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MATH 114 MIDTERM 1 Solutions

Q 1. Let R be the region in the first quadrant bounded by y =
√
x, the x-axis, and the

line x = 4. Assume R is rotated about the line y = −1 and a solid is generated.

(a) Draw the region R.
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(b) Set up the integral for the volume of the solid by using the slicing method. Do not
evaluate the integral.
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Solution. The cross section at the position x is an
annulus with
outer radius R(x) =

√
x− (−1) =

√
x+ 1, and

inner radius r(x) = 0− (−1) = 1.
So A(x) = π(R(x))2 − π(r(x))2 = π(

√
x+ 1)2 − π 12.

V =

∫ 4

0

π((
√
x+ 1)2 − 1) dx.

(c) Set up the integral for the volume of the solid by using the cylindrical shells method.
Do not evaluate the integral.
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Solution. The thin strip at the position y generates a
cylindrical shell with
shell radius r(y) = y − (−1) = y + 1, and
shell height h(y) = 4− y2.
So dV = 2πr(y)h(y)dy = 2π(y + 1)(4− y2) dy.

V =

∫ 2

0

2π(y + 1)(4− y2) dy.



Q 2. Consider the following table.
In column I you’re given some series

∑
an. In column II, write the name of the test that

you would use to check whether the series
∑

an is convergent.
If the test you named in column II, is Comparison Test or Limit Comparison Test, write
the comparison series

∑
bn in column III. Otherwise leave this column empty. In column

IV, write your conclusion (as convergent or divergent) about the given series
∑

an in
column I.
No other explanation is required.

Column I Column II Column III Column IV

Series
∑

an Which test? If the test in Column II
is Comparison or Limit
Comparison, write the
series

∑
bn

Is the series∑
an convergent

or divergent?

∞∑
n=1

n10

2n
Ratio Test Convergent

∞∑
n=1

(−1)n
3n+ 5

9n− 7
n-th term test Divergent

∞∑
n=1

3 +
√
n√

n2 + 5n+ 2
Limit Comparison
Test

∞∑
n=1

1√
n

Divergent

∞∑
n=3

1

n lnn (ln(lnn))3
Integral Test Convergent

Q 3. Let

F (x) =

∫ x

0

sin(t2) dt.

Find a polynomial P (x) that approximates F (x) with |error| < 10−5 for all x in the
interval 0 ≤ x ≤ 1.

Solution. We have

sin(t2) = t2 − (t2)3

3!
+

(t2)5

5!
− · · ·+ (−1)n

(t2)2n+1

(2n+ 1)!
+ · · · , −∞ < t < ∞.

Then term-by-term integration theorem for the power series implies that

F (x) =

∫ x

0

(
t2 − (t2)3

3!
+

(t2)5

5!
− · · ·+ (−1)n

(t2)2n+1

(2n+ 1)!
+ · · ·

)
dt

=
x3

3
− x7

3! 7
+

x11

5! 11
− · · ·+ (−1)n

x4n+3

(2n+ 1)! (4n+ 3)
+ · · · , −∞ < x < ∞.



The last series is an alternating series.
When 0 ≤ x ≤ 1, the general term an = (−1)n x4n+3

(2n+1)! (4n+3)
has the following properties:

(i) |an| ≤
1

(2n+ 1)! (4n+ 3)
and so limn→∞ an = 0, and

(ii)
|an+1|
|an|

=

x4n+7

(2n+3)! (4n+7)

x4n+3

(2n+1)! (4n+3)

=
x4

(2n+ 2)(2n+ 3)

4n+ 3

4n+ 7
≤ 1

(2n+ 2)(2n+ 3)

4n+ 3

4n+ 7
< 1.

Thus {|an|} is decreasing.

So we can use the Alternating Series Error Formula. If we stop at some term, then
|error| < |first unused term|. That is if we take

F (x) ≈ x3

3
− x7

3! 7
+

x11

5! 11
− · · ·+ (−1)n

x4n+3

(2n+ 1)! (4n+ 3)

then for all x with 0 ≤ x ≤ 1 we have

|error| <
∣∣∣∣(−1)n+1 x4n+7

(2n+ 3)! (4n+ 7)

∣∣∣∣ ≤ 1

(2n+ 3)! (4n+ 7)
.

Now we find a natural number n such that

1

(2n+ 3)! (4n+ 7)
≤ 10−5.

Then n = 3 is good since (2 · 3 + 3)! (4 · 3 + 7) = (9!)(19) = 6894720 > 105. Thus we take

F (x) ≈ x3

3
− x7

3! 7
+

x11

5! 11
− x15

7! 15
with |error| < 10−5.

So

P (x) =
x3

3
− x7

3! 7
+

x11

5! 11
− x15

7! 15
.

Note that actually |error| < 1
6894720

< 10−6.

Q 4. (a) Find the radius of convergence and the interval of convergence of the following
power series:

∞∑
n=0

(x+ 1)2n√
n+ 1 · 4n

.

Solution. We apply the Ratio Test to the series
∑∣∣∣ (x+1)2n√

n+1·4n

∣∣∣. We have

ρ = lim
n→∞

∣∣∣ (x+1)2n+2
√
n+2·4n+1

∣∣∣∣∣∣ (x+1)2n√
n+1·4n

∣∣∣ = lim
n→∞

(x+ 1)2

4

√
n+ 1√
n+ 2

=
(x+ 1)2

4
.

The power series converges if (x+1)2

4
< 1, that is (x + 1)2 < 4, that is −2 < x + 1 < 2,

that is −3 < x < 1.



The power series diverges if (x+1)2

4
> 1 , that is x < −3 or x > 1.

The end points are x = −3 and x = 1, which we check separately.

x = −3 ⇒
∞∑
n=0

(−3 + 1)2n√
n+ 1 · 4n

=
∞∑
n=0

(−2)2n√
n+ 1 · 4n

=
∞∑
n=0

4n√
n+ 1 · 4n

=
∞∑
n=0

1√
n+ 1

is divergent,

x = 1 ⇒
∞∑
n=0

(1 + 1)2n√
n+ 1 · 4n

=
∞∑
n=0

22n√
n+ 1 · 4n

=
∞∑
n=0

4n√
n+ 1 · 4n

=
∞∑
n=0

1√
n+ 1

is divergent.

So interval of convergence is (−3, 1) and radius of convergence is R = 2.

(b) Let f(x) =
∞∑
n=0

(x+ 1)2n√
n+ 1 · 4n

. Find f (126)(−1) and f (127)(−1) .

Solution. If f(x) =
∞∑
n=0

an(x− c)n, then an =
f (n)(c)

n!
, so f (n)(c) = n! an.

In this problem c = −1, and a2n =
1√

n+ 1 · 4n
, a2n+1 = 0. So

a126 =
1√

63 + 1 · 463
=

1

8 · 463
⇒ f (126)(−1) =

126!

8 · 463
,

a127 = 0 ⇒ f (127)(−1) = 0.

Q 5.

(a) Prove that lim
(x,y)→(1,0)

(x− 1)y2

(x− 1)2 + y2
= 0.

Proof. Let ε > 0 be given. Assume we choose δ > 0 such that δ = ε. Let (x, y) be
an arbitrary point such that 0 <

√
(x− 1)2 + y2 < δ. Then we have (x, y) ̸= (1, 0) and

|x− 1| < δ and |y| = |y − 0| < δ. So∣∣∣∣ (x− 1)y2

(x− 1)2 + y2
− 0

∣∣∣∣ = |x− 1| · y2

(x− 1)2 + y2
< |x− 1| < δ = ε.

(b) Prove that lim
(x,y)→(1,0)

(x− 1)y

(x− 1)2 + y2
does not exist.

Solution. We consider the limit of the function along an arbitrary line y = m(x − 1)
passing through the point (1, 0).

lim
(x, y) → (1, 0)
y = m(x− 1)

(x− 1)y

(x− 1)2 + y2
= lim

x→1

(x− 1)m(x− 1)

(x− 1)2 +m2(x− 1)2
=

m

1 +m2
.

Since the result depends on the slope m, for lines with different slopes, we have different

limits. This means that lim
(x,y)→(1,0)

(x− 1)y

(x− 1)2 + y2
does not exist.


