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We define the Kelvin-Möbius transform of a function harmonic on the unit ball of 
Rn and determine harmonic function spaces that are invariant under this transform. 
When n ≥ 3, in the category of Banach spaces, the minimal Kelvin-Möbius-invariant 
space is the Bergman-Besov space b1−(1+n/2) and the maximal invariant space is the 
Bloch space b∞(n−2)/2. There exists a unique strictly Kelvin-Möbius-invariant Hilbert 
space, and it is the Bergman-Besov space b2−2. There is a unique Kelvin-Möbius-
invariant Hardy space.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Let D ⊂ C be the open unit disc and Aut(D) be its automorphism group, that is, the group of holomor-
phic, bijective maps of D. The Bloch space B consists of all holomorphic functions f on D such that the 
seminorm

ρB(f) := sup{(1 − |z|2)|f ′(z)| : z ∈ D}

is finite. The Bloch space is Möbius invariant in the sense that if f ∈ B, then for every ϕ ∈ Aut(D), f ◦ ϕ
is in B and ρB(f ◦ ϕ) = ρB(f). The quantity (1 − |z|2)f ′(z) is sometimes called the invariant derivative of 
f at z since its modulus is Möbius invariant in this particular sense.

More generally, let E be a linear space of holomorphic functions on D that is complete with respect to 
a seminorm ρE . Roughly speaking, E is called Möbius invariant if for every f ∈ E and ϕ ∈ Aut(D), f ◦ ϕ
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belongs to E and ρE(f ◦ ϕ) = ρE(f) (or the weaker condition ρE(f ◦ ϕ) ∼ ρE(f) holds). We say “roughly 
speaking” because there should be a few technical restrictions on E; for details see [3], [5] and [25]. Among 
all Möbius-invariant spaces, the Bloch space B is the largest [25] and the Besov space B1 is the smallest [5]. 
If one considers Hilbert spaces, the Dirichlet space is the unique Möbius-invariant Hilbert space [3]. Similar 
results with domains other than D are obtained in various sources, in [24] and [32] the domain is the unit 
ball of Cn, in [21] the domain is the polydisc and [4] considers bounded symmetric domains.

The purpose of this paper is to study the harmonic analogue of this problem on the unit ball B of Rn

with respect to the standard norm |x|2 = x ·x = x2
1 + · · ·+x2

n. Let h(B) be the Fréchet space of all complex-
valued harmonic functions on B endowed with the topology of uniform convergence on compact subsets, 
and M(B) be the group of Möbius transformations of B; see subsection 2.2. In the harmonic case the first 
problem one encounters is that if f ∈ h(B) and ϕ ∈ M(B), then f ◦ ϕ need not be harmonic. To remedy 
this problem note that any ϕ ∈ M(B) can be written as a composition of an orthogonal transformation and 
an inversion. Composing a harmonic function with an orthogonal transformation preserves harmonicity. So, 
harmonicity is lost in f ◦ ϕ because of composition with an inversion. On the other hand, one can compose 
with an inversion and still preserve harmonicity provided one multiplies by a correction factor and this is 
called the Kelvin transform. Therefore we need to combine composition with ϕ with the Kelvin transform 
and this leads us to the following definition.

Definition 1.1. Let f ∈ h(B) and ϕ ∈ M(B). The Kelvin-Möbius transform Kϕ(f) of f is defined as

Kϕ(f)(x) :=
(

1 − |ϕ(x)|2
1 − |x|2

)(n−2)/2

f(ϕ(x)).

The factor multiplying f ◦ϕ stems from the Kelvin transform; see subsection 2.3. If f is harmonic on B, 
then so is Kϕ(f). This is verified later, but in the literature there are also different proofs. See, for example, 
[2, Corollary 2.3], [9, §2.3], [19, Proposition 3.1] or [23, Theorem 2].

If the dimension is n = 2, the first factor disappears and we just have Kϕ(f) = f ◦ ϕ. Because of this 
there are differences between the cases n = 2 and n ≥ 3. When n = 2, the harmonic case is very similar to 
the holomorphic case studied in [3,5,25]; nevertheless there are details that require attention. We deal with 
that in a different work [22] and throughout this paper we consider the case n ≥ 3.

Remark 1.2. We show in subsection 2.3 that Kϕ : h(B) → h(B) is invertible with K−1
ϕ = Kϕ−1 .

We now define a Kelvin-Möbius-invariant harmonic function space following [25] and [31]. Let (E, ‖ · ‖E)
be a Banach space of harmonic functions on B. A non-zero continuous linear functional L on h(B) is called 
decent on E if L is also continuous on E with respect to the norm ‖ · ‖E .

We denote by 1 the constant function whose value is 1.

Definition 1.3. Let n ≥ 3. A Banach space (E, ‖ · ‖E) of harmonic functions on B is called Kelvin-Möbius 
invariant if the following properties hold:

(i) E contains 1.
(ii) There exists a decent linear functional on E.
(iii) For every f ∈ E and ϕ ∈ M(B), the Kelvin-Möbius transform Kϕ(f) belongs to E and

‖Kϕ(f)‖E ≤ C‖f‖E , (1)

for some constant C independent of f and ϕ.
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Since E is linear we can write the first condition as (i) E contains constant functions.
If the constant in (1) is C = 1, then by Remark 1.2, ‖Kϕ(f)‖E = ‖f‖E for every f ∈ E and ϕ ∈ M(B)

and in this case we call E strictly Kelvin-Möbius invariant as done in [5, Definition 1]. In the general case 
we only have ‖Kϕ(f)‖E ∼ ‖f‖E , where we use the notation A ∼ B to mean that A/B is bounded from 
above and below by some constants that are independent of the parameters involved. If A/B is just bounded 
above, we write A � B.

Remark 1.4. If E is Kelvin-Möbius invariant, then we can define a new, equivalent norm on E with which E
becomes strictly Kelvin-Möbius invariant (see [5, p. 111]). Thus weakening strictly Kelvin-Möbius invariance 
and using Kelvin-Möbius invariance with “∼” is not very important.

Remark 1.5. We note that in the holomorphic case the invariant space is taken as a complete semi-normed
space. In the harmonic case the same is true when n = 2 but when n ≥ 3 we do not need semi-norms 
because of the extra multiplying factor in Kϕ, and E in Definition 1.3 is a Banach space.

The harmonic function spaces we are mainly interested in this work are Bergman-Besov spaces bpq and 
weighted Bloch spaces b∞s with q, s ∈ R in both. Let ν be the normalized Lebesgue measure on B and for 
q ∈ R, let

dνq(x) := cq(1 − |x|2)q dν(x).

The measure νq is finite only when q > −1 and in this case we pick the constant cq so that νq(B) = 1. When 
q ≤ −1, we just set cq = 1. For 0 < p < ∞, we denote the Lebesgue classes with respect to νq by Lp

q .
For q > −1, the well-known harmonic Bergman space bpq is defined as bpq := h(B) ∩ Lp

q with norm 
‖f‖bpq := ‖f‖Lp

q
. The next definition extends this class to all q ∈ R. To denote partial derivatives we use 

multi-indices and write

∂αf := ∂|α|f

∂xα1
1 · · · ∂xαn

n
,

where the multi-index α = (α1, . . . , αn) is an n-tuple of nonnegative integers and |α| = α1 + · · · + αn.

Definition 1.6. Let 0 < p < ∞ and q ∈ R. Pick a nonnegative integer N such that

q + pN > −1. (2)

The harmonic Bergman-Besov space bpq consists of all f ∈ h(B) such that

(1 − |x|2)N∂αf ∈ Lp
q

for every multi-index α with |α| = N . A norm (quasinorm when 0 < p < 1) on bpq is

‖f‖p
bpq

:=
∑

|α|<N

|∂αf(0)|p +
∑

|α|=N

∫
B

∣∣(1 − |x|2)N∂αf(x)
∣∣p dνq(x). (3)

When 0 < p < 1, while we still use the notation ‖ · ‖bpq , bpq is not a normed space, but it is a complete 
metric space with respect to the metric d(f, g) = ‖f − g‖p

bpq
.

The space bpq does not depend on the choice of N . Different choices of N satisfying (2) give rise to 
equivalent norms and in the notation ‖ ·‖bpq we do not indicate the dependence on N . The partial derivatives 
in the above definition can be replaced with radial derivatives or various other suitable differential operators.
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Fig. 1. Equation of the ray l is q = p(n − 2)/2 − n, p ≥ 1. By Lemma 1.7, if (p, q) is on the solid part of the ray l, then bpq is 
Kelvin-Möbius invariant.

The region q > −1 is the Bergman region in which we take N = 0, and q ≤ −1 is the proper Besov 
region. When p = 2, b2q is a Hilbert space endowed with the inner product

〈f, g〉b2q :=
∑

|α|<N

∂αf(0)∂αg(0) +
∑

|α|=N

∫
B

∂αf(x)∂αg(x)(1 − |x|2)2N dνq(x), (4)

with N satisfying (2). In the special case q = −n, the spaces bp−n are studied in [20,29]. For the whole family 
bpq with q ∈ R, see [17] (when p ≥ 1) and [13] (when 0 < p < 1).

We first determine which harmonic Bergman-Besov spaces are Kelvin-Möbius invariant. In the Bergman 
region q > −1, this is very easy.

Lemma 1.7. Let n ≥ 3. Let 1 ≤ p < ∞ and q > −1. Then bpq is Kelvin-Möbius invariant if and only if 
q = p(n − 2)/2 − n and in this case bpq is strictly Kelvin-Möbius invariant.

It is clear that 1 ∈ bpq , and it is well known that point-evaluation functionals are bounded on Bergman 
spaces. To check condition (iii) of Definition 1.3, let f ∈ bpq and ϕ ∈ M(B). Then

‖Kϕ(f)‖p
bpq

= cq

∫
B

|f(ϕ(x))|p
(

1 − |ϕ(x)|2
1 − |x|2

)p(n−2)/2

(1 − |x|2)q dν(x).

Using p(n − 2)/2 = q + n, changing variables as x̃ = ϕ(x), and using (12) below, we immediately obtain 
‖Kϕ(f)‖bpq = ‖f‖bpq . We show the only-if part of Lemma 1.7 in Section 4 within the proof of Theorem 1.8.

Lemma 1.7 tells that if (p, q) is on the solid part of the ray l in Fig. 1, then the space bpq is Kelvin-Möbius 
invariant. This suggests that the Banach spaces corresponding to the dashed part of the ray l may also be 
Kelvin-Möbius invariant. This is true and it is our first theorem.

Theorem 1.8. Let n ≥ 3. Let p ≥ 1 and q ∈ R. Then bpq is a Kelvin-Möbius invariant space if and only if 
q = p(n − 2)/2 − n.

Of course the interesting part of Theorem 1.8 is the case q ≤ −1. We prove this part in Section 4 using 
complex interpolation.

By Remark 1.4, when q = p(n − 2)/2 −n, the space bpq is strictly Kelvin-Möbius invariant when endowed 
with a suitable equivalent norm.
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Remark 1.9. Theorem 1.8 is true also when n = 2. In this case q = p(n − 2)/2 −n = −2 is less than −1 and 
there is no Kelvin-Möbius-invariant harmonic Bergman space. When n = 2, as in the holomorphic case, all 
Kelvin-Möbius-invariant spaces belong to the proper Besov region and lie on the horizontal line q = −2.

Observe that when p = 2, the corresponding q in Theorem 1.8 is q = −2 and the Hilbert space 
(b2−2, 〈·, ·〉b2−2

) is Kelvin-Möbius invariant. The space b2−2 is strictly Kelvin-Möbius invariant when endowed 
with a suitable inner product 〈·, ·〉I which we now describe.

For m ≥ 0, let Hm(S) be the vector space of spherical harmonics of degree m and δm be its dimension 
(see subsection 3.1 for more details). Let {Y j

m : j = 1, . . . , δm} be an orthonormal basis of Hm(S). If f is 
harmonic on B, then f has the expansion

f(x) =
∞∑

m=0

δm∑
j=1

f j
mY j

m(x) (x ∈ B),

where f j
m’s are complex numbers. The above series converges absolutely and uniformly on compact subsets 

of B. By [16, Theorem 3.8] or [17, Theorem 5.1], the space b2−2 can also be described as

b2−2 =
{
f =

∞∑
m=0

δm∑
j=1

f j
mY j

m ∈ h(B) : ‖f‖2
I =

∞∑
m=0

δm∑
j=1

m + n/2 − 1
n/2 − 1 |f j

m|2 < ∞
}
.

The above norm is equivalent to the norm(s) given in Definition 1.6 and is induced by the inner product

〈f, g〉I :=
∞∑

m=0

δm∑
j=1

m + n/2 − 1
n/2 − 1 f j

mgjm (f, g ∈ b2−2). (5)

When endowed with the above inner product 〈·, ·〉I , the space b2−2 is strictly Kelvin-Möbius-invariant 
Hilbert space and it is the only strictly Kelvin-Möbius-invariant Hilbert space. This is our second theorem.

Theorem 1.10. (i) The Hilbert space (b2−2, 〈·, ·〉I) is strictly Kelvin-Möbius invariant.
(ii) If (H, 〈·, ·〉H) is a strictly Kelvin-Möbius-invariant Hilbert space, then H = b2−2 and 〈·, ·〉H = C〈·, ·〉I for 
some C > 0.

In Proposition 6.1, we give an integral description of the inner product 〈·, ·〉I similar to (4), but in terms 
of radial derivatives.

When (p, q) is on the ray q = p(n − 2)/2 − n, p ≥ 1, the Kelvin-Möbius-invariant spaces bpq increase as p
increases. This is a consequence of [15, Theorem 1.2]. If p = 1, the corresponding q is −(1 + n/2), and this 
suggests that b1−(1+n/2) might be the smallest Kelvin-Möbius-invariant space. This is true and it is our next 
theorem.

Theorem 1.11. Let n ≥ 3. The space b1−(1+n/2) is the smallest Kelvin-Möbius-invariant space. More precisely, 
if E is Kelvin-Möbius invariant, then b1−(1+n/2) ⊂ E and there exists a C > 0 such that ‖f‖E ≤ C‖f‖b1−(1+n/2)

for every f ∈ b1−(1+n/2).

We next determine the largest Kelvin-Möbius-invariant space. For this we need to consider weighted 
harmonic Bloch spaces.

Definition 1.12. Let s ∈ R. Pick a non-negative integer N so that s +N > 0. The weighted harmonic Bloch 
space b∞s consists of all f ∈ h(B) such that for every multi-index α with |α| = N ,
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sup
x∈B

(1 − |x|2)s+N |∂αf(x)| < ∞.

A norm on b∞s is

‖f‖b∞s :=
∑

|α|<N

|∂αf(0)| +
∑

|α|=N

sup
x∈B

(1 − |x|2)s+N |∂αf(x)| .

As before, the space b∞s does not depend on the choice of N as long as s + N > 0 and different choices 
of N give rise to equivalent norms (see [14] for more details). When n ≥ 3 we are interested in the space 
b∞(n−2)/2. Choosing N = 0 shows

b∞(n−2)/2 =
{
f ∈ h(B) : ‖f‖b∞(n−2)/2

= sup
x∈B

(1 − |x|2)(n−2)/2|f(x)| < ∞
}
. (6)

It is immediate that the space b∞(n−2)/2 is strictly Kelvin-Möbius invariant. Clearly 1 ∈ b∞(n−2)/2 and for a 
decent linear functional, we can take any point-evaluation functional. That ‖Kϕ(f)‖b∞(n−2)/2

= ‖f‖b∞(n−2)/2
is 

obvious.
By [15, Theorem 1.3], the increasing family of Kelvin-Möbius-invariant spaces bpq , p ≥ 1, q = p(n −2)/2 −n

are all included in the weighted Bloch space b∞(n−2))/2. This suggests that b∞(n−2)/2 might be the largest 
Kelvin-Möbius-invariant space. This is true and it is our next theorem.

Theorem 1.13. Let n ≥ 3. The space b∞(n−2)/2 is the largest Kelvin-Möbius-invariant space. More precisely, 
if E is Kelvin-Möbius invariant, then E ⊂ b∞(n−2)/2 and there exists a C > 0 such that ‖f‖b∞(n−2)/2

≤ C‖f‖E
for every f ∈ E.

For completeness we also look at the spaces bpq , 0 < p < 1. Because these are not normed spaces, they 
cannot be Kelvin-Möbius invariant in the sense of Definition 1.3. Nevertheless if q = p(n − 2)/2 − n, the 
properties (i)-(iii) in Definition 1.3 do hold even when 0 < p < 1, where we understand ‖ · ‖ as a quasinorm.

Theorem 1.14. Let n ≥ 3. Let 0 < p < 1 and q ∈ R. Then the properties (i)-(iii) in Definition 1.3 hold for 
bpq if and only if q = p(n − 2)/2 − n.

We note that the spaces bpq , 0 < p < 1, q = p(n −2)/2 −n are smaller than b1−(1+n/2) by [15, Theorem 1.2]. 
This, however, does not contradict Theorem 1.11 since these spaces are not Banach spaces. An analogous 
result concerning Möbius invariant holomorphic function spaces on the unit ball of Cn is obtained in [33].

Another well-studied space of harmonic functions is the class of harmonic Hardy spaces. For each n ≥ 3, 
one Hardy space can be shown to be Kelvin-Möbius invariant by using [19, Theorem 1.2]. We discuss this 
in Remark 4.4.

Lastly, we consider subspaces of h(B) and show that there is no non-trivial closed subspace of h(B) that 
is invariant under taking Kelvin-Möbius transform.

Theorem 1.15. Let n ≥ 3 and A ⊂ h(B) be a closed subspace. If Kϕ(f) ∈ A for every f ∈ A and ϕ ∈ M(B), 
then A = {0} or A = h(B).

Corollary 1.16. Let n ≥ 3 and f ∈ h(B) be non-zero. Then span{Kϕ(f) : ϕ ∈ M(B)} is dense in h(B).

The paper is organized as follows. In Section 2 we justify Definition 1.1 and present some elementary 
properties of the Kelvin-Möbius transform. In Section 3 we review reproducing kernels and atomic decom-
positions of harmonic Bergman-Besov spaces bpq . We consider the Kelvin-Möbius invariance of the bpq spaces 
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and prove Theorems 1.8 and 1.14 in Section 4. In Section 5 we first show that point-evaluation functionals 
are bounded on Kelvin-Möbius-invariant spaces and as a consequence determine the minimal and maximal 
invariant spaces. We prove Theorem 1.15 also in this section. Section 6 is devoted to the Hilbert-space case. 
We repeat that in this paper we take n ≥ 3.

2. Kelvin-Möbius transform

In this section we first recall some known facts about Möbius transformations. For more detail about 
these transformations see [1,7,30]. We then justify the definition of Kelvin-Möbius transform and prove some 
of its elementary properties.

2.1. Orthogonal transformations

We denote the group of all orthogonal transformations of Rn by O(n). Fixing an orthonormal basis of 
Rn we can represent each element of O(n) with an orthogonal matrix of size n × n. Identifying matrices of 
size n × n with elements of Rn2 induces a natural topology on such matrices which makes O(n) a compact 
topological group. The elements of O(n) whose corresponding matrices have determinant 1 form a subgroup 
of O(n) denoted by SO(n). We denote the normalized Haar measure on SO(n) by μ0, where normalized 
means μ0(SO(n)) = 1.

For a proof of the lemma below see [11, Theorem 3.1] or [26, Lemma 1.4.7 (3)].

Lemma 2.1. Let f be continuous on S and η ∈ S. Then

∫
SO(n)

f(U(η)) dμ0(U) =
∫
S

f(ζ) dσ(ζ).

2.2. Möbius transformations

A Möbius transformation of R̂n := Rn∪{∞} is a finite composition of inversions in spheres and reflections 
in planes. We denote the group of all Möbius transformations that map the unit ball B to itself by M(B).

For a ∈ B, the involutive Möbius transformation ϕa that exchanges a and 0 is defined by

ϕa(x) := (1 − |a|2)(a− x) + |x− a|2a
[x, a]2 ,

where

[x, a] :=
√

1 − 2x · a + |x|2|a|2.

The map ϕa can be decomposed into simple maps. Let J be the inversion with respect to the unit sphere 
S,

J(x) := x∗ := x

|x|2 .

Note that when a �= 0,

[x, a] = |a| |x− a∗|. (7)
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More generally, for c ∈ Rn and r > 0, let S(c, r) be the sphere with center c and radius r, and let Jc,r
denote the inversion with respect to S(c, r),

Jc,r(x) := c + r2J(x− c).

For 0 �= a ∈ B, ϕa can be decomposed as

ϕa = −Pa ◦ Ja∗,ρ,

where

ρ :=
√

1 − |a|2
|a| (8)

and

Pa(x) := x− 2x · a
|a|2 a

is the reflection about the plane passing through the origin and perpendicular to the vector a. For details 
see [1, Section 2.6] which uses Ta = −ϕa. The sphere S(a∗, ρ) is orthogonal to S and thus Ja∗,ρ(B) = B.

Let ϕ ∈ M(B) be arbitrary and a = ϕ−1(0). If a = 0, then ϕ is an orthogonal transformation. If a �= 0, 
then by [30, Theorem 2.1.2] there exists an orthogonal transformation U ∈ O(n) such that ϕ = U ◦ ϕa and 
ϕ can be decomposed as

ϕ = U ◦ (−Pa) ◦ Ja∗,ρ. (9)

Thus, since Pa is also orthogonal, we can write ϕ as composition of an orthogonal transformation and an 
inversion.

We list some identities involving ϕ. The most useful identity is

1 − |ϕ(x)|2 = (1 − |a|2)(1 − |x|2)
[x, a]2 (a = ϕ−1(0)). (10)

The ratio [x, y]2/((1 − |x|2)(1 − |y|2)) is Möbius invariant, that is, for every x, y ∈ B and ϕ ∈ M(B),

[ϕ(x), ϕ(y)]2

(1 − |ϕ(x)|2)(1 − |ϕ(y)|2) = [x, y]2

(1 − |x|2)(1 − |y|2) . (11)

The derivative ϕ′(x) of ϕ = (ϕ1, . . . , ϕn) : B → B, is the n × n matrix

ϕ′(x) =
[
∂ϕi

∂xj

]n
i,j=1

.

The absolute value of the Jacobian determinant of ϕ is ([30, Theorem 3.3.1])

|det(ϕ′(x))| =
(

1 − |ϕ(x)|2
2

)n

. (12)
1 − |x|
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2.3. Kelvin-Möbius transform

The Kelvin transform of f with respect to the unit sphere S is defined by

KS(f)(x) := 1
|x|n−2 f(J(x)).

More generally, Kelvin transform of f with respect to the sphere S(c, r) is defined by (see [18, p. 39])

KS(c,r)(f)(x) := rn−2

|x− c|n−2 f(Jc,r(x)).

If f is harmonic on a domain Ω ⊂ Rn, then KS(c,r)(f) is harmonic on Jc,r(Ω).
Let ϕ ∈ M(B), ϕ−1(0) = a �= 0 and ϕ have the decomposition (9). By (7) and (8),

KS(a∗,ρ)(f)(x) = (1 − |a|2)(n−2)/2

[x, a]n−2 f(Ja∗,ρ(x)).

Because Ja∗,ρ(B) = B, if f is harmonic on B, then KS(a∗,ρ)(f) is harmonic on B. Replacing f with f◦U◦(−Pa)
we deduce that if f ∈ h(B), then so is

(1 − |a|2)(n−2)/2

[x, a]n−2 f(ϕ(x)) =
(

1 − |ϕ(x)|2
1 − |x|2

)(n−2)/2

f(ϕ(x)),

where we also use the formula (10). The function above is the Kelvin-Möbius transform of f .
If ϕ = U ∈ O(n), then we just have

KU (f) = f ◦ U. (13)

For future reference let us also record that if f = 1, then

Kϕa
(1)(x) = (1 − |a|2)(n−2)/2

[x, a]n−2 . (14)

Some basic properties of the transform Kϕ are listed in the following lemma.

Lemma 2.2. Let ϕ, ψ ∈ M(B). The Kelvin-Möbius transform Kϕ : h(B) → h(B) satisfies the following 
properties:

(i) Kϕ is linear.
(ii) Kψ ◦ Kϕ = Kϕ◦ψ.
(iii) Kϕ is one-to-one and onto and K−1

ϕ = Kϕ−1 .
(iv) K−1

ϕa
= Kϕa

.
(v) Kϕ is continuous.

Proof. Part (i) is clear. Part (ii) is pure computation. Part (iii) follows from part (ii) and part (iv) is true 
because ϕa is an involution. To see part (v) suppose fm → f in h(B), that is, fm converges to f uniformly 
on compact subsets of B. We have

Kϕ(fm)(x) =
(

1 − |ϕ(x)|2
2

)(n−2)/2

fm(ϕ(x))
1 − |x|
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and if x lies in the compact set |x| ≤ r < 1, then there exists s < 1 such that |ϕ(x)| ≤ s. The first factor 
on the right is bounded and second factor converges uniformly to f(ϕ(x)) since fm converges uniformly to 
f on |x| ≤ s. Hence Kϕ(fm) converges uniformly to Kϕ(f) on |x| ≤ r. �
3. Harmonic Bergman-Besov spaces

This section is for review purposes. We recall some known facts about zonal harmonics and harmonic 
Bergman-Besov spaces bpq that will be used in the sequel. For more detail about zonal harmonics see [6, 
Chapter 5], and about the spaces bpq see [17] and [13].

3.1. Spherical and zonal harmonics

Let L2(S) be the Hilbert space of square integrable functions on S with respect to the inner product 
〈f, g〉 =

∫
S fg dσ, where σ is the normalized surface area measure on S. Let Hm(Rn) denote the complex 

vector space of all homogeneous harmonic polynomials of degree m in n real variables. Restriction of an 
element of Hm(Rn) to S is called a (surface) spherical harmonic of degree m. The collection Hm(S) of all 
spherical harmonics of degree m is a finite-dimensional subspace of L2(S) with dimension δm.

For m ≥ 0, let {Y j
m, j = 1, . . . , δm} be an orthonormal basis of Hm(S). If m �= k, then Hm(S) ⊥ Hk(S)

in L2(S), so
∫
S

Y j
m(ξ)Y i

k (ξ) dσ(ξ) = 0 (15)

unless m = k and j = i. For η ∈ S, the point-evaluation functional f �→ f(η) is bounded on Hm(S) and 
therefore there exists a unique Zm(·, η) ∈ Hm(S) such that for all f ∈ Hm(S)

f(η) =
∫
S

f(ξ)Zm(ξ, η) dσ(ξ).

The zonal harmonic Zm(ξ, η) is real-valued, it is symmetric in its variables, and in terms of Y j
m it equals

Zm(ξ, η) =
δm∑
j=1

Y j
m(ξ)Y j

m(η) (ξ, η ∈ S).

The above formula extends to Rn ×Rn by homogeneity

Zm(x, y) =
δm∑
j=1

Y j
m(x)Y j

m(y) (x, y ∈ Rn), (16)

where Y j
m(x) = |x|mY j

m(ξ) for x = |x|ξ.
When n ≥ 3, as a function of x, 1/[x, a]n−2 is harmonic on B by (7). Its homogeneous expansion is given 

in the following lemma.

Lemma 3.1. Let n ≥ 3 and a ∈ B. Then

1
[x, a]n−2 =

∞∑
m=0

n/2 − 1
m + n/2 − 1Zm(x, a),

where the series converges uniformly for x ∈ B.
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Proof. Lemma is clear when a = 0, so we assume a �= 0. For d > 0, the Gegenbauer polynomial Gd
m of 

degree m is defined by the generating function

1
(1 − 2rt + t2)d =

∞∑
m=0

Gd
m(r) tm.

Writing x = |x|ξ, a = |a|η, we see that

1
[x, a]n−2 = 1

(1 − 2ξ · η |x||a| + |x|2|a|2)n/2−1 =
∞∑

m=0
Gn/2−1

m (ξ · η)|x|m|a|m.

It is known that (see, for example, [17, Equation (14.8)])

Gn/2−1
m (ξ · η) = n/2 − 1

m + n/2 − 1Zm(ξ, η).

Thus

1
[x, a]n−2 =

∞∑
m=0

n/2 − 1
m + n/2 − 1Zm(ξ, η)|x|m|a|m =

∞∑
m=0

n/2 − 1
m + n/2 − 1Zm(x, a),

where the last equality follows from the homogeneity of Zm. For fixed a ∈ B, the series converges uniformly 
for x ∈ B since |Zm(ξ, η)| � mn−2 (see [6, Proposition 5.27 (e) and Exercise 10, p. 107]). �
3.2. Reproducing kernels of harmonic Bergman-Besov spaces

For all q ∈ R, the space b2q is a reproducing kernel Hilbert space. We denote the reproducing kernel by 
Rq(x, ·). When q > −1, the natural inner product on b2q is 〈f, g〉b2q :=

∫
B fg dνq and with respect to this 

inner product (see [12, p. 164])

Rq(x, y) =
∞∑

m=0

(n/2 + q + 1)m
(n/2)m

Zm(x, y) (q > −1),

where the Pochhammer symbol (a)b is defined by

(a)b := Γ(a + b)
Γ(a)

when a and a + b are off the pole set −N of the gamma function Γ.
When q ≤ −1, it is necessary to consider derivatives of the functions in the inner product and there 

are various choices. Different choices of the inner product would give rise to different reproducing kernels 
and vice versa. We follow the approach of [16] and extend the reproducing kernels to whole q ∈ R in the 
following way. Define

γm(q) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(n/2 + q + 1)m
(n/2)m

, if q > −(1 + n/2);

(m!)2

(1 − (n/2 + q))m(n/2)m
, if q ≤ −(1 + n/2);

(17)

and
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Rq(x, y) :=
∞∑

m=0
γm(q)Zm(x, y).

For an (integral) inner product that makes this Rq(x, y) the reproducing kernel of b2q (q ∈ R) see [17, 
Theorem 5.2]. Every Rq(x, y) is symmetric in its variables since every Zm(x, y) is.

Using the reproducing kernels above we can define radial differential operators Dt
s of order t for every 

t, s ∈ R. If f ∈ h(B) with homogeneous expansion f =
∑∞

m=0 fm, then we define

Dt
sf :=

∞∑
m=0

γm(s + t)
γm(s) fm.

The operators Dt
s are compatible with reproducing kernels in the sense that for every t, s ∈ R

Dt
sRs(x, y) = Rs+t(x, y), (18)

where the operator acts on the first variable. Because of this in the study of the properties of harmonic 
Bergman-Besov spaces it is more convenient to use the operators Dt

s rather than the partial derivatives. 
Similar to Definition 1.6 the spaces bpq can be described in terms of the operators Dt

s. For 0 < p < ∞ and 
q ∈ R, pick t ∈ R such that q + pt > −1 and any s ∈ R. Then f ∈ bpq if and only if

(t,s)‖f‖pbpq :=
∫
B

∣∣(1 − |x|2)tDt
sf(x)

∣∣p dνq(x) < ∞ (19)

and the norm (quasinorm when 0 < p < 1) (t,s)‖ ·‖p
bpq

is equivalent to the norm ‖ ·‖bpq in (3); see [17, Theorems 
1.1 and 1.2] and [13, Theorem 1.1]. We need the Dt

s in the proof of the only-if part of Theorems 1.8 and 
1.14.

As suggested by Theorem 1.10, for our purposes the most important kernel is R−2. In this case, by (17)
and Lemma 3.1, the following closed formula holds.

Lemma 3.2. Let n ≥ 3. Then

R−2(x, y) = 1
[x, y]n−2 (x, y ∈ B).

Combining the above lemma with (14) we see that

Kϕa
(1)(x) = (1 − |a|2)(n−2)/2

[x, a]n−2 = (1 − |a|2)(n−2)/2R−2(x, a). (20)

For a proof of the following estimate of the weighted integrals of powers of Rq(x, y), see [17, Theorem 
1.5].

Lemma 3.3. Let q ∈ R, a > 0, and b > −1. Set c = a (n + q) − (n + b). Then

∫
B

|Rq(x, y)|a(1 − |y|2)b dν(y) ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
(1 − |x|2)c , if c > 0;

1 + log 1
1 − |x|2 , if c = 0;

1, if c < 0.
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3.3. Atomic decomposition of harmonic Bergman-Besov spaces

Every function in the space bpq can be written as an infinite sum of reproducing kernels (atoms). For 
harmonic Bergman spaces (q > −1) this is proved in [10] and is extended to all q ∈ R in [17, Theorem 10.1]
when p ≥ 1 and in [13, Theorem 1.4] when 0 < p < 1. To describe this atomic decomposition we need some 
definitions.

For a, b ∈ B, the pseudo-hyperbolic metric dH(a, b) is defined by dH(a, b) := |ϕa(b)|. It is well known that 
dH is Möbius invariant,

dH(ϕ(a), ϕ(b)) = dH(a, b) (ϕ ∈ M(B), a, b ∈ B). (21)

For a ∈ B and 0 < r < 1, let D(a, r) := {x ∈ B : dH(x, a) < r} be the pseudo-hyperbolic ball with center 
a and radius r. A sequence (am) in B is called r-separated if the balls D(am, r) are pairwise disjoint. The 
sequence (am) is called an r-lattice if B = ∪∞

m=1D(am, r) and (am) is r/2-separated.

Theorem 3.4. Let 0 < p < ∞ and q ∈ R. Choose s such that

q + 1 < p(s + 1), if p ≥ 1;

q + n < p(s + n), if 0 < p < 1.

There exists an r0 > 0 such that if (am) is an r-lattice with r < r0, then the following hold:

(i) For every (cm) ∈ �p, the function

f(x) =
∞∑

m=1
cm(1 − |am|2)s+n−(q+n)/pRs(x, am) (22)

is in bpq and ‖f‖bpq � ‖(cm)‖�p . The series in (22) converges to f absolutely and uniformly on compact 
subsets of B and also in ‖ · ‖bpq .

(ii) For every f ∈ bpq , there exists (cm) ∈ �p with ‖(cm)‖�p � ‖f‖bpq such that the representation (22) holds.

4. Kelvin-Möbius-invariant harmonic Bergman-Besov spaces

In this section we consider harmonic Bergman-Besov spaces bpq for the whole range 0 < p < ∞, q ∈ R and 
prove Theorems 1.8 and 1.14. That is, we show that the properties (i)-(iii) in Definition 1.3 hold for bpq if and 
only if q = p(n − 2)/2 − n. Note that clearly 1 ∈ bpq for every p and q and point-evaluation functionals are 
bounded on all bpq by [17, Theorem 13.1] and [13, Theorem 5.1]. Therefore all we need to check is condition 
(iii) of Definition 1.3.

We first prove the if parts of Theorems 1.8 and 1.14 and defer the only-if parts to the end of the section. 
We begin with the case 0 < p ≤ 1 which we handle by using atomic decomposition.

Proposition 4.1. Let n ≥ 3, 0 < p ≤ 1 and q = p(n − 2)/2 −n. Then there exists a constant C > 0 such that 
‖Kϕ(f)‖bpq ≤ C‖f‖bpq for every f ∈ bpq and ϕ ∈ M(B).

Proof. We apply Theorem 3.4 with s = −2 which is possible since n ≥ 3. Let r0 be as asserted in that 
theorem and pick an r-lattice (am) with r < r0. Let f ∈ bpq and ϕ ∈ M(B) be arbitrary. By Theorem 3.4
(ii), there exists (cm) ∈ �p with ‖(cm)‖�p � ‖f‖bpq such that
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f(x) =
∞∑

m=1
cm(1 − |am|2)(n−2)/2R−2(x, am) =

∞∑
m=1

cmKϕam
(1)(x),

where the second equality follows from (20). Apply Kϕ to f and pass it through the sum to each term of 
the series. This is possible by Lemma 2.2 (v) and the uniform convergence of the series on compact subsets 
of B. Applying also Lemma 2.2 (ii) we obtain

Kϕ(f) =
∞∑

m=1
cmKϕ ◦ Kϕam

(1) =
∞∑

m=1
cmKϕam◦ϕ(1).

Let bm = ϕ−1(am). By (21), (bm) is an r-lattice too. Because (ϕam
◦ ϕ)(bm) = 0, there exist Um ∈ O(n)

such that ϕam
◦ ϕ = Um ◦ ϕbm and

Kϕ(f) =
∞∑

m=1
cmKϕam◦ϕ(1) =

∞∑
m=1

cmKUm◦ϕbm
(1) =

∞∑
m=1

cmKϕbm
(1),

where the last equality holds because KUm◦ϕbm
(1) = Kϕbm

◦ KUm
(1) and KUm

(1) = 1 by (13). Using (20)
again we obtain

Kϕ(f)(x) =
∞∑

m=1
cm(1 − |bm|2)(n−2)/2R−2(x, bm).

Finally, Theorem 3.4 (i) implies ‖Kϕ(f)‖bpq � ‖(cm)‖�p and we conclude that ‖Kϕ(f)‖bpq � ‖f‖bpq . �
Proposition 4.1 shows that property (iii) in Definition 1.3 holds for bpq when 0 < p ≤ 1, q = p(n −2)/2 −n

and this proves the if part of Theorem 1.14. We separate the Banach space case p = 1.

Corollary 4.2. The Bergman-Besov space b1−(1+n/2) is Kelvin-Möbius invariant.

We next prove the if part of Theorem 1.8. In view of Lemma 1.7 we only need to deal with the q ≤ −1
case, that is, we need to establish that the spaces corresponding to the dashed part of the ray l in Fig. 1
are Kelvin-Möbius invariant.

Note that on the ray l in Fig. 1, when q = 0, the corresponding p is 2n/(n − 2) and by Lemma 1.7, the 
unweighted Bergman space b2n/(n−2)

0 is Kelvin-Möbius invariant. Next, observe that the coordinates of the 
left end point of the ray l are p = 1, q = −(1 +n/2), and the corresponding space b1−(1+n/2) is Kelvin-Möbius 
invariant by Corollary 4.2. To finish the proof it suffices to show that the spaces corresponding to the line 
segment joining the points (1, −(1 +n/2)) and (2n/(n − 2), 0) in Fig. 1 are Kelvin-Möbius invariant. We do 
this by using complex interpolation.

The complex interpolation space between two Bergman-Besov spaces is determined in [17, Theorem 13.5]
which we repeat below.

Theorem 4.3. Let 1 ≤ p0 < p1 < ∞ and q0, q1 ∈ R. If

1
p

= 1 − θ

p0
+ θ

p1
(23)

for some 0 < θ < 1 and

q = (1 − θ)q0 + θq1
, (24)
p p0 p1
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then [bp0
q0 , b

p1
q1 ]θ, the complex interpolation space between bp0

q0 and bp1
q1 , is b

p
q .

Proof of the if part of Theorem 1.8. With p0 = 1, q0 = −(1 +n/2), p1 = 2n/(n −2), q1 = 0, and p0 < p < p1, 
if θ satisfies (23) and q satisfies (24), then the complex interpolation space bpq given by Theorem 4.3 lies on 
the ray l in Fig. 1.

Now consider the linear transformation Kϕ(f) acting on f . Corollary 4.2 says that Kϕ is bounded on 
b1−(1+n/2), and Lemma 1.7 says that Kϕ is bounded on b2n/(n−2)

0 , both uniformly for ϕ ∈ M(B). On the 
other hand, [8, Theorem 4.1.2] says that the complex interpolation method is an interpolation functor, 
which means that Kϕ is also bounded on bpq with 1 < p < 2n/(n − 2) and q = p(n − 2)/2 − n uniformly for 
ϕ ∈ M(B). Consequently the bpq on the dashed part of the ray are all Kelvin-Möbius invariant. �

We now deal with the only-if parts of Theorems 1.8 and 1.14 and show that if q �= p(n − 2)/2 − n, 
then property (iii) in Definition 1.3 does not hold. This includes the Bergman (q > −1) case asserted in 
Lemma 1.7 too.

Proof of the only-if parts of Theorems 1.8 and 1.14. Consider the function f = 1. We have ‖1‖bpq = 1 and 
by (20)

Kϕa
(1)(x) = (1 − |a|2)(n−2)/2R−2(x, a),

for a ∈ B. Pick t ∈ R such that q + pt > −1. Applying the operator Dt
−2 and using (18) we obtain

Dt
−2Kϕa

(1) = (1 − |a|2)(n−2)/2Dt
−2R−2(x, a) = (1 − |a|2)(n−2)/2Rt−2(x, a).

Thus by (19)

‖Kϕa
(1)‖p

bpq
∼ (1 − |a|2)p(n−2)/2

∫
B

|Rt−2(x, a)|p (1 − |x|2)q+pt dν(x).

We estimate the above integral using Lemma 3.3. We check three distinct cases depending on the sign of 
c = p(n − 2) − q − n.

If p(n − 2) − q − n > 0, then

‖Kϕa
(1)‖p

bpq
∼ 1

(1 − |a|2)p(n−2)/2−q−n
,

and right-hand side tends to ∞ or 0 as |a| → 1− unless q = p(n − 2)/2 − n.
If p(n −2) −q−n = 0, then ‖Kϕa

(1)‖p
bpq

→ 0 as |a| → 1− since (1 −|a|2)p(n−2)/2 dominates log(1/(1 −|a|2)).
If p(n − 2) − q − n < 0, then ‖Kϕa

(f)‖p
bpq

→ 0 as |a| → 1−.
Thus ‖Kϕa

(1)‖bpq ∼ ‖1‖bpq = 1 as |a| → 1− only if q = p(n − 2)/2 − n. �
Remark 4.4. We finish this section by looking at another class of harmonic function spaces, harmonic Hardy 
spaces. For 1 ≤ p < ∞, the space hp consists of all f ∈ h(B) such that

‖f‖php := sup
0≤r<1

∫
S

|f(rξ)|p dσ(ξ) < ∞.

For ϕ ∈ M(B), the norm of Kϕ : hp → hp is computed in [19, Theorem 1.2]. It follows from this theorem 
that when n ≥ 3, hp is Kelvin-Möbius invariant if and only if p = 2(n − 1)/(n − 2). We note that in the 
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Bergman-Besov case if we take q = −1 in Theorem 1.8, we find the same p. In view of Theorems 1.11
and 1.13, the inclusions b1−(1+n/2) ⊂ h2(n−1)/(n−2) ⊂ b∞(n−2)/2 follow from this invariance. We also note 
that although there is no Möbius-invariant holomorphic Hardy space on the unit ball of Cn, there is one 
Kelvin-Möbius-invariant harmonic Hardy space.

5. Minimal and maximal spaces

We show in this section that of all the Kelvin-Möbius-invariant spaces, the Bergman-Besov space b1−(1+n/2)
is minimal and the weighted Bloch space b∞(n−2)/2 is maximal. A major part of the proof is to verify that 
point-evaluation functionals are bounded on Kelvin-Möbius-invariant spaces. We begin with some lemmas. 
Recall that we always take n ≥ 3.

Lemma 5.1. span{1/[x, a]n−2 : a ∈ B} is dense in h(B).

Proof. It is well known that harmonic polynomials are dense in h(B). Let g be a harmonic polynomial. It 
is clear that g belongs to every bpq , in particular it belongs to b1−(1+n/2). We apply Theorem 3.4 to b1−(1+n/2)
with s = −2 which shows that there exist suitable am ∈ B and (cm) ∈ �1 such that

g(x) =
∞∑

m=1
cm(1 − |am|2)(n−2)/2R−2(x, am) =

∞∑
m=1

cm
(1 − |am|2)(n−2)/2

[x, am]n−2 ,

where in the second equality we use Lemma 3.2. Since the above series converges uniformly on compact 
subsets of B, in h(B), we can approximate g with elements of span{1/[x, a]n−2 : a ∈ B}. �
Lemma 5.2. Let E be a Kelvin-Möbius-invariant space. Then there exists a decent linear functional L on E
with L(1) �= 0.

Proof. As E is Kelvin-Möbius invariant, there is a continuous linear functional L �= 0 on h(B) which is also 
continuous on (E, ‖ · ‖E). For a ∈ B, define La by La(f) = L(Kϕa

(f)). By Lemma 2.2 (v), La is continuous 
on h(B) and La is also continuous on (E, ‖ · ‖E) since

|La(f)| = |L(Kϕa
(f))| ≤ ‖L‖ ‖Kϕa

(f)‖E � ‖L‖ ‖f‖E ,

by Kelvin-Möbius invariance of E, where ‖L‖ is the norm of L on (E, ‖ · ‖E). If La(1) = 0 for every a ∈ B, 
then by (14) we would have L(1/[x, a]n−2) = 0 for every a ∈ B. But by Lemma 5.1 this would imply L = 0. 
Thus there exists a ∈ B such that La(1) �= 0 and La is the asserted decent linear functional. �
Theorem 5.3. Let E be a Kelvin-Möbius-invariant space. Then the point evaluation functional f �→ f(0) is 
bounded on E.

Proof. Let L be a decent linear functional on E with L(1) �= 0 which exists by Lemma 5.2. Define a new 
linear functional L on h(B) by

L(f) =
∫

SO(n)

L(f ◦ U) dμ0(U) (f ∈ h(B)), (25)

where μ0 is as in subsection 2.1. The above integral is well defined since the map U �→ f ◦ U is continuous 
from SO(n) to h(B) and SO(n) is compact.
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We first verify that L is continuous on h(B). A linear functional Λ on h(B) is continuous if and only if 
there exists a compact set K ⊂ B and a constant C > 0 such that |Λ(f)| ≤ C sup{|f(x)| : x ∈ K}, for every 
f ∈ h(B) [25, p. 1]. Hence there exists a Kr = {x ∈ B : |x| ≤ r < 1} and a C > 0 such that

|L(f)| ≤ C sup{|f(x)| : x ∈ Kr} (f ∈ h(B)).

The same inequality also holds when |L(f)| is replaced by |L(f ◦ U)| since Kr is O(n)-invariant. Thus

|L(f)| ≤
∫

SO(n)

|L(f ◦ U)| dμ0(U) ≤ C sup{|f(x)| : x ∈ Kr},

because μ0 is normalized. This shows that L is continuous on h(B).
It is clear that L(1) = L(1) �= 0. We proceed to show that L(Y j

m) = 0 for every j = 1, 2, . . . , δm, 
m = 1, 2, . . . , where Y j

m is as in subsection 3.1. For this, for fixed f ∈ h(B), we consider the vector-valued 
integral

∫
SO(n)

f ◦ U dμ0(U) (26)

as defined in [27, Definition 3.26]. Noting that the map U �→ f ◦ U is continuous from SO(n) to h(B), by 
[27, Theorem 3.27] and the remark preceding it, the integral in (26) exists in the sense that there exists a 
unique g ∈ h(B) such that

Λ(g) =
∫

SO(n)

Λ(f ◦ U) dμ0(U)

for every continuous linear functional Λ on h(B). The value of the integral in (26) is then defined to be 
equal to g.

Since L is continuous on h(B), taking Λ = L we obtain

L(Y j
m) =

∫
SO(n)

L(Y j
m ◦ U) dμ0(U) = L

⎛
⎜⎝

∫
SO(n)

Y j
m ◦ U dμ0(U)

⎞
⎟⎠ = L(V j

m), (27)

where V j
m =

∫
SO(n) Y

j
m ◦ U dμ0(U). To find V j

m note that for every x ∈ B, the point-evaluation functional 
Λx given by Λx(f) = f(x) is continuous on h(B). Thus taking Λ = Λx and writing ξ = x/|x| for x �= 0, we 
see that

V j
m(x) = Λx(V j

m) = Λx

⎛
⎜⎝

∫
SO(n)

Y j
m ◦ U dμ0(U)

⎞
⎟⎠ =

∫
SO(n)

Λx

(
Y j
m ◦ U

)
dμ0(U)

=
∫

SO(n)

Y j
m(U(x)) dμ0(U).

The last integral can be computed to be
∫

Y j
m(U(x)) dμ0(U) = |x|m

∫
Y j
m(U(ξ)) dμ0(U) = |x|m

∫
Y j
m(ζ) dσ(ζ) = |x|mY j

m(0) = 0,

SO(n) SO(n) S
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where in the first equality we use the homogeneity of Y j
m, in the second equality we use Lemma 2.1, in the 

third equality we use the mean-value property, and in the last that m ≥ 1. Hence V j
m(x) = 0 for x �= 0 and 

by continuity V j
m ≡ 0. By (27) we conclude that L(Y j

m) = 0 for m ≥ 1.
We can now find L(f) for any f ∈ h(B) easily. If

f(x) = f(0) +
∞∑

m=1

δm∑
j=1

f j
mY j

m(x) (f j
m ∈ C, x ∈ B)

is the expansion of f , then, since the above series converges in h(B), we have

L(f) = L(f(0)1) +
∞∑

m=1

δm∑
j=1

f j
mL(Y j

m) = f(0)L(1). (28)

We now show that L is decent on E, that is, L is continuous also on (E, ‖ · ‖E). To see this, first note 
that since L is decent, it is continuous on (E, ‖ · ‖E). Next, by the Kelvin-Möbius invariance of E and (13), 
we have ‖f ◦ U‖E = ‖KU (f)‖E ∼ ‖f‖E for every f ∈ E and U ∈ SO(n). Therefore

|L(f)| ≤
∫

SO(n)

|L(f ◦ U)| dμ0(U) ≤ ‖L‖
∫

SO(n)

‖f ◦ U‖E dμ0(U) � ‖f‖E . (29)

To finish the proof, let f ∈ E be arbitrary. Then by (28) and (29),

|f(0)L(1)| = |L(f)| � ‖f‖E ,

and since L(1) �= 0, we conclude that |f(0)| � ‖f‖E . �
Corollary 5.4. Let E be a Kelvin-Möbius-invariant space. Then for every a ∈ B, the point-evaluation func-
tional Λa : E → C, Λa(f) = f(a) is bounded on E.

Proof. Since Kϕa
(f)(0) = (1 − |a|2)(n−2)/2f(a), using that ‖Kϕa

(f)‖E ∼ ‖f‖E and Theorem 5.3, we obtain

(1 − |a|2)(n−2)/2|f(a)| = |Kϕa
(f)(0)| � ‖Kϕa

(f)‖E � ‖f‖E . � (30)

The maximality of b∞(n−2)/2 among Kelvin-Möbius-invariant spaces is now immediate.

Proof of Theorem 1.13. If E is Kelvin-Möbius invariant and f ∈ E, then (30) and (6) shows f ∈ b∞(n−2)/2
and ‖f‖b∞(n−2)/2

� ‖f‖E . �
We next show the minimality of b1−(1+n/2).

Proof of Theorem 1.11. Suppose E is Kelvin-Möbius invariant. Pick f ∈ b1−(1+n/2). Applying Theorem 3.4
with p = 1, q = −(1 + n/2) and s = −2 shows that there exist am ∈ B and a sequence (cm) ∈ �1 with 
‖(cm)‖�1 � ‖f‖b1−(1+n/2)

such that

f(x) =
∞∑

m=1
cm(1 − |am|2)(n−2)/2R−2(x, am) =

∞∑
m=1

cmKϕam
(1)(x), (31)

where the second equality follows from (20). The above series converges to f absolutely and uniformly on 
compact subsets of B. We claim that it converges to f also in (E, ‖ · ‖E). To verify this, first note that since 
1 ∈ E, for each m, Kϕa

(1) ∈ E and ‖Kϕa
(1)‖E ∼ ‖1‖E . Because (cm) ∈ �1,
m m
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∞∑
m=1

∥∥cmKϕam
(1)

∥∥
E

� ‖1‖E
∞∑

m=1
|cm| < ∞,

and the series 
∑∞

m=1 cmKϕam
(1) converges in the Banach space (E, ‖ · ‖E) to some g ∈ E. Since point-

evaluation functionals are bounded on E by Corollary 5.4, we must have

g(x) =
∞∑

m=1
cmKϕam

(1)(x) (x ∈ B).

Comparing with (31) we conclude that f = g ∈ E and

‖f‖E =

∥∥∥∥∥
∞∑

m=1
cmKϕam

(1)

∥∥∥∥∥
E

≤
∞∑

m=1
|cm|

∥∥Kϕam
(1)

∥∥
E

� ‖1‖E‖(cm)‖�1 � ‖1‖E‖f‖b1−(1+n/2)
.

This completes the proof. �
The following corollary follows from the fact that every harmonic polynomial belongs to b1−(1+n/2).

Corollary 5.5. A Kelvin-Möbius-invariant space contains all harmonic polynomials.

We finish this section by proving Theorem 1.15 and its corollary. The proof utilizes same ideas we used 
before.

Proof of Theorem 1.15. First observe that if 1 ∈ A, then A = h(B). This is because if 1 ∈ A, then by the 
invariance of A under the Kelvin-Möbius transform and (14), 1/[x, a]n−2 ∈ A for every a ∈ B. Since A is 
closed, A = h(B) by Lemma 5.1.

Suppose that A �= h(B). Then 1 /∈ A and since h(B) is locally convex, by [27, Theorem 3.5], there exists 
a continuous linear functional L on h(B) with L(1) = 1 and L(f) = 0 for every f ∈ A. Define L as in (25). 
Then, as shown in the proof of Theorem 5.3, L is continuous on h(B) and for every f ∈ h(B),

L(f) = f(0)L(1) = f(0) (32)

by (28).
Now let f ∈ A. Since KU (f) = f ◦ U ∈ A for every U ∈ SO(n) and L vanishes on A, we have L(f) = 0

by the definition (25). Thus, by (32), f(0) = 0 for every f ∈ A. Next, since Kϕa
(f) ∈ A for every a ∈ B, we 

have Kϕa
(f)(0) = 0, and because Kϕa

(f)(0) = (1 − |a|2)(n−2)/2f(a), we conclude that f(a) = 0 for every 
a ∈ B. Thus f vanishes on B and A = {0}. �
Proof of Corollary 1.16. Let A be the closure of span{Kϕ(f) : ϕ ∈ M(B)}. Then A is a closed subspace of 
h(B) and A �= {0}. By Lemma 2.2 (ii) and (v), A is invariant under the Kelvin-Möbius transform and thus 
by Theorem 1.15, A = h(B). �
6. The unique Hilbert space

We first show that b2−2, endowed with the inner product 〈·, ·〉I given in (5), is strictly Kelvin-Möbius 
invariant.

Proof of Theorem 1.10 (i). By Theorem 1.8, (b2−2, 〈·, ·〉b2−2
) is Kelvin-Möbius invariant and since ‖ · ‖I is 

equivalent to ‖ · ‖b2 , it follows that for all ϕ ∈ M(B) and f ∈ b2−2
−2
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‖Kϕ(f)‖I ∼ ‖f‖I . (33)

We need to show that exact equality holds in (33). For this we show

〈Kϕ(f),Kϕ(g)〉I = 〈f, g〉I , for every ϕ ∈ M(B) and f, g ∈ b2−2. (34)

By Corollary 5.4, point-evaluation functionals are bounded on (b2−2, 〈·, ·〉I). We first determine the corre-
sponding reproducing kernels. For a ∈ B, let

Ra(x) := 1
[x, a]n−2 =

∞∑
m=0

δm∑
j=1

n/2 − 1
m + n/2 − 1Y

j
m(a)Y j

m(x),

where second equality follows from Lemma 3.1 and (16). As Ra is harmonic on B, it belongs to b2−2, and by 
(5), 〈f, Ra〉I = f(a) for all f ∈ b2−2. Thus Ra(x) is the reproducing kernel of b2−2 with respect to the inner 
product 〈·, ·〉I .

We next compute Kϕ(Ra). Because

Kϕ(Ra)(x) =
(

1 − |ϕ(x)|2
1 − |x|2

)(n−2)/2 1
[ϕ(x), a]n−2 ,

using (11) with y replaced by ϕ−1(a) we obtain

Kϕ(Ra)(x) =
(

1 − |ϕ−1(a)|2
1 − |a|2

)(n−2)/2 1
[x, ϕ−1(a)]n−2

=
(

1 − |ϕ−1(a)|2
1 − |a|2

)(n−2)/2

Rϕ−1(a)(x). (35)

We verify (34) first when g = Ra. Let a ∈ B, ϕ ∈ M(B) and f ∈ b2−2. Then

〈Kϕ(f),Kϕ(Ra)〉I =
(

1 − |ϕ−1(a)|2
1 − |a|2

)(n−2)/2

〈Kϕ(f), Rϕ−1(a)〉I

=
(

1 − |ϕ−1(a)|2
1 − |a|2

)(n−2)/2

Kϕ(f)(ϕ−1(a)) = f(a) = 〈f,Ra〉I ,

where the first equality follows from (35), the second equality from the reproducing property, and the third 
equality from the definition of Kϕ. Thus (34) holds when g ∈ span{Ra}a∈B by the linearity of Kϕ.

Finally, let f, g ∈ b2−2 be arbitrary. By the general properties of reproducing kernels, span{Ra}a∈B is 
dense in (b22, 〈·, ·〉I). So there exists a sequence (gm) with gm ∈ span{Ra}a∈B such that

gm → g in (b22, 〈·, ·〉I).

By (33) it also holds that

Kϕ(gm) → Kϕ(g) in (b22, 〈·, ·〉I).

Hence

〈Kϕ(f),Kϕ(g)〉I = lim 〈Kϕ(f),Kϕ(gm)〉I = lim 〈f, gm〉I = 〈f, g〉I .

m→∞ m→∞
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This shows (34) and the proof is complete.
Note that (33) and therefore Theorem 1.8 plays an essential role here. That is, we first verified the 

Kelvin-Möbius invariance of (b2−2, 〈·, ·〉I) and then using this we showed its strictness. �
We next show that (b2−2, 〈·, ·〉I) is essentially the only strictly Kelvin-Möbius-invariant Hilbert space.

Proof of Theorem 1.10 (ii). Let (H, 〈·, ·〉H) be a strictly Kelvin-Möbius-invariant Hilbert space. That is, 
‖Kϕ(f)‖H = ‖f‖H for every ϕ ∈ M(B) and f ∈ H. By polarization we also have

〈Kϕ(f),Kϕ(g)〉H = 〈f, g〉H (ϕ ∈ M(B), f, g ∈ H). (36)

By Corollary 5.4, the point-evaluation functional f �→ f(a) is bounded on H for every a ∈ B. Therefore 
for each a ∈ B, there exists Sa ∈ H such that for all f ∈ H,

f(a) = 〈f, Sa〉H .

We show that Sa is a positive scalar multiple of the function 1/[x, a]n−2. For this let us first compute 
Kϕ(Sa). By (36) and Lemma 2.2 (iii),

〈f,Kϕ(Sa)〉H = 〈Kϕ−1(f), Sa〉H = Kϕ−1(f)(a)

=
(

1 − |ϕ−1(a)|2
1 − |a|2

)(n−2)/2

f(ϕ−1(a)) =
(

1 − |ϕ−1(a)|2
1 − |a|2

)(n−2)/2

〈f, Sϕ−1(a)〉H .

Since this is true for all f ∈ H, we conclude that

Kϕ(Sa) =
(

1 − |ϕ−1(a)|2
1 − |a|2

)(n−2)/2

Sϕ−1(a), (37)

which is the same as (35) with Sa in place of Ra.
We first determine S0. Taking ϕ = U ∈ O(n) and a = 0 in (37) and using (13) we obtain

S0 ◦ U = KU (S0) = S0.

This implies that S0 is constant on the spheres |x| = r, 0 < r < 1. Because S0 is also harmonic on B, by 
the mean value property, S0 is constant on B and S0 = λ1, for some λ ∈ C. Since

1 = 〈1, S0〉H = 〈1, λ1〉H = λ‖1‖2
H ,

we see that λ = 1/‖1‖2
H is positive.

We now find Sa. For any a ∈ B, taking ϕ = ϕa in (37) shows

Kϕa
(Sa) = 1

(1 − |a|2)(n−2)/2 S0.

Applying K−1
ϕa

= Kϕ−1
a

= Kϕa
to both sides and using that S0 = λ1, we obtain

Sa(x) = 1
(1 − |a|2)(n−2)/2 Kϕa

(S0)(x) = λ

(1 − |a|2)(n−2)/2 Kϕa
(1)(x) = λ

[x, a]n−2 ,

where in the last equality we use (14). It follows that the reproducing kernel of (H, 〈·, ·〉H) is λ/[x, a]n−2

and therefore the reproducing kernel of (H, λ〈·, ·〉H) is 1/[x, a]n−2. On the other hand, by the proof of part 
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(i), 1/[x, a]n−2 is the reproducing kernel of (b2−2, 〈·, ·〉I). By the uniqueness of reproducing kernel Hilbert 
spaces ([28, Theorem 1.4]), we conclude that H = b2−2 and λ〈·, ·〉H = 〈·, ·〉I . �

We finish this section by giving an integral description of the invariant inner product 〈·, ·〉I . This is similar 
to [24, Definition 5.4], but since in our case the invariant Hilbert space corresponds to q = −2, first-order 
derivatives are sufficient. On the other hand, in the holomorphic case the Möbius-invariant Hilbert space 
is B2

−(n+1) and as n gets larger higher order derivatives are needed in the integral description of the inner 
product.

Let f ∈ h(B) and f =
∑∞

m=0 fm be its homogeneous expansion. The radial derivative Rf of f is defined 
by

Rf :=
∞∑

m=1
mfm.

For n ≥ 3, let R̃ := (n/2 − 1)−1R + I, where I is the identity. It is clear that

R̃f =
∞∑

m=0

m + n/2 − 1
n/2 − 1 fm.

Theorem 6.1. Let n ≥ 3. For f, g ∈ b2−2,

〈f, g〉I = n/2 − 1
n/2

∫
B

1 − |x|2
|x| R̃f(x)1 − |x|2

|x| R̃g(x) dν−2(x)

= n/2 − 1
n/2

∫
B

1
|x|2 R̃f(x)R̃g(x) dν(x).

Note that the factor 1/|x|2 causes no integrability problem since n ≥ 3.

Proof. Since f ∈ b2−2, the first-order derivative Rf is in b20 by [17, Theorem 1.2]. Also since b2−2 ⊂ b20, f is 
in b20. Thus R̃f is in b20 ⊂ L2(dν). Similarly R̃g is in L2(dν) and we can pass to polar coordinates to write

∫
B

1
|x|2 R̃f(x)R̃g(x) dν(x) =

1∫
0

nrn−1 1
r2

∫
S

R̃f(rξ)R̃g(rξ) dσ(ξ) dr.

Let f =
∑∞

m=0
∑δm

j=1 f
j
mY j

m and g =
∑∞

m=0
∑δm

j=1 g
j
mY j

m, where Y j
m is as in subsection 3.1. Then

R̃f(x) =
∞∑

m=0

δm∑
j=1

m + n/2 − 1
n/2 − 1 f j

mY j
m(x), R̃g(x) =

∞∑
m=0

δm∑
j=1

m + n/2 − 1
n/2 − 1 gjmY j

m(x),

where the series converge uniformly on rS. Using also the orthogonality (15), and the homogeneity of Y j
m, 

we deduce that

∫
B

1
|x|2 R̃f(x)R̃g(x) dν(x) =

∞∑
m=0

δm∑
j=1

(
m + n/2 − 1

n/2 − 1

)2

f j
mgjm

1∫
0

n r2m+n−3 dr

= n/2 〈f, g〉I . �

n/2 − 1
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The integral inner product given in Proposition 6.1 is in terms of radial derivatives which are well known. 
If we want to use the differential operators Dt

s, then we have other choices. Note that the reproducing kernel 
of (b2−2, 〈·, ·〉I) is R−2(x, y). So [17, Theorem 5.2] provides us with an integral inner product such that R−2
is the reproducing kernel. For example, if we follow the proof of [17, Theorem 5.2] and choose t = 1, s1 = −1
and s2 = −2, then we see that

〈f, g〉I =
∫
B

D1
−1f(x)D1

−2g(x) dν(x).

To verify the above formula, just integrate in polar coordinates and use the homogeneous expansions of the 
functions. The integral on the right does not look like (conjugate) symmetric in f and g, but it actually is.
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