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1. Introduction

After the pioneering work of Drury [10] and Arveson [6] on extending the von Neumann 
inequality to commuting operator tuples, there have been several other generalizations 
to Hilbert space operators in other settings. We can cite [20], [3], [16], [11], [13], and [8]
to name a few. There is also the earlier [19] on noncommuting operator tuples. But in 
all von Neumann inequalities that we know of, the polynomials acting on the operators 
are holomorphic functions of their variables. It is the aim of this work to obtain a von 
Neumann inequality in which the polynomials are harmonic in the usual sense in Rn.

Multivariable versions of von Neumann inequality often depend on shift operators on 
a specific Hilbert function space. This immediately brings out the first major obstacle 
in dealing with harmonicity. Even the definition of a shift operator on a space of har-
monic functions has not been made before, because harmonicity is not preserved under 
multiplication, and a multiplication by a coordinate variable must be followed by some 
form of a projection on harmonic functions. We make a definition and check it by using 
another approach.

Another obstacle is to decide which space among harmonic function spaces plays a 
role like that of the Drury-Arveson space among holomorphic spaces. We find out that 
considering a family of reproducing kernel Hilbert spaces Gq of harmonic functions on the 
unit ball of Rn indexed by q ∈ R is more feasible since it exposes the compositions of the 
spaces better. Then it is easier to pick one of these spaces as the harmonic counterpart 
of the Drury-Arveson space using its extremal properties in the family.

One more obstacle is that the more complicated structure of harmonic functions per-
sists at the operator level and we are obliged to restrict our attention in von Neumann 
inequality to a class of contractions that we call harmonic type.

We now present our major results; for them it helps to have some familiarity 
with the classical knowledge on harmonic polynomials summarized in Section 3. For 
m = 0, 1, 2, . . ., let Pm and Hm denote the homogeneous polynomials of degree m and 
spherical harmonics of degree m on Rn, respectively. Let Hm : Pm → Hm be the stan-
dard projection. The zonal harmonics Zm(x, y) are the reproducing kernels of the Hm

with respect to the L2 inner product on the unit sphere. For j = 1, . . . , n, we define the 
shift operators Sj : Hm → Hm+1 acting on x by

SjZm(x, y) := 1
n + 2m

∂

∂yj
Zm+1(x, y).

Our first main result shows that Sj is closely related to the operator of multiplication 
Mxj

by the jth coordinate variable.

Theorem 1.1. Sj = Hm+1Mxj
for all j = 1, . . . , n and m = 0, 1, 2, . . ..

In the course of proving this theorem, we obtain the following identities for the Gegen-
bauer polynomials Cλ

m and the Chebyshev polynomials Tm which seem new. There, K
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is the Kelvin transform which transforms a harmonic function on the unit ball to one on 
its exterior.

Theorem 1.2. For ξ, η ∈ S, we have

K
[
(η · ∂)mK[1]

]
(ξ) = (−1)m m! Cn/2−1

m (ξ · η) (n ≥ 3, m = 0, 1, 2, . . .),

K
[
(η · ∂)mK[ log | · | ]

]
(ξ) = (−1)m(m− 1)!Tm(ξ · η) (n = 2, m = 1, 2, . . .).

We define the space that we claim to be the harmonic version of the Drury-Arveson 
space as the reproducing kernel Hilbert space Ğ on the unit ball of Rn with reproducing 
kernel

Ğ(x, y) :=
∞∑

m=0

1
Am

Zm(x, y),

where Am is the coefficient of (x · y)m in the expansion of Zm(x, y). We call commuting 
operators (T1, . . . , Tn) a row contraction if they are a contraction as a tuple. A contractive 
norm is one in which the tuple of shift operators is a row contraction. Another main result 
of ours shows that the norm of Ğ is as large as possible.

Theorem 1.3. If ‖ ·‖ is a contractive Hilbert norm on harmonic polynomials that respects 
the orthogonality of L2, then ‖ · ‖ ≤ ‖ · ‖Ğ ‖1‖.

We call an operator tuple (T1, . . . , Tn) harmonic type if T1T1 + · · · + TnTn = 0. The 
harmonic shift S̆ = (S̆1, . . . , S̆n) on Ğ is the prime example of a harmonic-type operator. 
Our final main result is a von Neumann inequality.

Theorem 1.4. Let (T1, . . . , Tn) be a harmonic-type row contraction on a Hilbert space. If
u is a harmonic polynomial, then ‖u(T1. . . . , Tn)‖ ≤ ‖u(S̆1, . . . , S̆n)‖.

All terminology is explained in detail in an appropriate section in the paper. After 
introducing in Section 2 the basic notation, we make a review of harmonic polynomials 
in Section 3 and give formulas for the Zm, Hm, and K. In Section 4, we define the shift 
operators on harmonic spaces, explain the meaning of the coefficient 1/(n + 2m), and 
then prove Theorem 1.1. In Section 5, we introduce a new family of reproducing kernel 
Hilbert spaces of harmonic functions and isolate one of them as Ğ by making it clear why 
we need the coefficients 1/Am in Ğ. In Section 6, we find the basic properties of shift 
operators and their adjoints acting on the Hilbert spaces just introduced. In Section 7, we 
investigate the row contractions on harmonic Hilbert spaces, explain the term harmonic 
type, and prove an essential dilation result for harmonic-type and self-adjoint operator 
tuples. In Section 8, we prove Theorems 1.3 and 1.4.
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2. Notation

Let B and S be the open unit ball and its boundary the unit sphere in Rn with respect 
to the usual inner product x · y = x1y1 + · · · + xnyn and the norm |x| = √

x · x, where 
always n ≥ 2. We write x = rξ, y = ρη with r = |x|, ρ = |y|, and ξ, η ∈ S, and use these 
throughout without further comment. When n = 2, the ball is just the unit disc D in 
the complex plane bounded by the unit circle T , and x, y ∈ D are complex numbers of 
modulus less than 1.

In a few places, we also use the complex space CN and its Hermitian inner product 
〈z, w〉 = z1w1 + · · · + zNwN . We continue to use | · |, B, and S in CN too.

We let σ and ν be the surface and volume measures on S and B normalized as σ(S) = 1
and ν(B) = 1. We abbreviate the all-important Lebesgue class L2(σ) to simply L2. An 
overline (·) denotes closure for sets and complex conjugation for elements; for polynomials 
in x, the conjugation affects only the coefficients naturally. The greatest integer less than 
or equal to a real number is shown by 
 · �. The right side of := defines its left side.

Harmonic functions by definition are those sufficiently smooth functions annihilated 
by the usual Laplacian Δ := ∂2/∂x2

1 + · · · + ∂2/∂x2
n. We let h(B) denote the space of 

complex-valued harmonic functions on B with the topology of uniform convergence on 
compact subsets.

In the multi-index notation, α = (α1, . . . , αn) is an n-tuple of nonnegative integers, 
|α| = α1 + · · · + αn, α! = α1! · · ·αn!, 00 = 1, and xα = xα1

1 · · ·xαn
n . Letting ∂j := ∂/∂xj

and ∂ := (∂1, . . . , ∂n), we also have ∂α = ∂α1
1 · · · ∂αn

n , ∂αxα = α! and p(∂) =
∑
α
aα∂

α for 

a polynomial p(x) =
∑
α
aαx

α. So for p(x) = |x|2,

|x|2(∂) = Δ. (1)

The Pochhammer symbol (a)b is defined by

(a)b = Γ(a + b)

Γ(a)
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when a and a + b are off the pole set −N of the gamma function Γ. This is a shifted 
rising factorial since (a)k = a(a + 1) · · · (a + k − 1) for positive integer k. In particular, 
(1)k = k! and (a)0 = 1. Stirling formula gives

Γ(c + a)
Γ(c + b) ∼ ca−b,

(a)c
(b)c

∼ ca−b,
(c)a
(c)b

∼ ca−b (Re c → ∞), (2)

where A ∼ B means that |A/B| is bounded above and below by two positive constants, 
that is, A = O(B) and B = O(A), for all A, B of interest. So for example, 1 −|x| ∼ 1 −|x|2
for all x ∈ B. Such constants that are independent of the parameters and the functions 
in the equation are all denoted by the generic unadorned upper case C. We also use 
A � B to mean A = O(B).

We denote an inner product on a function space H by [ ·, · ]H and the associated norm 
by ‖ · ‖H .

Definition 2.1. A function k(x, y) is called the reproducing kernel of a Hilbert space H
of functions defined on B if k(x, ·) ∈ H for each x ∈ B and

u(x) = [u(·), k(x, ·) ]H (u ∈ H, x ∈ B).

There is a one-to-one correspondence between reproducing kernel Hilbert spaces and 
positive definite kernels. We use words like positive and increasing to mean nonnegative 
and nondecreasing.

The algebra of all bounded linear operators on a complex Hilbert space H is denoted 
B(H). An operator T on H is called positive and we write T ≥ 0 if [Tv, v]H ≥ 0 for all 
v ∈ H. For a, b ∈ H, a ⊗ b denotes the rank-1 operator defined by (a ⊗ b)(v) =

[
v, b

]
H
a

for v ∈ H.

3. Harmonic polynomials

We review the essentials of zonal harmonics and the Kelvin transform for complete-
ness, because we refer to these facts many times in the paper. These results are mostly 
well-known and can be consulted in [7, Chapters 4 & 5].

For m = 0, 1, 2, . . ., let Pm denote the complex vector space of all polynomials homo-
geneous (with respect to real scalars) of degree m on Rn. It is immediate that

(x · ∂)pm = mpm (pm ∈ Pm). (3)

Let Hm be the subspace of Pm consisting of all harmonic homogeneous polynomials 
of degree m. By homogeneity, a pm ∈ Pm is determined by its restriction to S, and 
we freely identify pm with its restriction. The restrictions of those um ∈ Hm to S are 
called spherical harmonics. We also let P and H denote all polynomials and all harmonic 
polynomials on Rn.



6 D. Alpay, H.T. Kaptanoğlu / Journal of Functional Analysis 281 (2021) 109058
We regard Pm and Hm as subspaces of L2 in issues requiring a norm or inner product. 
For example, if m �= l, then Hm is orthogonal to Hl with respect to [ ·, · ]L2 .

Proposition 3.1. [7, Exercise 5.12] If um, vm ∈ Hm, then

um(∂)(vm) = n(n + 2) · · · (n + 2m− 2)
∫
S

um vm dσ

= 2m(n/2)m
[
um, vm ]L2 .

Proof. Let um(x) =
∑

|α|=m

bαx
α and vm(x) =

∑
|α|=m

dαx
α. By [7, Theorem 5.14], the right 

sides are 
∑

|α|=m

α! bαdα. It is easy to check that this is equal to um(∂)(vm). �

If pm ∈ Pm, then there are unique ul ∈ Hl such that

pm(x) = um(x) + |x|2um−2(x) + · · · + |x|2kum−2λ(x) (x ∈ Rn),

where λ = 
m/2�. This decomposition is simply pm = um + um−2 + · · · + um−2λ when 
restricted to S. Let

Hm : Pm → Hm, pm �→ um

be the map that projects pm to um. The explicit formula for Hm requires some constants 
cm, m = 1, 2, . . ., defined by

cm :=
{

(−1)m2m(n/2 − 1)m, if n ≥ 3,
(−1)m−12m−1(m− 1)!, if n = 2.

It also makes use of the Kelvin transform K defined on a function f by

K[f ](x) := |x|2−nf(x∗) (x �= 0), where x∗ := x

|x|2 ,

which reduces to K[f ](x) := f(x∗) when n = 2. Note that K[f ] = f on S for any n ≥ 2. 
The Kelvin transform is linear and invertible with K−1 = K. A function is harmonic if 
and only if its Kelvin transform is harmonic. So u(x) = |x|2−n is harmonic especially for 
n ≥ 3 wherever it is defined since it is the Kelvin transform of the constant 1. For n = 2, 
it is replaced in formulas by the harmonic function u(x) = log |x|.

Theorem 3.2. [7, Theorem 5.18] Let m ≥ 1 and pm ∈ Pm.

(a) Hm(pm)(x) = 1
cm

{
K
[
pm(∂)|x|2−n

]
, if n ≥ 3,

K
[
p (∂) log |x|

]
, if n = 2.
m
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(b) When pm is restricted to S, then Hm (without any need for K) is an orthogonal 
projection with respect to [ ·, · ]L2

The spaces Hm are finite dimensional, hence closed subspaces of L2, and

δm := dimHm = (n + 2m− 2)(n− 1)m−1

m! (m ≥ 1), (4)

which gives δm = 2 for m ≥ 1 when n = 2. When m = 0, H0 = C and δ0 = 1. 
The next few are δ1 = n, δ2 = (n − 1)(n + 2)/2, and δ3 = (n − 1)n(n + 4)/6. Thus 
evaluation functionals at points η ∈ S are bounded on Hm, and Hm is a reproducing 
kernel Hilbert space. Its reproducing kernel Zm(ξ, η) with respect to [ ·, · ]L2 is called the 
zonal harmonic of degree m; so Zm is a positive definite function. Each Zm is real valued 
and symmetric in its variables, hence it is a harmonic homogeneous polynomial in each 
if its two variables. The homogeneity of the Zm gives Zm(x, y) := rmρmZm(ξ, η); so

Zm(0, y) = Zm(x, 0) = 0 (m ≥ 1). (5)

Their reproducing property written explicitly is

um(x) =
∫
S

um(η)Zm(x, η) dσ(η) =
[
um(·), Zm(x, ·)

]
L2 (x ∈ B, um ∈ Hm). (6)

The Poisson kernel is

P (x, η) := 1 − |x|2
|x− η|n =

∞∑
m=0

Zm(x, η) (x ∈ B, η ∈ S);

the series converges uniformly for x in a compact subset of B.
There is an explicit formula for the Zm which is of major interest to us; it is

Zm(x, y) = (n+2m−2)
�m/2�∑
l=0

n(n+2) · · · (n+2m−2l−4)
(−1)l 2l l! (m− 2l)! |x|2l(x·y)m−2l|y|2l

= Am0(x · y)m+Am1|x|2(x·y)m−2|y|2+Am2|x|4(x·y)m−4|y|4+ · · · ,

(7)

where Am := Am0 is the leading coefficient obtained for l = 0. Then

Am := n(n + 2) · · · (n + 2m− 2)
m! = 2m(n/2)m

m! , (8)

where the numerator is the coefficient in the equation in Proposition 3.1. The first few 
are A0 = 1, A1 = n, A2 = n(n + 2)/2, and A3 = n(n + 2)(n + 4)/6. Note that Am = 2m
for all m = 0, 1, 2, . . . when n = 2.



8 D. Alpay, H.T. Kaptanoğlu / Journal of Functional Analysis 281 (2021) 109058
Interesting and useful relations include

|Zm(ξ, η)| ≤ Zm(ξ, ξ) =
�m/2�∑
l=0

Aml = δm (ξ, η ∈ S). (9)

If {Ym1, . . . , Ymδm} is an orthonormal basis for Hm ⊂ L2, then

Zm(ξ, η) =
δm∑
k=1

Ymk(ξ)Ymk(η). (10)

In particular, Z0 ≡ 1 and we take Y01 ≡ 1; also Z1(x, y) = n(x · y) and we can choose 
Y1k(x) =

√
nxk for k = 1, . . . , δ1 = n. It is always possible to choose the Ymk with real 

coefficients.

Theorem 3.3. Every u ∈ h(B) has the homogeneous expansion u =
∞∑

m=0
um in which 

um ∈ Hm and which converges absolutely and uniformly on compact subsets of B. Letting 
umk =

[
um, Ymk

]
L2 ∈ C, we also have

u(x) =
∞∑

m=0

δm∑
k=1

umk Ymk(x) (x ∈ B)

with the same type of convergence.

When n = 2, we can use complex analysis and Fourier analysis to connect the above 
theory to better known objects. Then for all m ≥ 1, an orthonormal basis for Hm is 
{ Ym1(x) = xm, Ym2(x) = xm : x ∈ C }. The expansion of a u ∈ h(B) with the Ymk

in Theorem 3.3 with suitable boundary behavior is its Fourier series on the unit circle. 
Letting ξ = eiφ and η = eiψ, we can write

Zm(x, y) = xmym + xmym = 2rmρm cos(φ− ψ) (m ≥ 1).

It is amazing that this simple form is equal to the sum in (7) for n = 2, which is still 
complicated.

A comparison with the complex case done in [15, Section 3] when n is even is very 
instructive. We think of Rn as CN by equating n = 2N . Spherical harmonics correspond 
to the space of holomorphic polynomials homogeneous of degree m which simply have 

the form 
∑

|α|=m

bαz
α. The dimension of this space is (N)m

m! , which equals 1 for every m

when N = 1. The counterparts of zonal harmonics are the sesquiholomorphic kernels

Mm(z, w) = (N)m 〈z, w〉m.

m!
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Thus the complex version of the sum in (7) has only the leading term Mm, and its 
coefficient is exactly the dimension of the space of which Mm is the reproducing kernel. 
Note that Am �= δm in the harmonic case even when n = 2. However, writing (7) with 

x = y = ξ and using (9), we see that 
�m/2�∑
l=0

Aml = δm. By (2), we have

δm ∼ mn−2 and Am ∼ 2mmn/2−1 (m → ∞). (11)

Yet the reproducing kernel of the holomorphic Drury-Arveson space is 
∞∑

m=0
〈z, w〉m and 

not 
∞∑

m=0
Mm(z, w).

Therefore we must find the harmonic counterparts of the 〈z, w〉m and we are led to 
the

Xm(x, y) := 1
Am

Zm(x, y) = (x · y)m − · · · , (12)

which we call the xonal harmonics. The first few are X0 = 1, X1(x, y) = x · y,

X2(x, y) = (x · y)2 − |x|2|y|2
n

, X3(x, y) = (x · y)3 − 3
n + 2 |x|2(x · y)|y|2.

By homogeneity, (9), (4), and (8), we see that for all x, y ∈ B,

|Xm(x, y)| = rmρm|Xm(ξ, η)| = (rρ)m |Zm(ξ, η)|
Am

≤ (rρ)m δm
Am

≤ (rρ)m < 1 (13)

in complete analogy with |〈z, w〉m| ≤ |z|m|w|m < 1 for z, w in the unit ball of CN .

4. Shift operators

We define the shift operators on harmonic functions first in an unusual way, but later 
show that they are equivalent essentially to multiplications by the coordinate variables.

The motivation for our definition lies in the observation

1
m + 1

∂

∂wj

(
〈z, w〉m+1) = zj 〈z, w〉m

for z, w ∈ CN and the realization that Xm(x, y) replaces 〈z, w〉m.

Definition 4.1. For 1 ≤ j ≤ n, we define the jth shift operator Sj : Hm → Hm+1 acting 
on the variable x by first letting

SjXm(x, y) := 1 ∂
Xm+1(x, y)
m + 1 ∂yj



10 D. Alpay, H.T. Kaptanoğlu / Journal of Functional Analysis 281 (2021) 109058
and then extending to all of Hm by linearity and the density of the Xm(·, y) in Hm.

Note that all this make sense; a partial derivative of a harmonic function is again 
harmonic, and finite linear combinations of the reproducing kernels Zm and hence of the 
Xm are dense in Hm in ‖ · ‖L2 . Also note that the shift acts on the first variable x, but 
the partial derivative is with respect to the second variable y. So occasionally we also 
use notation like Sx or ∂y to indicate the variables on which they act. In terms of the 
more familiar zonal harmonics,

Sx
j Zm(x, y) = Am

Am+1

1
m + 1

∂

∂yj
Zm+1(x, y) = 1

n + 2m
∂

∂yj
Zm+1(x, y).

Let’s denote by S∗
j : Hm → Hm−1 the adjoint of Sj with respect to [ ·, · ]L2 in which 

the reproducing kernel of Hm is Zm = AmXm. This is of course the jth backward shift
operator. First we set S∗

j (X0) = S∗
j (1) = 0. Next for m ≥ 1, using (6), symmetry of Xm

in its variables, and its real-valuedness, we obtain

(Sx
j )∗Xm(x, y) =

[
(St

j)∗Xm(t, y), Am−1Xm−1(x, t)
]
L2

= Am−1
[
Xm(t, y), St

jXm−1(x, t)
]
L2

= Am−1

[
Xm(t, y), 1

m

∂

∂xj
Xm(x, t)

]
L2

= 1
m

Am−1

Am

[
AmXm(t, y), ∂

∂xj
Xm(x, t)

]
L2

= 1
m

Am−1

Am

∂

∂xj
Xm(x, y),

where y acts just like a parameter. This last formula for S∗
j is independent of the partic-

ular form of the function on which it acts, so works equally well for um ∈ Hm in place 
of Xm by linearity and density again. Thus

S∗
j um = 1

m

Am−1

Am
∂jum = 1

n + 2m− 2 ∂jum (um ∈ Hm, m ≥ 1). (14)

It is clear that the S∗
j commute with each other. So the shift S = (S1, . . . , Sn) is a 

commuting tuple.
Shift operators on holomorphic function spaces are operators of multiplication by the 

coordinate variables. Here we make a distinction between the two, because the latter 
does not in general carry harmonic functions to harmonic functions unlike the former. If 
f, g are functions on the same domain, we let

Mgf = gf

be the operator of multiplication by g.
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One of our results concerns a limited version of the obvious fact that if S is the tuple 
of shift operators on a space of holomorphic functions on a domain in CN and p is a 
holomorphic polynomial in N complex variables, then p(S) = Mp. It is a first result on 
the connection between shifts and multiplication operators.

Proposition 4.2. If u is a harmonic polynomial, then u(S)(1) = u. In other words, 1 is 
a cyclic vector for h(B).

Proof. It suffices to consider u = um ∈ Hm. By (6), repeated use of (14), and Proposi-
tion 3.1,

um(Sx)(1)(x) =
[
um(Sη)(Z0)(η, y), Zm(x, η)

]
L2

=
[
Z0(η, y), um((Sη)∗)(Zm)(x, η)

]
L2

=
[
Z0(η, y),

1
n(n + 2) · · · (n + 2m− 2) um(∂η)(Zm)(x, η)

]
L2

= 1
2m(n/2)m

[
um(∂η)(Zm)(x, η), Z0(y, η)

]
L2

= 1
2m(n/2)m

um(∂y)(Zm)(x, y)

=
∫
S

um(·)Zm(x, ·) dσ(·) = um(x).

Above, Sη and ∂η must be interpreted as Sy
∣∣
y=η

and ∂y
∣∣
y=η

, respectively. Note that we 
use the harmonicity of um only in passing to the last line. �

If the function acted on is more complicated than 1, then we offer the following partial 
result.

Proposition 4.3. If pm ∈ Pm, then

pm(Sx)(X�)(x, y) = 1
(1 + )m

pm(∂y)(Xm+�)(x, y).

Proof. Following the same idea and notation in the proof of Proposition 4.2,

pm(Sx)(Z�)(x, y) =
[
pm(Sη)(Z�)(η, y), Zm+�(x, η)

]
L2

=
[
Z�(η, y), pm((Sη)∗)(Zm+�)(x, η)

]
L2

=
[
Z�(η, y),

pm(∂η)(Zm+�)(x, η)
(n + 2)(n + 2 + 2) · · · (n + 2 + 2m− 2)

]
L2

= 1
m

[
pm(∂η)(Zm+�(x, η), Z�(y, η)

]
L2
2 (n/2 + )m
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= 1
2m(n/2 + )m

pm(∂y)(Zm+�)(x, y).

Lastly, we pass to the xonal harmonics X� = Z�/A� and simplify the resulting coeffi-
cient. �

Our goal now is to express the shift operators Sj : Hm → Hm+1 in terms of the 
operators of multiplication by the coordinate variables Mxj

: Hm → Pm+1, where for 
both j = 1, . . . , n. It is Theorem 1.1 and we restate it.

Theorem 4.4. For all j = 1, . . . , n and m = 0, 1, 2 . . ., if Sj : Hm → Hm+1, then 
Sj = Hm+1Mxj

.

So the harmonic shifts are really Toeplitz operators. We facilitate the long proof of 
this theorem with some computational lemmas in which j = 1, . . . , n, y is a parameter, 
and all partial derivatives and Kelvin transforms are with respect to x.

Lemma 4.5. For a, b ∈ R, easy computations give

∂j |x|a = a|x|a−2xj and ∂j(x · y)b = b(x · y)b−1yj ,

(y · ∂)|x|a = a|x|a−2(x · y) and (y · ∂)(x · y)b = b(x · y)b−1|y|2.

Lemma 4.6. If a polynomial p has |x|2 as a factor, then p(∂)|x|2−n = 0 and also 
p(∂) log |x| = 0 when n = 2. Consequently

Xm(∂, y)|x|2−n = (y · ∂)m|x|2−n and

Xm(∂, y) log |x| = (y · ∂)m log |x| (n = 2).

Proof. The first statement follows immediately from (1) and the harmonicity of |x|2−n

and of log |x| when n = 2. The second statement follows from the explicit forms of zonal 
harmonics in (7), because all the terms in Xm(x, y) except the first have a factor of 
|x|2. �

This lemma is very useful, because it lets us treat Xm as the single term (x · y)m in 
the presence of K or Hm like its holomorphic counterpart 〈z, w〉m.

Lemma 4.7. For m ≥ 1,

(y · ∂)m|x|2−n = cm
Xm(x, y)
|x|n+2m−2 (n ≥ 3),

(y · ∂)m log |x| = cm
Xm(x, y)
|x|2m (n = 2);

and hence
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K
[
(y · ∂)m|x|2−n

]
= cmXm(x, y) (n ≥ 3),

K
[
(y · ∂)m log |x|

]
= cmXm(x, y) (n = 2).

The identities for m ≥ 3 are true also for m = 0 if we set c0 = 1.

From Lemma 4.7, Theorem 1.2 follows easily which we restate.

Theorem 4.8. For ξ, η ∈ S, we have

K
[
(η · ∂)mK[1]

]
(ξ) = (−1)m m! Cn/2−1

m (ξ · η) (n ≥ 3, m = 0, 1, 2, . . .),

K
[
(η · ∂)mK[ log | · | ]

]
(ξ) = (−1)m(m− 1)!Tm(ξ · η) (n = 2, m = 1, 2, . . .),

where Cλ
m is the Gegenbauer (ultraspherical) polynomial of degree m and index λ, and 

Tm is the Chebyshev polynomial of the first kind of degree m.

Proof. Let’s first note that K[1] = |x|2−n for n = 3 and K[ log |x| ] = − log |x| for 
n = 2. The first identity is a consequence of the well-known relation between the zonal 
harmonics and Gegenbauer polynomials; see [12, (14.8)] for example. The second identity 
holds because of the close connection between Gegenbauer polynomials with parameter 
0 and Chebyshev polynomials; see [18, 18.1.1] for example. �

The identities in Lemma 4.7 and Corollary 4.8 seem new; we are unable to locate 
them in standard references such as [18]. They also give further indication that the xonal 
harmonics Xm are important in their own right since the coefficients in the identities in 
Lemma 4.7 with the Zm are not simple known ones.

Proof of Lemma 4.7. The second set of identities follows immediately from the first set, 
and for these we proceed by induction on m. We give the proof only for n ≥ 3; the proof 
for n = 2 is obtained by replacing |x|2−n by log |x| and setting n = 2 in appropriate 
places. For m = 1, by Lemma 4.5,

(y · ∂)|x|2−n = (2 − n)|x|−n(x · y) = c1
X1(x, y)
|x|n .

Next we assume the first identity in Lemma 4.7 holds for m, and show that it also holds 
for m + 1. By applying the induction hypothesis, differentiating with the quotient rule, 
and using Lemma 4.5, we obtain

(y · ∂)m+1|x|2−n = (y · ∂)
(
cm

Xm(x, y)
|x|n+2m−2

)
= cm

|x|n+2m−2(y · ∂)Xm −Xm(n + 2m− 2)|x|n+2m−4(x · y)
2n+4m−4
|x|
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= cm
|x|2(y · ∂)Xm − (n + 2m− 2)(x · y)Xm

|x|n+2m .

Writing out the coefficients, we must show

(x · y)Xm − |x|2
n + 2m− 2(y · ∂)Xm = Xm+1.

By (7) and Lemma 4.5, the left side equals

n + 2m− 2
Am

�m/2�∑
l=0

n(n + 2) · · · (n + 2m− 2l − 4)
(−1)l 2l l! (m− 2l)! |x|2l(x · y)m−2l+1|y|2l

− 1
Am

�m/2�∑
l=0

n(n + 2) · · · (n + 2m− 2l − 4)
(−1)l 2l l! (m− 2l)! 2l |x|2l(x · y)m−2l+1|y|2l

− 1
Am

�m/2�∑
l=0

n(n + 2) · · · (n + 2m− 2l − 4)
(−1)l 2l l! (m− 2l)! (m− 2l)|x|2l+2(x · y)m−2l−1|y|2l+2

= 1
Am

�m/2�∑
l=0

n(n + 2) · · · (n + 2m− 2l − 2)
(−1)l 2l l! (m− 2l)! |x|2l(x · y)m−2l+1|y|2l

+ 1
Am

�m/2�+1∑
l=1

n(n + 2) · · · (n + 2m− 2l − 4)
(−1)l 2l−1 (l − 1)! (m− 2l + 1)! |x|

2l(x · y)m−2l+1|y|2l

= m + 1
Am

�m/2�∑
l=1

n(n + 2) · · · (n + 2m− 2l − 2)
(−1)l 2l l! (m + 1 − 2l)! |x|2l(x · y)m+1−2l|y|2l + extra term

+ (x · y)m+1,

where the extra term is due to l = 
m/2� + 1 in the second sum on the previous line. 
The right side equals

n + 2m
Am+1

�(m+1)/2�∑
l=1

n(n + 2) · · · (n + 2m− 2l − 2)
(−1)l 2l l! (m + 1 − 2l)! |x|2l(x · y)m+1−2l|y|2l + (x · y)m+1.

Since (m + 1)/Am = (n + 2m)/Am+1, the two sides are equal except for the extra 
term and that the sum on the right side ends perhaps at a larger value. When m is even, 
the l giving rise to the extra term equals m/2 +1, and then m − 2l+1 = −1 < 0 in that 
term, so there is really no extra term. Also 
(m + 1)/2� = m/2 = 
m/2�, and the sums 
on both sides end at the same value. When m is odd, the l giving rise to the extra term 
equals (m + 1)/2. Also 
(m + 1)/2� = (m + 1)/2. So the extra term and the last term in 
the sum on the right are the same. �
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Proof of Theorem 4.4. Again we write the proof only for n ≥ 3. It suffices to do the proof 
only for um(·) = Xm(·, y) as in Definition 4.1. In view of Lemma 4.6 and by Theorem 3.2, 
all we need to show is

1
m + 1

∂

∂yj
Xm+1(x, y) = 1

cm+1
K

[
∂

∂xj
(y · ∂)m|x|2−n

]
for all m = 0, 1, 2, . . ., where K and ∂ are with respect to x. Applying Lemma 4.7 on the 
right and combining the constants, this equation takes the form

∂

∂yj
Xm+1(x, y) = − m + 1

n + 2m− 2 K

[
∂

∂xj

(
Xm(x, y)
|x|n+2m−2

)]
(15)

By (7) and Lemma 4.5, the left side equals

n + 2m
Am+1

(�(m+1)/2�∑
l=0

n(n + 2) · · · (n + 2m− 2l − 2)
(−1)l 2l l! (m− 2l)! xj |x|2l(x · y)m−2l|y|2l

+
�(m+1)/2�∑

l=1

n(n + 2) · · · (n + 2m− 2l − 2)
(−1)l 2l−1 (l − 1)! (m + 1 − 2l)! yj |x|

2l(x · y)m+1−2l|y|2l−2

)
.

By Lemma 4.5,

∂

∂xj

(
Xm(x, y)
|x|n+2m−2

)
= |x|n+2m−2∂jXm −Xm(n + 2m− 2)|x|n+2m−4xj

|x|2n+4m−4

= |x|2∂jXm − (n + 2m− 2)xjXm

|x|n+2m .

After taking the Kelvin transform, the right side equals

(m + 1)
(
xjXm − 1

n + 2m− 2 |x|2 ∂Xm

∂xj

)

= m + 1
Am

(
(n + 2m− 2)

�m/2�∑
l=0

n(n + 2) · · · (n + 2m− 2l − 4)
(−1)l 2l l! (m− 2l)! xj |x|2l(x · y)m−2l|y|2l

−
�m/2�∑
l=0

n(n + 2) · · · (n + 2m− 2l − 4)
(−1)l 2l l! (m− 2l)! 2l xj |x|2l(x · y)m−2l|y|2l

−
�m/2�∑
l=0

n(n + 2) · · · (n + 2m− 2l − 4)
(−1)l 2l l! (m− 2l − 1)! yj |x|2l+2(x · y)m−2l−1|y|2l

)

= m + 1
Am

(�m/2�∑ n(n + 2) · · · (n + 2m− 2l − 2)
(−1)l 2l l! (m− 2l)! xj |x|2l(x · y)m−2l|y|2l
l=0
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+
�m/2�+1∑

l=1

n(n + 2) · · · (n + 2m− 2l − 2)
(−1)l 2l−1 (l − 1)! (m + 1 − 2l)! yj |x|

2l(x · y)m+1−2l|y|2l−2

)
.

Since the coefficients multiplying the sums are equal, the two sides are equal except 
perhaps in the upper limits of the sums. Let m be even. The upper limit on the left is 
l = 
(m + 1)/2� = m/2 = 
m/2�. In the sum with xj, this is also the upper limit on the 
right. The sum with yj on the right ends with l = m/2 +1, but then m +1 −2l = −1 < 0, 
so this term is not really there. Next let m be odd. The upper limit on the left is 
l = 
(m + 1)/2� = (m + 1)/2 = 
m/2� + 1. In the sum with yj , this is also the upper 
limit on the right. The sum with xj on the right ends with l = (m − 1)/2, so it seems 
as if the term on the left with l = (m + 1)/2 is extra, but then m − 2l = −1 < 0, so this 
term is not really there, either. �
Example 4.9. Let’s compute the action of shifts on a very simple harmonic function. 
Let’s find S1u and S2u for u(x) = x1. We apply Theorem 4.4 and follow the recipe in 
Theorem 3.2 separately for n ≥ 3 and n = 2. Straightforward computations yield that 
S1x1 = x2

1 − |x|2/n for any n ≥ 2. On the other hand, simply S2x1 = x2x1 since this 
product is already harmonic.

5. Harmonic Hilbert function spaces

We are inspired by a few earlier works in defining new reproducing kernels with desired 
properties. In [16], families of weighted symmetric Fock spaces of holomorphic functions 
that include the Drury-Arveson space are studied following [6]. In [12], Bergman-Besov 
kernels are defined as weighted infinite sums of zonal harmonics much like the Poisson 
kernel. And we have already noted that the right tool is the xonal harmonics rather than 
the zonal harmonics.

Definition 5.1. Let β := { βm > 0 : β0 = 1, m = 0, 1, 2, . . . } be a sequence satisfying

lim sup
m→∞

(
δm
Am

βm

)1/m

≤ 1. (16)

We define positive definite kernels by

Gβ(x, y) :=
∞∑

m=0
βm Xm(x, y) (x, y ∈ B)

and spaces Gβ as the reproducing kernel Hilbert spaces generated by these kernels.

We can also write

Gβ(x, y) =
∞∑ δm∑ βm

Am
Ymk(x)Ymk(y) (x, y ∈ B)
m=0 k=1
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by (10). Nothing about the boundedness, summability, or monotonicity of β is assumed 
at this point. But the condition (16), via (13), ensures that the series defining the kernels 
Gβ converge absolutely and uniformly on compact subsets of B × B and hence define 
harmonic functions of x, y ∈ B. For any β,

Gβ(0, y) = Gβ(x, 0) = 1 (17)

by (5) since β0 = 1, Gβ(x, y) = Gβ(y, x), and Gβ is real-valued. The Gβ depend on x
and y via x · y since the Zm are constant multiples of Gegenbauer polynomials of x · y; 
see [12, (14.8)]

Theorem 5.2. The elements of Gβ are harmonic functions on B.

Proof. This is by [5, p. 43]; the result there is stated for sesquiholomorphic kernels, 
but works equally well for harmonic kernels since both function classes have the same 
topology, the topology of uniform convergence on compact subsets. The hypotheses there 
are satisfied, because each Gβ(x, y) is locally bounded by (13) and a harmonic function 
in each variable on B. �

Also every Gβ − βmXm =
∞∑

l �=m

βlXl is positive definite. Then by [5, Theorem II.1.2], 

every Hm is continuously imbedded in each Gβ.

Theorem 5.3. The space Gβ coincides with the space of harmonic functions u on B with 
expansions as in Theorem 3.3 for which

‖u‖2
Gβ

:=
∞∑

m=0
‖um‖2

Gβ
:=

∞∑
m=0

Am

βm
‖um‖2

L2 < ∞ (18)

equipped with the inner product

[
u, v

]
Gβ

:=
∞∑

m=0

[
um, vm

]
Gβ

:=
∞∑

m=0

Am

βm

[
um, vm

]
L2 . (19)

Moreover,

{
W β

mk :=
√

βm

Am
Ymk : k = 1, . . . , δm, m = 0, 1, 2, . . .

}
is an orthonormal basis for Gβ.

Proof. We adapt the proof of [5, Theorem III.3.1] to our situation mainly to show how 
the L2 norm comes in. Consider the space of u ∈ h(B) satisfying the finiteness condition 
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in the statement of the theorem. Then this space has the inner product in the statement 
of the theorem. Since

|u(x)| =
∣∣∣∣ ∞∑
m=0

δm∑
k=1

√
Am

βm
umk

√
βm

Am
Ymk(x)

∣∣∣∣
≤
( ∞∑

m=0

δm∑
k=1

Am

βm
|umk|2

)1/2( ∞∑
m=0

δm∑
k=1

βm

Am
|Ymk(x)|2

)1/2

=
( ∞∑

m=0

Am

βm
‖um‖2

L2

)1/2 √
Gβ(x, x) < ∞,

point evaluations are bounded on this space, and norm convergence in the space implies 
convergence on compact subsets by (13). It follows that this space is complete, and it 
remains to find its reproducing kernel. It is clear that the set of normalized Ymk in the 
statement of the theorem form an orthonormal basis for this space and if we add them 
up as in (10), we obtain Gβ . �

Thus the spaces Gβ are Hilbert harmonic function spaces. The series expansions of a 
u ∈ Gβ given in Theorem 3.3, which can be recast as

u =
∞∑

m=0

δm∑
k=1

ûmk W
β
mk (20)

for some ûmk ∈ C, converge both in ‖ · ‖Gβ
and uniformly on compact subsets of B,

Corollary 5.4. Finite linear combinations of the collection{
Xm(·, y) : y ∈ B, m = 0, 1, 2, . . .

}
and hence of harmonic polynomials are dense in norm in every Gβ.

Inner products of Gβ and L2 restricted to Hm are constant multiples of each other. 
Consequently, orthogonality in L2 and in Gq are equivalent. The reproducing kernel of 
Hm with respect to [ ·, · ]Gβ

is βmXm. Hence

um(x) =
[
um(·), βm Xm(x, ·)

]
Gβ

(x ∈ B, um ∈ Hm) (21)

and

‖Zm(·, y)‖2
Gβ

= Am

βm
Zm(y, y) (y ∈ B)

by (19).
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In fact, (19) defines an inner product also on Pm for each β. With the help of The-
orem 3.2 (b), these imply that the projection Hm is orthogonal with respect to each 
[ ·, · ]Gβ

. Hence ‖Hm‖ = 1 when the same ‖ · ‖Gβ
is used in both its domain and range.

We now discuss two particular families of harmonic kernels and associated Hilbert 
function spaces that have applications to function theory and operator theory.

Example 5.5. A general family of Banach spaces of harmonic functions are studied in 
[12] from the point of view of Bergman projections and function-theoretic properties; 
they are the Bergman-Besov spaces bpq with q ∈ R and p ≥ 1. The Hilbert spaces in 
this family include the weighted Bergman spaces b2q with q > −1, the Dirichlet space 
b2−n, and the Hardy space h2 = b2−1. These Hilbert spaces are all special cases of the Gβ

and their reproducing kernels Rq(x, y) =
∞∑

m=0
γm(q) Zm(x, y) are given by the coefficient 

sequence

γm(q) =

⎧⎪⎪⎨⎪⎪⎩
(1 + n/2 + q)m

(n/2)m
, if q > −(1 + n/2),

(m!)2

(1 − (n/2 + q))m(n/2)m
, if q ≤ −(1 + n/2).

Naturally R−1 = P , the Poisson kernel, which is the reproducing kernel of h2. By (2), 
γm(q) ∼ m1+q as m → ∞ for any q. We rewrite Rq in terms of the Xm and notice that 
what replaces βm here is γ̃m(q) = Amγm(q). If we calculate the lim sup in (16) using 
(11), we see that it equals 1 for any q. All the spaces bpq have norms that are integrals 
with respect to weighted versions of ν on B of the pth power of either the functions or 
high enough derivatives of them; see [12, Theorem 1.1] and also [7, Theorem 6.13] for 
q = −1.

In this work we are interested in another family.

Definition 5.6. For q ∈ R and m = 0, 1, 2, . . ., we set

βm(q) :=

⎧⎪⎪⎨⎪⎪⎩
(1 + n/2 + q)m

m! , if q > −(1 + n/2),

m!
(1 − (n/2 + q))m

, if q ≤ −(1 + n/2),

and denote by Gq(x, y) :=
∞∑

m=0
βm(q) Xm(x, y) the reproducing kernel with coefficient 

sequence {βm(q)} and by Gq the Hilbert space generated by this kernel Gq.

Note that the βm(q) are the same as the coefficients of the holomorphic Bergman-
Besov kernels in [16, Definition 4.1] under the identification n = 2N . By (2),

βm(q) ∼ mn/2+q (m → ∞) (22)
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for any q. Then calculating the lim sup in (16) using (11), we see that it equals 1/2
for any q. This has the added consequence that the series defining Gq(x, y) for any q
converges absolutely and uniformly on compact subsets of 2B×B and is harmonic there. 
Then it follows from the proof of Theorem 5.3 or the density of the kernel functions in 
a reproducing kernel Hilbert space that every function u ∈ Gq is harmonic on 2B and 
hence is bounded on B. Further, if q < −n, then the functions in Gq are bounded on 2B.

The growth rate of the βm(q) in (22) and the norms of the Gq given in (18) show that 
if q1 < q2, then Gq1 ⊂ Gq2 continuously.

By Definition 5.6 and (12), for q > −(1 + n/2) and x, y ∈ B,

Gq(x, y) =
∞∑

m=0

(1 + n/2 + q)m
m!

(
(x · y)m − · · ·

)
= 1

(1 − x · y)1+n/2+q
− · · · ,

which is more reminiscent of the way some holomorphic Bergman-Besov kernels are 
written. Although Gq(x, y) is defined for x, y ∈ 2B, the last formula above is valid for 
x, y ∈ B only.

Definition 5.7. We define Ğ := G−n/2 for which all β̆m := βm(−n/2) = 1. So

Ğ(x, y) :=
∞∑

m=0

(
(x · y)m − · · ·

)
= 1

1 − x · y − · · · (x, y ∈ B).

We denote by Ğ the reproducing kernel Hilbert space generated by Ğ. We use ˘ to 
indicate any object connected with this kernel and space.

The space Ğ is our candidate for the harmonic version of the Drury-Arveson space. Our 
results in Sections 7 and 8 reveal some important extremal properties of it. For example, 
simply Xm is the reproducing kernel of Hm with respect to [ ·, · ]Ğ . On the other hand, 
since the kernels and the spaces in Example 5.5 and Definition 5.6 are totally different, 
the harmonic Hardy space and the Poisson kernel are unrelated to Ğ, even when n = 2.

There is also the question whether the spaces Gq can have equivalent norms in the 
form of integrals of the functions or their derivatives with respect to some measures on 
B like those of the bpq , and we answer it in the negative now following the technique used 
in [17, Corollary 7.2].

For t ∈ R, let’s define a tth order radial derivative Rt acting on the homogeneous 
expansion of a u ∈ h(B) by

Rtu :=
∞∑

m=0
(m + 1)t um.

First, if u ∈ Gq, then Rtu ∈ Gq+2t by comparing the coefficients in (18), hence for any t, 
Rtu ∈ h(2B), hence Rtu is bounded on B for any t. Second, there are harmonic functions 
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u on B for which all Rtu are bounded on B and that do not lie in any Gq; we can just 
take an element of a new Gβ̃ produced by a sequence {β̃m} for which the lim sup in (16)
is, say, 2/3 instead of the 1/2 obtained for all {βm(q)}.

Proposition 5.8. Let κ : [0, ∞) → R be an increasing function with κ(0) = 0, and let μ
be a positive measure with support in B. Define Etκμ as the set of all u ∈ h(B) for which

lim sup
r→1−

∫
B

κ
(
|Rtu(rx)|

)
dμ(x) < ∞.

Then Etκμ �= Gq for any values of the parameters.

Proof. By the first point above, it suffices to take t = 0. Let q be given and suppose 
that Gq = E0κμ for some κ, μ. Applying the definition of E0κμ with u = 1 ∈ Gq gives 
κ(1)μ(B) < ∞; hence μ is a finite measure. Let’s denote the sup norm on B by ‖ · ‖∞. 
If u is a harmonic function on B with ‖u‖∞ < ∞, then the integral in the definition of 
E0κμ is dominated by κ

(
‖u‖∞

)
μ(B) < ∞. This shows u ∈ Gq = E0κμ. But not all such u

belongs to Gq by the second point above. �
The same proof shows that it is impossible to find a measure with support on a 

compact subset K of 2B for the Gq. The same result applies to any Gβ for which the 
lim sup in (16) is strictly less than 1.

6. Adjoints

Having families of harmonic Hilbert function spaces at hand, we now investigate the 
action of shift operators on them and of their adjoints. When we extend the Sj to all of 
Gβ and Gq by linearity and density, we name them Sβj

and Sqj .
We start by obtaining the adjoints, the backward shifts, S∗

βj
: Hm → Hm−1 now with 

respect to [ ·, · ]Gβ
using (21) this time. Repeating the computation that leads to (14), we 

similarly obtain S∗
βj

(1) = 0 and

S∗
βj
um = 1

m

βm−1

βm
∂jum (um ∈ Hm, m ≥ 1). (23)

We then extend both the Sj and the S∗
βj

to all of Gβ and Gq using linearity and the 
density stated in Corollary 5.4, and also use the notation Sβj

and Sqj in place of Sj . So 
for um ∈ Hm,

S∗
qjum =

⎧⎪⎪⎨⎪⎪⎩
1

n/2 + q + m
∂jum, if q > −(1 + n/2),

−(n/2 + q) + m
∂jum, if q ≤ −(1 + n/2).

(24)
m2
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Notice the similarity of (23) to [16, (24)] and of (24) to [16, (26)].
The action of the operator tuple T = (T1, . . . , Tn) : H ⊕ · · · ⊕H → H is defined by 

T (v1, . . . , vn) = T1v1 + · · · + Tnvn. Then its adjoint T ∗ : H → H ⊕ · · · ⊕H is given by 
T ∗v = (T ∗

1 v, . . . , T
∗
nv). It follows that TT ∗ = T1T

∗
1 + · · ·+TnT

∗
n . We also use the notation

T · U := T1U1 + · · · + TnUn

with another tuple U ; so T · T ∗ = TT ∗.
For m ≥ 1 and um ∈ Hm, by (23), Theorem 4.4, and (3), we have

SβS
∗
βum =

n∑
j=1

Sβj

1
m

βm−1

βm
∂jum = 1

m

βm−1

βm
Hm(x · ∂)um = βm−1

βm
um (25)

even without using the projection Hm. Hence

SβS
∗
βu =

∞∑
m=1

βm−1

βm
um (u ∈ Gβ) (26)

and

(
I − SβS

∗
β

)
u = u0 +

∞∑
m=1

(
1 − βm−1

βm

)
um (u ∈ Gβ). (27)

Specializing to u ∈ Gq,

SqS
∗
qu =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞∑
m=1

m

n/2 + q + m
um, if q > −(1 + n/2),

∞∑
m=1

−(n/2 + q) + m

m
um, if q ≤ −(1 + n/2),

(28)

and

(
I − SqS

∗
q

)
u =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u0 +

∞∑
m=1

n/2 + q

n/2 + q + m
um, if q > −(1 + n/2),

u0 +
∞∑

m=1

n/2 + q

m
um, if q ≤ −(1 + n/2).

(29)

Now let

θβ = sup
m

βm

βm+1
and θq = sup

m

βm(q)
βm+1(q)

.

Theorem 6.1. The operator Sβ : Gβ → Gβ is bounded and ‖Sβ‖ =
√

θβ if and only if 
θβ < ∞, in which case each Sβj

is bounded with ‖Sβj
‖ ≤

√
θβ.
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Proof. (26) shows that SβS
∗
β is a diagonal operator with the same coefficient sequence {

βm/βm−1
}

not only on the homogeneous expansion of u ∈ Gβ , but also on its orthonor-
mal expansion in (20). Then ‖Sβ‖2 = ‖SβS

∗
β‖ = θβ . �

In particular, when βm = βm(q), the coefficients of um in (28) are increasing in m if 
m ≥ −n/2 and decreasing if m ≤ −n/2. Then

‖Sq‖ =
√

‖SqS∗
q‖ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if q > −n/2,

1/
√

1 + n/2 + q, if − (1 + n/2) < q ≤ −n/2,√
1 − (n/2 + q), if q ≤ −(1 + n/2).

The last two cases can be combined as ‖Sq‖ = 1/
√
β1(q) ≥ 1 for q ≤ −n/2. Thus 

Sq : Gq → Gq is bounded for all q. Compare these formulas with those for shift operators 
on holomorphic Dirichlet spaces in [16, Section 6].

For the norms of the individual Sqj , first note that ‖Sqj‖ ≤ ‖Sq‖. We use the action 
Sqj1 = xj = Y1j/

√
n. By Theorem 5.3, ‖xj‖Gq

= 1/
√
β1(q) and ‖1‖Gq

= 1. Then 
‖Sqj‖ = ‖Sq‖ for q ≤ −n/2. For q > −n/2, we stop at 1 ≥ ‖Tj‖ ≥ 1/

√
β1(q), where the 

last value is less than 1.
In the important special case q = −n/2, first ‖S̆‖ = 1. Also all the β̆m = 1 and

S̆∗
j um = 1

m
∂jum. (30)

The homogeneity of um shows that

1∫
0

(∂jum)(tx) dt =
1∫

0

tm−1(∂jum)(x) dt = 1
m

(∂jum)(x).

In fact, the integral form is independent of Hm and it holds that

S̆∗
j u(x) =

1∫
0

(∂ju)(tx) dt (u ∈ Ğ),

which is the exact formula used in [2, p. 278] and [4, Definition 2.5] for the backward shift 
operators on Drury-Arveson spaces in holomorphic and quaternionic settings derived 
from solutions of Gleason problems. Further,

S̆S̆∗u =
∞∑

m=1
um and I − S̆S̆∗ = 1 ⊗ 1, (31)

the second being the only finite-rank case, which is common for shift operators on Drury-
Arveson spaces starting with [6, Lemma 2.8].
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Combining Definition 4.1 and (30) produces the interesting result

Sx
j Xm(x, y) = (S̆y

j )∗Xm+1(x, y).

It follows from this and (31) that

n∑
j=1

Sy
j S

x
j Xm(x, y) =

n∑
j=1

S̆y
j (S̆y

j )∗Xm+1(x, y) =
∞∑
�=1

(Xm+1)�(x, y) = Xm+1(x, y)

since Sy
j = S̆y

j by definition. The holomorphic counterpart of this is the obvious 
N∑
j=1

zjwj〈z, w〉m = 〈z, w〉m+1.

We finally consider in this section the action of the shifts on the Bergman-Besov spaces 
b2q of Example 5.5. Using the γ̃m(q) = Amγm(q) there, we see that the shift is bounded 
on all the b2q and obtain

S∗
γ̃j

= 1
2 S∗

qj , Sγ̃q
S∗
γ̃q

= 1
2 S∗

qS
∗
q , and ‖Sγ̃q

‖ = 1√
2
‖Sq‖,

because of the factor 2m in Am. This shows why the spaces b2q are not suitable for our 
purposes, because we seek a space on which the norm of the shift is maximal.

7. Row contractions

Our aim in this section is to show that the norm of Ğ is maximal among all contractive 
Hilbert norms. We start by recalling the necessary terms.

Definition 7.1. A commuting operator tuple T = (T1, . . . , Tn) : H ⊕ · · · ⊕H → H on a 
Hilbert space H is called a row contraction if ‖T‖ ≤ 1, that is, if

‖T1u1 + · · · + Tnun‖2
H ≤ ‖u1‖2

H + · · · + ‖un‖2
H (u1, . . . , un ∈ H).

We note that being commuting is part of the definition of a row contraction.

Proposition 7.2. The shift Sβ is a row contraction if and only if {βm} is an increasing 
sequence, and Sq is a row contraction if and only if q ≥ −n/2.

Proof. It is straightforward that T is a row contraction if and only if I−TT ∗ ≥ 0. Since 
I −SβS

∗
β is a diagonal operator, this happens when the coefficients of all the um in (27)

and (29) are positive. �
So Ğ is the smallest space in the family {Gq} on which the shift operator is a row 

contraction. We have a stronger version of this result below.
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For a row contraction T , we call DT := (I − TT ∗)1/2 : H → H, which is the unique 
positive square root, the defect operator of T . For T = Sq, diagonality yields that

DSq
u = u0 +

∞∑
m=1

√
n/2 + q

n/2 + q + m
um, (q ≥ −n/2, u ∈ Gq).

In particular, DS̆u = u0.
We introduce below a sequence of maps on B(H) depending on an operator tuple 

T = (T1, . . . , Tn) on a Hilbert space H much like the map

JT (B) := T1BT ∗
1 + · · · + TnBT ∗

n (B ∈ B(H))

which is of great importance in the holomorphic setting for which

Jm
T (B) := JT (Jm−1

T (B)) =
∑

|α|=m

m!
α! T

αB(T ∗)α.

The last form of the above formula shows that Jm
T (I) ≥ 0 for all m = 1, 2, . . .. If T is a 

row contraction, it is seen easily that I ≥ Jm
T (I) ≥ Jm+1

T (I) ≥ 0.

Lemma 7.3. If T is a row contraction, then lim
m→∞

Jm
T (I) =: T∞ exists in the strong 

operator topology and satisfies 0 ≤ T∞ ≤ I.

Proof. This is contained in [14, Lemma 5.1.4]. �
A T for which T∞ = 0 is called pure.

Definition 7.4. For m = 0, 1, 2, . . ., we define

V m
T (B) :=

�m/2�∑
l=0

Aml

Am
(T · T )lJm−2l

T (B)(T ∗ · T ∗)l = Jm
T (B) − · · · (B ∈ B(H))

referring to the explicit formula (7) for the zonal harmonics.

We consider Jm
T (I) = (TT ∗)m as a hereditary polynomial in the noncommuting 

variables T and T ∗ borrowing a term from [1] meaning that after we multiply out 
(T1T

∗
1 + · · · + TnT

∗
n)m, we collect in each term all the Tj on the left and all the T ∗

j

on the right. Both V 0
T = J0

T = I and V 1
T = J1

T . Also

V m
T (I) =

�m/2�∑
l=0

Aml

Am
(T · T )l(TT ∗)m−2l(T ∗ · T ∗)l = (TT ∗)m − · · ·

= Xm(T, T ∗) =
δm∑

W̆mk(T ) W̆mk(T ∗)

(32)
k=1
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as hereditary polynomials, where conjugation applies only to coefficients. The last expres-
sion in the above formula holds because β̆m = 1 for all m and it shows that V m

T (I) ≥ 0
for all m = 1, 2, . . ..

It does not seem tractable to obtain the equivalent of Lemma 7.3 for V m
T (I) for 

a general row contraction T . Therefore we are obliged to restrict ourselves to certain 
subclasses of T in which V m

T (I) reduces to a single power.
Here is a crucial observation that directs us to our most important subclass. If um ∈

Hm, then by the very definition of harmonicity,

(S∗
β · S∗

β)um = 1
m

βm−1

βm

n∑
j=1

S∗
βj
∂jum = 1

m(m− 1)
βm−2

βm

n∑
j=1

∂2
j um = 0, (33)

which extends to all u ∈ Gβ by Corollary 5.4. Compare this to Lemma 4.6.

Definition 7.5. We call an operator tuple T = (T1, . . . , Tn) on a Hilbert space harmonic 
type if T ∗ · T ∗ = 0, or equivalently, if T · T = 0.

If T is a harmonic-type operator tuple on a Hilbert space, then

V m
T = Jm

T and V m
T (V 1

T ) = V m+1
T ; (34)

if T is also a row contraction, then Lemma 7.3 implies lim
m→∞

V m
T (I) = T∞ exists and 

0 ≤ T∞ ≤ I.
Shifts acting on harmonic Hilbert function spaces are harmonic type in particular. A 

straightforward induction using (25) also shows

V m
Sβ

(I)u = Jm
Sβ

(I)u =
∞∑

l=m

βl−m

βl
ul (u ∈ Gβ).

Now let {βm} be an increasing sequence, that is, let Sβ be a row contraction. Then

‖V m
Sβ

(I)u‖2
Gβ

=
∞∑

l=m

β2
l−m

β2
l

‖ul‖2
Gβ

≤
∞∑

l=m

‖ul‖2
Gβ

→ 0 (m → ∞)

by Theorem 5.3. Hence

(Sβ)∞ = lim
m→∞

V m
Sβ

(I) = 0

in the strong operator topology of Gβ, in other words, every such Sβ is pure. In particular, 
Sq is pure when q ≥ −n/2; and when q = −n/2, all the β̆m = 1 and

V m
S̆

(I)u =
∞∑

ul = u− (u0 + u1 + · · · + um−1).

l=m
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The following dilation-type result is important for our main results on Ğ. We follow 
the exposition in [9, Section 6.1] in its proof.

Theorem 7.6. Let T be a harmonic-type row contraction on a Hilbert space H. Then there 
exists a unique bounded linear operator L : Ğ ⊗DTH → H satisfying ‖L‖ ≤ 1 and

L(u⊗ ζ) = u(T )DT ζ (u ∈ H, ζ ∈ DTH).

In particular, L(1 ⊗ ζ) = DT ζ. If T is pure, then L is a coisometry.

Recall that H denotes the harmonic polynomials.

Proof. Let E = Ğ ⊗DTH. For v ∈ H, define for m = 0, 1, 2, . . .,

wmk = W̆mk ⊗DT W̆mk(T ∗)v and wm =
δm∑
k=1

wmk ∈ E.

Then by Theorem 5.3 and (32),

‖wm‖2
E =

δm∑
k=1

∥∥W̆mk

∥∥2
Ğ
∥∥DT W̆mk(T ∗)v

∥∥2
H

=
δm∑
k=1

[
DT W̆mk(T ∗)v, DT W̆mk(T ∗)v

]
H

=
δm∑
k=1

[
W̆mk(T )(1 − TT ∗)W̆mk(T ∗)v, v

]
H

=
[
Xm(T, T ∗)v, v

]
H
−

δm∑
k=1

[
W̆mk(T )(TT ∗)W̆mk(T ∗)v, v

]
H

=
[
V m
T (I)v, v

]
H
−
[
(T1V

m
T (I)T ∗

1 + · · · + TnV
m
T (I)T ∗

n)v, v
]
H
.

Since T is harmonic type, by (34),

‖wm‖2
E =

[
Jm
T (I)v, v

]
H
−
[
JT (Jm

T (I))v, v
]
H

=
[(
Jm
T (I) − Jm+1

T (I)
)
v, v

]
H
.

Define N : H → E by N(v) = w =
∞∑

m=0
wm. Then by a telescoping sum and Lemma 7.3,

∥∥N(v)
∥∥2
E

=
∞∑

m=0
‖wm‖2

E =
∞∑

m=0

[(
Jm
T (I) − Jm+1

T (I)
)
v, v

]
H

= ‖v‖2
H −

[
T∞v, v

]
H
.



28 D. Alpay, H.T. Kaptanoğlu / Journal of Functional Analysis 281 (2021) 109058
Thus ‖N‖ ≤ 1; equality holds and N is an isometry if T is pure.
Now define L = N∗. Then for k = 1, . . . , δm, by the orthogonality in Ğ,[

L(W̆mk ⊗ ζ), v
]
H

=
[
W̆mk ⊗ ζ, Nv

]
E

=
[
W̆mk ⊗ ζ, wmk

]
E

=
[
W̆mk ⊗ ζ, W̆mk ⊗DT W̆mk(T ∗)v

]
E

=
∥∥W̆mk

∥∥2
Ğ
[
ζ, DT W̆mk(T ∗)v

]
H

=
[
W̆mk(T )DT ζ, v

]
H

(v ∈ H).

Therefore L(um ⊗ ζ) = um(T )DT ζ for um ∈ Hm since {W̆mk} is a basis for Hm by 
Theorem 5.3, which also gives the uniqueness of L. Passing to a general u ∈ H is by 
linearity. �

Another subclass of T = (T1, . . . , Tn) for which V m
T (I) simplifies is that of self-adjoint

tuples by which we mean T ∗
j = Tj for all j = 1, . . . , n. For a self-adjoint T , by (9),

V m
T (I) =

�m/2�∑
l=0

Aml

Am
(T · T )m = δm

Am
(T · T )m = δm

Am
Jm
T (I), (35)

complementing (34).

Lemma 7.7. Let κm = δm
Am

− δm+1

Am+1
. Then κ0 = 0, κm>0 for m ≥ 1, and κ =

∞∑
m=1

κm = 1.

Proof. Writing out the explicit forms using (4) and the line following it, and (8), we see 

that κ0 = 0, κm = 1
2m for m ≥ 1 when n = 2, and κm = 1

n− 2
(n− 2)m
(n/2)m

m

2m for m ≥ 1

when n ≥ 3. Then the positivity of κm for any n and that κ = 1 for n = 2 are obvious.

For n ≥ 3, the hypergeometric function 2F1

(
n − 2, 1; n2 ; x

)
=

∞∑
m=0

(n− 2)m
(n/2)m

xm satis-

fies

x

n− 2 2F
′
1

(
n− 2, 1; n2 ;x

)∣∣∣∣
x=1/2

= κ.

But by [18, 15.5.1],

2F
′
1

(
n− 2, 1; n2 ;x

)
= n− 2

n/2 2F1

(
n− 1, 2; n2 + 1;x

)
,

and by [18, 15.4.28],

2F1

(
n− 1, 2; n2 + 1; 1

2

)
=

√
π

Γ(n/2 + 1)
Γ(n/2) Γ(3/2) = n.

Collecting together, κ = 1 again. �
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The following lemma complements Lemma 7.3. Its proof too is contained in [14, 
Lemma 5.1.4] by Lemma 7.7.

Lemma 7.8. Let T be a row contraction and define RM =
M∑

m=1
κmJm+1

T (I). Then 

lim
M→∞

RM =: R∞ exists in the strong operator topology and satisfies 0 ≤ R∞ ≤ I.

With this preparation, we can now prove the counterpart of Theorem 7.6 for self-
adjoint row contractions.

Theorem 7.9. Let T be a self-adjoint row contraction on a Hilbert space H. Then there 
exists a unique bounded linear operator L : Ğ ⊗DTH → H satisfying ‖L‖ ≤ 1 and

L(u⊗ ζ) = u(T )DT ζ (u ∈ H, ζ ∈ DTH).

In particular, L(1 ⊗ ζ) = DT ζ. If R∞ = 0, then L is a coisometry.

Proof. The first and third paragraphs of the proof of Theorem 7.6 carry through without 
change. Only the second paragraph needs to be modified as follows.

Since T is self-adjoint, by (35),

‖wm‖2
E = δm

Am

([
Jm
T (I)v, v

]
H
−
[
JT (Jm

T (I))v, v
]
H

)
= δm

Am

[(
Jm
T (I) − Jm+1

T (I)
)
v, v

]
H
.

Again define N : H → E by N(v) = w =
∞∑

m=0
wm. Then by Lemma 7.8,

∥∥N(v)
∥∥2
E

=
∞∑

m=0
‖wm‖2

E =
∞∑

m=0

δm
Am

[(
Jm
T (I) − Jm+1

T (I)
)
v, v

]
H

= ‖v‖2
H −

∞∑
m=1

κm

[
Jm+1
T (I)v, v

]
H

= ‖v‖2
H −

[
R∞v, v

]
H
.

Thus ‖N‖ ≤ 1; equality holds and N is an isometry if R∞ = 0. �
8. Von Neumann inequality

Definition 8.1. A norm on H derived from an inner product that respects the orthogo-
nality in L2 is called contractive if the shift operator is a row contraction in this norm.

We are now ready to prove Theorem 1.3 which we restate.
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Theorem 8.2. Let ‖ · ‖ be a contractive norm on H. Then

‖u‖ ≤ ‖u‖Ğ ‖1‖ (u ∈ H).

Proof. Let H be the Hilbert space that is the completion of H in the norm ‖ · ‖. Let 
also S = (S1, . . . , Sn) be the shift on H and S∗ its adjoint with respect to the inner 
product [ ·, · ] of H. We have [S∗

j 1, v] = [1, Sjv] = 0 for all v ∈ H by hypothesis, so 
S∗
j 1 = 0, j = 1, . . . , n. Then ‖DS1‖2 = [(1 −SS∗)1, 1] = ‖1‖2. Since clearly 0 ≤ DS ≤ I, 

Lemma 8.3 below implies DS1 = 1. The orthogonality condition on [ ·, · ] implies that S∗
j

has a form involving ∂j like the one in (23) which is derived from (14). Then S is harmonic 
type and pure. Now Theorem 7.6 applied with T = S yields L(u ⊗ 1) = u(S)1 = u for 
u ∈ H by Proposition 4.2. Therefore ‖u‖ ≤ ‖L‖ ‖u‖Ğ‖1‖ = ‖u‖Ğ ‖1‖. �

Moreover, as discussed in [9, p. 130], all Hilbert spaces mentioned in the statement 
of this theorem contain Ğ continuously. This result strengthens what we have above for 
the family Gq.

Lemma 8.3. Suppose H is Hilbert space and R : H → H satisfies 0 ≤ R ≤ I and 
‖Re‖ = ‖e‖ for some e ∈ H. Then Re = e.

Proof. The operator inequalities on R yield 0 ≤ [Rv, v] ≤ ‖v‖2. By the normality of 
R, ‖R‖ = sup

‖v‖≤1
[Rv, v] ≤ 1. It is routine to check that R2 ≤ R. On the other hand, 

we have [(R − R2)e, e] = [(I − R)e, Re] = [e, Re] − ‖Re‖2 = [e, Re] − ‖e‖2 ≤ 0. Hence 
[R2e, e] = ‖Re‖2 = ‖e‖2 ≥ [Re, e] ≥ [R2e, e] and consequently [Re, e] = ‖e‖2. Then it 
follows from ‖Re − e‖2 = ‖Re‖2 − 2[Re, e] + ‖e‖2 = 0 that Re = e. �

Similar to the passage from (7) to Definition 7.4, for a harmonic-type operator tuple 
T , we also have

Xm(T, y) =
�m/2�∑
l=0

Aml

Am
(T · T )l (y · T )m−2l |y|2l = (y · T )m. (36)

Then for pm ∈ Pm, by (36),

pm(∂y)(Xm+�)(T, y) = pm(∂y)((y · T )m+�)

= (m + ) · · · (1 + ) (y · T )� pm(T )

= (1 + )m pm(T )Xl(T, y).

(37)

Finally, we prove Theorem 1.4 which we restate.

Theorem 8.4. Let T be a harmonic-type row contraction on a Hilbert space H. If u is a 
harmonic polynomial, then ‖u(T )‖ ≤ ‖u(S̆)‖.
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Proof. It suffices to consider u = um ∈ Hm. By Theorem 7.6, there is a bounded operator 
L : Ğ ⊗DTH → H with ‖L‖ ≤ 1 and satisfying L(um ⊗ ζ) = um(T ) DT ζ, which can be 
written as L(um(S̆) ⊗ I)(1 ⊗ ζ) = um(T ) L(1 ⊗ ζ) by Proposition 4.2 and Theorem 7.6
again. Now we replace 1 by X�(x, y) treating y as a parameter. Using Proposition 4.3, 
Theorem 7.6 twice, and (37), we compute

L(um(S̆x) ⊗ I)(X�(x, y) ⊗ ζ) = L

(
1

(1 + )m
um(∂y)(Xm+�)(x, y) ⊗ ζ

)
= 1

(1 + )m
um(∂y)(Xm+�)(T, y)DT ζ

= um(T )X�(T, y)DT ζ

= um(T )L(X�(x, y) ⊗ ζ).

Thus L(um(S̆) ⊗ I) = um(T )L by the density of the Xl(·, y) in Hl.
For the end part, first we consider the case that T is pure. Then L is a coisometry 

and applying L∗ on the right gives L(um(S̆) ⊗ I)L∗ = um(T ). Taking norms yields us 
‖um(T )‖ ≤ ‖L‖2 ‖um(S̆)‖ ‖I‖ ≤ ‖um(S̆)‖, which is what we want. In the case T is not 
pure, we apply the above to rT for 0 < r < 1 for which ‖rT‖ ≤ r < 1 and (rT )∞ = 0. 
We obtain ‖um(rT )‖ ≤ ‖um(S̆)‖. Since this is true for all 0 < r < 1, the desired result 
follows. �
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