\qquad
\qquad

MATH 112 SECOND MIDTERM EXAM SOLUTIONS

Q 1. ($10+10$ points) Evaluate the following improper integrals:
(a) $I=\int_{0}^{\infty} x e^{-x^{2}} d x$.

Solution. This integral is improper since the region of integration is unbounded. Otherwise the integrand is continuous on $[0, \infty)$.

$$
\begin{aligned}
I & =\lim _{b \rightarrow \infty} \int_{0}^{b} x e^{-x^{2}} d x \quad\left(u=x^{2} \Rightarrow d u=2 x d x .\right) \\
& =\lim _{b \rightarrow \infty} \int_{0}^{b^{2}} e^{-u} \frac{1}{2} d u=\lim _{b \rightarrow \infty}-\left.\frac{1}{2} e^{-u}\right|_{0} ^{b^{2}}=\lim _{b \rightarrow \infty}\left(-\frac{1}{2} e^{-b^{2}}+\frac{1}{2}\right) \\
& =\lim _{b \rightarrow \infty}\left(-\frac{1}{2 e^{b^{2}}}+\frac{1}{2}\right)=0+\frac{1}{2}=\frac{1}{2} .
\end{aligned}
$$

(b) $\int_{0}^{1} \frac{x+1}{\sqrt{x^{2}+2 x}} d x$.

Solution. This integral is improper, since the integrand $f(x)=\frac{x+1}{\sqrt{x^{2}+2 x}}$ becomes infinite at $x=0$. Otherwise f is continuous on (0,1$]$. We have

$$
\begin{aligned}
I & =\lim _{c \rightarrow 0^{+}} \int_{c}^{1} \frac{x+1}{\sqrt{x^{2}+2 x}} d x \quad\left(u=x^{2}+2 x \Rightarrow d u=(2 x+2) d x\right) \\
& =\lim _{c \rightarrow 0^{+}} \int_{c^{2}+2 c}^{3} \frac{\frac{1}{2} d u}{\sqrt{u}}=\lim _{c \rightarrow 0^{+}} \int_{c^{2}+2 c}^{3} \frac{d u}{2 \sqrt{u}}=\left.\lim _{c \rightarrow 0^{+}} \sqrt{u}\right|_{c^{2}+2 c} ^{3} \\
& =\lim _{c \rightarrow 0^{+}}\left(\sqrt{3}-\sqrt{c^{2}+2 c}\right)=\sqrt{3}-0=\sqrt{3} .
\end{aligned}
$$

Q 2. ($10+10$ points) Determine whether the following improper integrals are convergent or divergent by using a test. Show all your work and write the name of the test that you use.
(a) $\int_{1}^{\infty} \frac{1}{\sqrt{1+x^{3}}} d x$.

Solution. We use Direct Comparison Test. We have $f(x)=\frac{1}{\sqrt{1+x^{3}}}$. We let
$g(x)=\frac{1}{\sqrt{x^{3}}}$. Then $0 \leq f(x) \leq g(x)$ for all $x \geq 0$. Also $\int_{1}^{\infty} g(x) d x=\int_{1}^{\infty} \frac{1}{\sqrt{x^{3}}} d x=\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x$ is convergent (p-integral with $p=3 / 2>1$.) Thus by DCT, $\int_{1}^{\infty} \frac{1}{\sqrt{1+x^{3}}} d x$ is convergent.
(b) $\int_{0}^{1} \frac{\sin x}{x^{2}} d x$.

Solution. We use Limit Comparison Test. We have $f(x)=\frac{\sin x}{x^{2}}>0$ for $0<x \leq 1$, $\operatorname{since} \sin x x>0$ for $0<x<\pi$. Moreover for $x \approx 0$, we have $\sin x \approx x$. Thus we let $g(x)=\frac{x}{x^{2}}=\frac{1}{x}$. Then

$$
L=\lim _{x \rightarrow 0^{+}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x}=1
$$

So $0<L<1$. Also $\int_{0}^{1} g(x) d x=\int_{0}^{1} \frac{1}{x} d x$ is divergent (p-integral with $p=1$). So by LCT, $\int_{0}^{1} \frac{\sin x}{x^{2}} d x$ is also divergent.

Q 3. ($10+10$ points) Determine whether the following series are convergent or divergent. If convergent, find the sum.
(a) $\sum_{n=1}^{\infty}(\arctan n-\arctan (n+1))$.

Solution. This is a telescoping series. $a_{n}=\arctan n-\arctan (n+1)$. We have

$$
\begin{aligned}
S_{n} & =(\arctan 1-\arctan 2)+(\arctan 2-\arctan 3)+\cdots+(\arctan n-\arctan (n+1)) \\
& =\arctan 1-\arctan (n+1)
\end{aligned}
$$

So

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}(\arctan 1-\arctan (n+1))=\frac{\pi}{4}-\frac{\pi}{2}=-\frac{\pi}{4}
$$

So the series $\sum_{n=1}^{\infty}(\arctan n-\arctan (n+1))$ is convergent and has sum $s=-\frac{\pi}{4}$, that is $\sum_{n=1}^{\infty}(\arctan n-\arctan (n+1))=-\frac{\pi}{4}$.
(b) $\sum_{n=0}^{\infty}(-1)^{n+1} \frac{2^{n}}{3^{n+1}}$.

Solution. We have

$$
\sum_{n=0}^{\infty}(-1)^{n+1} \frac{2^{n}}{3^{n+1}}=\sum_{n=0}^{\infty}\left(\frac{-1}{3}\right)(-1)^{n} \frac{2^{n}}{3^{n}}=\sum_{n=0}^{\infty}\left(\frac{-1}{3}\right) \frac{(-1)^{n} 2^{n}}{3^{n}}=\sum_{n=0}^{\infty}\left(\frac{-1}{3}\right)\left(\frac{-2}{3}\right)^{n}
$$

This is a geometric series $\sum_{n=0}^{\infty} a r^{n}$, with $a=-\frac{1}{3}$, and $r=-\frac{2}{3}$. Since $-1<r<1$, the series is convergent, and has sum

$$
\sum_{n=0}^{\infty}(-1)^{n+1} \frac{2^{n}}{3^{n+1}}=\sum_{n=0}^{\infty}\left(\frac{-1}{3}\right)\left(\frac{-2}{3}\right)^{n}=\frac{a}{1-r}=\frac{-\frac{1}{3}}{1-\left(-\frac{2}{3}\right)}=\frac{-\frac{1}{3}}{\frac{5}{3}}=-\frac{1}{5}
$$

Q 4. (10+10 points) Determine whether the following series are convergent or divergent by using a test. Show all your work and write the name of the test that you use.
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{1+(1 / n)}}$.

Solution. We have $a_{n}=\frac{1}{n^{1+(1 / n)}}$. Then $a_{n}>0$. Let $b_{n}=\frac{1}{n}>0$. We use Limit Comparison Test. Then

$$
c=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{1+(1 / n)}}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n n n^{(1 / n)}}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n \sqrt[n]{n}}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{n}}=1
$$

Thus $0<L<\infty$. The series $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent (the harmonic series is divergent). So by LCT, the series $\sum_{n=1}^{\infty} \frac{1}{n^{1+(1 / n)}}$ is also divergent.
(b) $\sum_{n=1}^{\infty} \frac{1 \cdot 4 \cdot 7 \cdots(3 n+1)}{5^{n} n!}$.

Solution. We have $a_{n}=\frac{1 \cdot 4 \cdot 7 \cdots(3 n+1)}{5^{n} n!}>0$. We use the Ratio Test.

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{1 \cdot 4 \cdot 7 \cdots(3 n+1) \cdot(3 n+4)}{5^{n+1}(n+1)!} \cdot \frac{5^{n} n!}{1 \cdot 4 \cdot 7 \cdots(3 n+1)} \\
& =\lim _{n \rightarrow \infty} \frac{3 n+4}{5(n+1)}=\frac{3}{5} .
\end{aligned}
$$

Since $\rho<1$, by the Ratio Test, the series $\sum_{n=1}^{\infty} \frac{1 \cdot 4 \cdot 7 \cdots(3 n+1)}{5^{n} n!}$ is convergent.
Q 5. ($10+10$ points) Determine whether the following series are convergent or divergent by using a test. Show all your work and write the name of the test that you use.
(a) $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}$.

Solution. We have $a_{n}=\left(1+\frac{1}{n}\right)^{n}>0$. If we first try the Root Test, we get $\rho=1$, which means the Root Test gives no information. If we use the n-the Term Test, we have that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e^{1}=e \neq 0
$$

Thus by the n-th Term Test, the series $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}$ is divergent.
(b) $\sum_{n=3}^{\infty} \frac{1}{n \ln n(\ln (\ln n))^{2}}$.

Solution. We have $a_{n}=\frac{1}{n \ln n(\ln (\ln n))^{2}}>0$. We use the Integral Test. Let

$$
f(x)=\frac{1}{x \ln x(\ln (\ln x))^{2}}, x \geq 3
$$

Then $f(x)$ is positive and continuous for $x \geq 3$. As x increases through the values ≥ 3, $x, \ln x, \ln (\ln x)$ all increase, so the denominator increases, therefore $f(x)=\frac{1}{\text { denominator }}$ decreases. So we can use the integral test.

$$
\begin{aligned}
\int_{3}^{\infty} f(x) d x & =\int_{3}^{\infty} \frac{1}{x \ln x(\ln (\ln x))^{2}} d x \quad\left\{\begin{array}{clc}
u=\ln (\ln x) & \Rightarrow d u=\frac{1}{\ln x} \frac{1}{x} d x \\
x=3 & \Rightarrow & u=\ln (\ln 3) \\
x \rightarrow \infty & \Rightarrow & u \rightarrow \infty
\end{array}\right\} \\
& =\int_{\ln (\ln 3)}^{\infty} \frac{d u}{u^{2}}
\end{aligned}
$$

The last integral is convergent since $p=2>1$ and $\ln (\ln 3)>0$. Thus $\int_{3}^{\infty} f(x) d x$ is convergent, so by the Integral Test, the series $\sum_{n=3}^{\infty} \frac{1}{n \ln n(\ln (\ln n))^{2}}$ is also convergent.

