_{1}(0,0)$.

Q 4. Let $f(x, y, z)=x y+z^{2}$. Choose a point $P_{0}(a, b, c)$ on the ellipsoid $\frac{x^{2}}{16}+\frac{y^{2}}{81}+\frac{z^{2}}{4}=1$, and calculate $K=f(a, b, c)$. You will get K points from this question.

Solution. Naturally we would like to have K as large as possible. So we find the maximum value of $f(x, y, z)=x y+z^{2}$ subject to the constraint $\frac{x^{2}}{16}+\frac{y^{2}}{81}+\frac{z^{2}}{4}-1=0$. Let
$g(x, y, z)=\frac{x^{2}}{16}+\frac{y^{2}}{81}+\frac{z^{2}}{4}-1$. Then by the method of Lagrange multipliers we find the critical points of

$$
\begin{align*}
L(x, y, z, \lambda)= & f(x, y, z)+\lambda g(x, y, z)=x y+z^{2}+\lambda\left(\frac{x^{2}}{16}+\frac{y^{2}}{81}+\frac{z^{2}}{4}-1\right) . \\
& L_{1}(x, y, z, \lambda)=0 \Rightarrow y+\lambda \frac{2 x}{16}=0 \tag{3}\\
& L_{2}(x, y, z, \lambda)=0 \Rightarrow x+\lambda \frac{2 y}{81}=0 \tag{4}\\
& L_{3}(x, y, z, \lambda)=0 \Rightarrow 2 z+\lambda \frac{2 z}{4}=0 \tag{5}\\
& L_{4}(x, y, z, \lambda)=0 \Rightarrow \frac{x^{2}}{16}+\frac{y^{2}}{81}+\frac{z^{2}}{4}-1=0 \tag{6}
\end{align*}
$$

(5) gives $z=0$ or $\lambda=-4$.

If $\lambda=-4$, then

$$
\left.\begin{array}{l}
\text { (3) : } y-4 \frac{2 x}{16}=0 \Rightarrow y=\frac{x}{2} \\
(4): x-4 \frac{2 y}{81}=0 \Rightarrow x=\frac{8 y}{81}
\end{array}\right\} \Rightarrow x=0, y=0 .
$$

Thus by $(6), z=\mp 2$, so we have $f(0,0, \mp 2)=4$.
If $z=0$, then

$$
\left.\begin{array}{l}
(3): y=-\frac{2 \lambda x}{16} \Rightarrow y^{2}=-\frac{2 \lambda x y}{16} \Rightarrow-2 \lambda x y=16 y^{2} \\
(4): x=-\frac{2 \lambda y}{81} \Rightarrow x^{2}=-\frac{2 \lambda x y}{81} \Rightarrow-2 \lambda x y=81 x^{2}
\end{array}\right\} \Rightarrow 16 y^{2}=81 x^{2} .
$$

Substituting into (5) (together with $z=0$), we get $x^{2}=8, y^{2}=\frac{81}{2}$. So we get the points $x=\mp 2 \sqrt{2}, y=\mp \frac{9}{\sqrt{2}}, z=0$. So $f(x, y, z)=x y=\mp 18$.

Thus we choose $x=a=2 \sqrt{2}, y=b=\frac{9}{\sqrt{2}}, z=c=0$, and get $K=f(a, b, c)=18$.
Q 5. Evaluate the following iterated integral:

$$
I=\int_{0}^{1} d x \int_{x^{1 / 3}}^{1} \frac{1}{\sqrt{1+y^{4}}} d y
$$

We reverse the order of integration and the integral becomes

$$
\begin{aligned}
I & =\int_{0}^{1} d y \int_{0}^{y^{3}} \frac{1}{\sqrt{1+y^{4}}} d x \\
& =\left.\int_{0}^{1} d y \frac{1}{\sqrt{1+y^{4}}} x\right|_{0} ^{y^{3}}=\int_{0}^{1} \frac{y^{3}}{\sqrt{1+y^{4}}} d y \\
& =\frac{2}{4} \int_{0}^{1} \frac{4 y^{3}}{2 \sqrt{1+y^{4}}} d y=\left.\frac{1}{2} \sqrt{1+y^{4}}\right|_{0} ^{1}=\frac{\sqrt{2}-1}{2} .
\end{aligned}
$$

Q 6. Evaluate the following iterated integral:

$$
I=\int_{0}^{2} \int_{0}^{\sqrt{1-(y-1)^{2}}} \sqrt{4-x^{2}-y^{2}} d x d y
$$

Solution. We use polar coordinates. The region of integration is described as

$$
0 \leq y \leq 2,0 \leq x \leq \sqrt{1-(y-1)^{2}}
$$

$x=\sqrt{1-(y-1)^{2}}$ is the right semicircle. Squaring both sides we get $x^{2}+y^{2}-2 y=0$, and in polar coordinates it becomes $r=2 \sin \theta$. Thus the given integral becomes:

$$
I=\int_{0}^{\pi / 2} \int_{0}^{2 \sin \theta} \sqrt{4-r^{2}} r d r d \theta
$$

Then

$$
\begin{aligned}
I & =\int_{0}^{\pi / 2}-\left.\frac{1}{3}\left(4-r^{2}\right)^{3 / 2}\right|_{0} ^{2 \sin \theta} d \theta=-\frac{1}{3} \int_{0}^{\pi / 2}\left(\left(4-4 \sin ^{2} \theta\right)^{3 / 2}-4^{3 / 2}\right) d \theta \\
& =-\frac{1}{3} \int_{0}^{\pi / 2}\left(8 \cos ^{3} \theta-8\right) d \theta=\frac{8}{3} \int_{0}^{\pi / 2}\left(1-\cos ^{3} \theta\right) d \theta \\
& =\frac{8}{3} \int_{0}^{\pi / 2}\left(1-\left(1-\sin ^{2} \theta\right) \cos \theta\right) d \theta=\left.\frac{8}{3}\left(\theta-\left(\sin \theta-\frac{\sin ^{3} \theta}{3}\right)\right)\right|_{0} ^{\pi / 2} \\
& =\frac{8}{3}\left(\frac{\pi}{2}-1+\frac{1}{3}\right)=\frac{4 \pi}{3}-\frac{16}{9}
\end{aligned}
$$

