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MATH 112 SECOND MIDTERM EXAM SOLUTIONS

Q 1. (10410 points) Evaluate the following improper integrals:

(a) I :/ e da.
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Solution. This integral is improper since the region of integration is unbounded. Other-
wise the integrand is continuous on [0, 00).
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Solution. This integral is improper, since the integrand f(x) = Tias becomes infinite

at x = 0. Otherwise f is continuous on (0, 1]. We have
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Q 2. (10410 points) Determine whether the following improper integrals are convergent
or divergent by using a test. Show all your work and write the name of the test that you
use.

(a) /lwﬁ dx.
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Solution. We use Direct Comparison Test. We have f(z) = ———. We let
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g(x) = —=. Then 0 < f(x) < g(z) for all x > 0. Also

/1 g(x) dx = /1 e dr = /1 T dzx is convergent (p-integral with p =3/2 > 1.)

Thus by DCT,
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(b) /0 2 da

Solution. We use Limit Comparison Test. We have f(z) =

dx is convergent.
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since sin xT > 0 for 0 < & < w. Moreover for x ~ 0, we have sinxz ~ x. Thus we let
g(z) = 5 = =. Then
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= 1.

So0 < L < 1. Also fo r)dr = fo = dx is divergent (p-integral with p = 1). So by LCT,
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sin
/ dx is also divergent.
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Q 3. (10410 points) Determine whether the following series are convergent or diver-
gent. If convergent, find the sum.

(a) Z (arctann — arctan(n + 1)) .
n=1
Solution. This is a telescoping series. a, = arctann — arctan(n + 1). We have

S, = (arctanl — arctan2) + (arctan 2 — arctan 3) + - - - + (arctann — arctan(n + 1))

= arctan 1 — arctan(n + 1).

So
lim S, = lim (arctan 1 — arctan(n + 1)) = r.r_.T
So the series | (arctann — arctan(n + 1)) is convergent and has sum s = —Z, that
is Y o7, (arctann — arctan(n + 1)) = — 7.
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Solution. We have
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This is a geometric series »_~  ar", with a = —%, and r = % Since —1 < r < 1, the

series is convergent, and has sum
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Q 4. (10410 points) Determine whether the following series are convergent or divergent
by using a test. Show all your work and write the name of the test that you use.
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Solution. We have a, = IETGYE Then a, > 0. Let b, = — > 0. We use Limit
n n
Comparison Test. Then
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Thus 0 < L < oco. The series > b, = " | L is divergent (the harmonic series is

divergent). So by LCT, the series ) | ——{7 is also divergent.
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Solution. We have a,, = L47-Bntl) - () We use the Ratio Test.
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Since p < 1, by the Ratio Test, the series Z 3 (' n+l) is convergent.
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Q 5. (10410 points) Determine whether the following series are convergent or divergent
by using a test. Show all your work and write the name of the test that you use.

(a) g (1 + %)n

Solution. We have a,, = (1 + %)n > 0. If we first try the Root Test, we get p = 1, which
means the Root Test gives no information. If we use the n-the Term Test, we have that
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Thus by the n-th Term Test, the series >~ (1 -+ %)n is divergent.
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Solution. We have a,, = 5 > 0. We use the Integral Test. Let
n Inn (In(Inn))

flz) = ! x> 3.
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Then f(z) is positive and continuous for x > 3. As x increases through the values > 3,
x, Inz, In(lnz) all increase, so the denominator increases, therefore f(x) = m
decreases. So we can use the integral test.
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The last integral is convergent since p = 2 > 1 and In(In3) > 0. Thus [;° f(z) dz is
1
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convergent, so by the Integral Test, the series Z is also convergent.
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