Mobius—Invariant Spaces and
Algebras in Polydiscs

H. TuRGAY KAPTANOGLU

ABSTRACT. Let M be the group of biholomorphic automor-
phisms of the unit polydisc U* C C"™ generated by rota-
tions, coordinate permutations, and Mo6bius transformations.
A closed subalgebra of continuous functions C(U") on the
closed polydisc is called an M-algebra if it is invariant under
compositions with the members of M. Polydisc algebra, its
conjugate, constants, and {0} are M-algebras. For 1 < k < n,
put Ty = {points in U" with at least ¥ components of unit
length}, and let £ (U™) consist of functions in C(U™) which
vanish on Ty. Each &(U™) is also an M-algebra. We prove
the following:

1. £1(U™) = Co(U™) is a minimal M-algebra, even if it is not
allowed to be invariant under coordinate permutations.

2. There are three M-algebras between each pair of £, (U")
and &,4+1(U™); their members are constant, holomorphic,
or conjugate-holomorphic on each (n —(k+ 1))-torus in
Tk.

3. An M-space X satisfying X NE,(U") = {0} or &£ (U"),
for some k with 1 < k < n, has the form P[Y] or £ (U™) +
P[], respectively, where ) is an M-space of C(T™) and
P is the Poisson integral.

1. INTRODUCTION

1.1. Polydisc and Mobius-invariance. Let U be the open unit disc in
C and T be the unit circle bounding it. We define the open unit polydisc in C"
by
U" ={z€C":|zl|,...,|2| <1},

and the torus by
™ = {z eC":|z|=-=|m]|= 1}.
339
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In words, U™ and T™ are the cartesian products of n unit discs and n unit circles,
respectively. For k = 0,1,...,n, the partial boundaries of U" are defined as

Ty = {z € U™ : at least k components of z have length 1}.

With this notation, Ty = U", the closure of U; T} = 8U", its topological
boundary; and T}, = T, its distinguished (Shilov) boundary. These sets form a
chain:

(1.1) U"ooU" DT, DT3D -+ DTy DT

Note that T™ is only a small part of JU™. An easy way to see this is to compare
their (real) dimensions: dimg(T") = n and dimg(0U™) = 2n —1.

A one-to-one biholomorphic transformation of the unit disc onto itself (an
automorphism of U) is a Mdébius transformation ¢,, which is given for some
p €U by

pP—q Fad
£ 9 U
ep(0) = 7 54 (g€ ),
followed by a rotation (multiplication by an element of T). When n > 2, the
group M of all biholomorphic automorphisms of U™ (the Mdbius group) is gen-
erated by rotations in each variable seperately

Ry(2) = (€1 2q,... "% 2,) (z €T,
Mobius transformations in each variable seperately
Dy(2) = ((pw1(z1)7'~ ,QOwn(Zn)) (2 eﬁn),

and coordinate permutations. Here ¥ € [—m,7]™ and w € U™ are fixed, and the
coordinate permutations are nothing but the n! members of the symmetric group
S, on n objects. Thus an arbitrary ¥ € M can be written in the form

\Il(z) = (ei’191 Pw, (za(l)), . ,ew" Puw, (Zg(n))),

for some w € U™ and ¥ € [—m,7]" (see Rudin (3, p. 167]). The subgroup of linear
automorphisms in M is denoted by Y. It is that subgroup of M which fixes the
origin and is generated by o € S,, and the rotations Ry. M* is the component
of the identity in M; in other words, M* is M without the action of S,.

The partial boundaries T}, are invariant under the action of M, i.e., ¥(T}) =
Ty for all ¥ € M and k = 0,...,n. Further, Tx\Tx+1 (k =0,...,n—1) and T"
are the only M-orbits in U”, and T}, for k = 0,... ,n are their closures. A function
space G defined on U™ is M-invariant if f o ¥ € G whenever f € G and ¥ € M.
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A closed M-invariant subspace (subalgebra) of C(U") will be called an M-space
(M-algebra) for brevity. U-invariance and U-spaces have similar definitions.
Some examples of M-spaces are described in the next two paragraphs.

C(T™) is the set of all continuous complex functions on the closed unit
polydisc and Co(U™) is its subspace consisting of functions which restrict to 0 on
OU™. More generally, for each integer k with 0 < k < n, let £,(U™) denote the
collection of functions in C(U™) which restrict to 0 on Ty. Then & (U") = {0},
&1(U™) = Co(U™), and by (1.1), we have the inclusions

(1.2) {0} C Co(U™) C £(U™) C -+ C En—1(U™) C £,(U™) C C(T™),

all of which are proper. The polydisc algebra A(U™) is made up of those members
of C(U™) which are holomorphic in U”, and the restriction of A(U") to T" is
denoted by A(T").

Now fix an integer k so that 1 < k < mn—1, and let W denote either U™
or Ty. Define Ax(W) to consist of those F € C(W) that restrict to 0 on Ty41
and that coincide with the restriction of some f € A(U*) to T* when con-
sidered as a function of ((y(1),-..,Csk)) € T*, for any ¢ € S, and for fixed
(za(k:+1)’~-- ,za(n)) € Uk, Similarly define Ki(W) to consist of functions in
C(W) which are constants when any k variables are of unit length and the re-
maining n —k variables are held fixed in addition to being 0 when any k+1
variables are of unit length. We will call the functions in A; and Ky partially
holomorphic and partially constant, respectively.

All the function spaces mentioned are closed in the topology of uniform
convergence, that is, convergence in the norm

Ifllo = lflw = sup |£(2)],
2EW

where W is U™ or T}, or some other set contained in the domain of definition of
the space. The term closed for function spaces will always refer to this topology.
All these spaces are also algebras with respect to pointwise multiplication.

1.2. Main theorems. In this work, we categorize some M-algebras and
M-spaces of C(U"). The basic algebras are {0}, C(TU"), and the & (U™) for
k =1,...,n; the other cases will be built upon them. We first look at the two
extreme ends of (1.2). Our first result is:

Theorem A. Co(U") has no nontrivial proper closed M*-invariant subal-
gebra.
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The proof of this case is rather different from those of the other cases and
will be given in Section 3. It uses real-analytic approximations and the Stone-
Weierstrass Theorem. Next we obtain the M-spaces at the other end, those that
contain &, (U™):

Theorem B. Let X be a closed M-invariant subspace of C(U™) containing
En(U™). Then X is in the form &,(U™) + P[Y], where Y is a closed M-invariant
subspace of C(T").

The closed M-invariant subspaces and subalgebras of C(T™) have been clas-
sified by Gowda [1]. Then we classify the M-algebras between any two consec-
utive algebras in (1.2):

Theorem C. Suppose X is a closed M-invariant subalgebra of C(U")
satisfying E,(U™) C X C Ex+1(U™) for some k with 1 < k <n—1. Then X is
one of

(i) &(U™),

(i) Kx(U™),
(iii) Ag(U"),
(iv) conjAx(U")
(V) Ek41(U™).

If G is a function space, conjG denotes the collection of functions whose
complex conjugates lie in G. Finally we consider some M-spaces that have
known intersections with &, (U™):

Theorem D. Let X be a closed M-invariant subspace of C(U") that sat-
isfies the condition X NE,(U) = {0}. Then X = P[Y)] for some Y, where Y is
a closed M-invariant subspace of C(T").

Theorem E. Let X be a closed M-invariant subspace of C(U™) that has
the property X N E,(U™) = E(U™) for some k with1 < k <n—1. Then X is in
the form E,(U™) + P[Y], where Y is a closed M-invariant subspace of C(T™).

Then we pick the M-algebras from among them. Above, P[Y] denote the
space of functions defined on U™ consisting of the Poisson integrals of the mem-
bers of Y. The proofs of the last four theorems are supplied in Section 4.
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1.3. Comparison with the ball. Earlier work on the classification of
M-spaces concentrated mostly on functions defined on the unit ball of C™ given
by

B, ={2€C": |21+ +|z|* <1},

or on its boundary the unit sphere
Sn={2€C": |z + - +|z|* =1}.

The subscript n on S, is somewhat misleading since dimg(S,) = 2n —1. Nagel
and Rudin [2] showed that Co(B,) has no proper M-algebra, obtained all the
M-algebras of C(B,), all the M-spaces of C(S,) and LP(S,) for 1 < p < oo.
Not all the M-spaces of C(B,,) are known largely because not all the M-spaces
of Co(B,) are known. Some of these are classified by Rudin in another paper
[6]. Later Rudin [5] found all the M-algebras of C(B,,), too, but nothing else is
known about its M-spaces. Working on the polydisc, Gowda [1] found all the
M-spaces and the M-algebras of C(T") and the M-spaces of LP(T™) again for
1<p<oo.

The classification of all the U-spaces of C(S,,) and LP(S,,), the U-algebras of
C(S,), and the U-spaces of C(T™) have also been done, by Nagel and Rudin [2]
for S, and by Gowda [1] for T™. The description here depends on homogeneous
polynomials, and because of their sheer number, we do not get the nice poset
diagram of a few well-known spaces as given in Chapter 13 of Rudin [4] for the
M-spaces.

In the polydisc, the complicated shape of the boundary gives rise to the
partial boundaries, continuous functions vanishing only on them, and the par-
tially holomorphic and constant functions. In one complex dimension and in
the unit ball, both the topological boundary and the Shilov boundary are the
unit sphere, and the partial boundaries are meaningless. In Section 4, we will
see that this disagreement between the ball and the polydisc leads to different
sets of Mb-algebras in the ball and the polydisc. In the classification of the
M-algebras of continuous functions on B,, the ball algebra (A(B,)) and the
continuous functions vanishing on the boundary (Co(By,)) play central roles. De-
spite the difference, analyticity and vanishing on (parts of) the boundary remain
essential in this work, too.

2. PRELIMINARIES

In this section we collect some of the basic properties of the objects defined
in Section 1 and introduce some notation that will be useful in the forthcoming
discussion.
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2.1. Generalities. Points z = (21,...,2,) of C" will often be written as
z = (2',7"), where 2’ = (21,...,2x) and 2" = (2g+1,...,2,) for some k < n whose
value will be clear from the context. z; will usually be an element of U and (;
of T.

If both p, ¢ € U, Mdbius transformations have the following symmetry
properties:

(1=1pl*) (1 =gl
|1 —pg|?

(2.1). lop(@)] = log(p)| and 1-|py(9)f* =

Each ®,, is an involution (its inverse is itself) exchanging 0 and w. M (even
M*) acts transitively on U™: if a, b € U™, then &0 ®, € M* moves a to b (and
b to a). @y (2') will be the short-hand notation for (¢w, (21),--. %w, (2)) and
similarly for ¢, (2").

We will use A\, for the Lebesgue measure on T” and u, for the Lebesgue
measure on U™, both normalized with mass 1.

o (z) = dll'n(z)
W@ = I 1 - 5P

is the M-invariant measure on U", i.e.,
(2.2) / fdin = / (FoW)dkn (T eM, feLl(kn)).
un U

2.2. More on M-invariant spaces. A very useful tool in our proofs is
the Poisson integral of an f € L}(T") defined as

Pf|(z) = /foH 2=l 50 (= € U),

] CJ|2
The product, which is positive, is called the Poisson kernel P(z,() for U". The
Poisson integral is M-invariant in the sense that
(2.3) P[fo¥] = P[f]o¥ (T e M, feLY(T)).

Any f € A(U™) can be recovered from its values on T™ using the Poisson trans-
form:

f(2) = P[f](2) (z€U™).

The collection of the Poisson integrals of functions in C(T") will be called P(U"),
which is also M-invariant. The M-invariance of A relies on the fact that Mdbius
transformations are holomorphic; that of P on the M-invariance of the Poisson
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integral; and that of &, Kk, and Ag on the M-invariance of T;. For a more
complete discussion of these topics and for the proofs in the unit-ball setting,
see Rudin [4].

Let’s give alternate definitions for the partially holomorphic and partially

constant functions. If F is defined on U™ and G is any set containing it, for
o € S, define F, and G, by

Fo(21,...,2n) = F(25(1)s--+ 1 %0(n)) and G, = {F,: F € G}.
F € Ax(W) if and only if it satisfies

@4 Flp, =0 and [ R (TG () =0

for (£y,...,,) € ZF\N¥, ¢ € S,, and 2z’ € U"*. In other words, F has the
same distinguished boundary values as some function in the polydisc algebra of
a lower dimension (k). N and Z denote the nonnegative integers and integers,
respectively. The integral in (2.4), by definition, is the (£y,...,6)** Fourier
coefficient of F, considered as a function of ¢'. F € Kx(W) if and only if it
satisfies (2.4) for (£4,...,4) € ZF\{(0,...,0)}, 0 € S,, and 2’ € U"~F. In either
case, having the conditions on all ¢ € S, is redundant; one single o € S,, for
each k-tuple carrying it to the first k positions suffices. Kr(W) = A,(W)N
conj Ag (W) just as C = A(U™)Nconj A(U™). When n = 2, the only possible
value of k is 1. Then .A;(U?) consists of those functions in £2(U?) all of whose
negative Fourier coefficients are 0 on all circles of the form

(2.5) Q1(z2) = {(C1,22) : (1 € T} and Q2(z1) = {(21,(2) : (2 € T},

and K;(U?) consists of those functions in £2(U?) which have constant values on
all Q1(2z2) and Q2(z1). Hybrid spaces similar to A and Ky, can also be defined by
letting the boundary values be, say, holomorphic in one direction and constant
in the other; these are only M*-invariant.

2.3. Radialization. Another useful tool is the polyradialization of an
f € ¢(U") given by

4@ = [ ke zalG) a0,

f# is radial in each variable seperately, i.e., f#(21,...,2,) = f#(w1,...,wy) if
we have |z1| = |wy),...,|2n| = |wn|- By (2.1), for any polyradial g,
(2.6) 9(@u(2) = 9((w)) (2, w e UY).

If G is a U-space and f € G, then f# € G as well.
Partial polyradialization and partial Poisson integrals can also be defined by
operating on some set of k variables and integrating on T* for some k, 1 < k < n.
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3. MOBIUS SUBALGEBRAS OF Co(U™)

Our aim in this section is to prove Theorem A. This is one of the two extreme
cases mentioned. Note that the full strength of the Mébius group is not required.
A similar statement for M-spaces is incorrect; in fact there is an abundance of
them, and a full classification still awaits an answer. The proof presented here
can be adapted to give a demonstration of the same fact in B,, different from
that of Nagel and Rudin [2], except for Lemma 3.1, which must stay the same.
This lemma states that if such an M*-space existed, it would contain a smooth
function F' which can be used in constructing an approximate identity.

Lemma 3.1. If X is an M*-invariant closed subspace of Co(U") and
X # {0}, then X contains an F with the following properties:

(i) F is polyradial,
(ii) F is real-analytic,
(iii) F(0) =1,
(iv) |F(2)| < 1, for every z € U™ with z # 0.

Proof. X is nontrivial and M*-invariant, so there is a g € X’ with g(0) # 0.
g# € X because X is closed, and g# # 0 since g#(0) = g(0). For integer m > 2,
define

(3.1) K () = e [ (1= g )™ (w € T™).
j=1

K, € Co(U™) and ¢, are chosen so as to have flun K,,dk, = 1. A quick compu-
tation shows that ¢, = (m —1)". Put

hm(2) = /Un (9% 0 @y)(2) K (w) diin (w) (z €T

By the M*-invariance of X, the integrand, considered as a function of z, belongs
to X for each w € U™. But the integral is a uniform limit of Riemann sums and
X is closed; hence h,, € X, m = 2,3,.... m > 2 is required to cancel out the
singular behavior of k, on U". We also have g#(0) = [, g% (0) K (w) diy (w)
and hm(0) = [;n 9% (W) Km (w) dp (w).
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Given ¢ > 0, choose r € (0,1) so that |g#(w) — g#(0)| < ¢ whenever w €
rU", using the continuity of g#. Then for m > 4,

im(0) = g#O)1 < [ 19#(w) = 4*(O)|Kim(w) din(w)

rU
+ / 1% (w) — g (0) K (w) i ()
ur\run
< e+20)g* o0 / K (1) diin (w)
un\run

_5+2||9#||oo(c 2)/U - Km—2(w) dpm (w).
m— n\ pQUn

First note that limp oo Cm/em—-2 = 1. If w € U"\rU", at least one of the
coordinates of w, say the first, is more than r in absolute value, and then

Km_2(w) = ez [ = |w;)™2

=1

n
< Cm-—2(1 _ ,,,2)m—2 H(l _ ij|2)m_2
Jj=2

< (m-3)"(1—r?)m2 (m >4).

Hence Ky;,—2(w) — 0 uniformly on U™\rU" as m — oco. Consequently m can be

selected to have
MeHlee () [ Kncadin <
Cm—2/ Jur\run

Therefore |h,,(0) — g#(0)| < 2¢ if m is large enough. Since g#(0) # 0, for some
large (fixed) M, has(0) # 0.

Using first (2.1) and (2.6) together, then (2.2), and then (2.1) and (3.1)
together, we obtain

mue) = [ (9% 0 .)w)Kun(w) din(w)

= /U" 9% (W) K s (®2(w)) din (w)

=eu [Tt [ g#<w>H Gt den),
b
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Expanding the denominator of the product into a convergent (since hjps is well-
defined) power series and then integrating, we see that hps is the sum of a
convergent power series in 2i,...,2n,21,...,2n; this shows, by definition, hys is
real-analytic.

Pick a € U™ such that |ha(a)| = ||hm|loo and max{l —|a;j|: 1 < j < n}is
minimal. Let h = chps o @,, where ¢ is such that h(0) = chpr(a) = 1. Finally let
F = h#*. Since polyradialization takes the average on a torus, it doesn’t allow
|F'(2)| = 1if z # 0, because every other point b where |hjs| attains its maximum
has at least one coordinate j with |b;| < |a;|, and in this coordinate, hps(b)
is averaged also with some points at which |ha| < 1. This F is the desired
function. m|

Moreover, the real-analyticity and the polyradiality of F' implies that |F|
is a strictly decreasing function of any convex combination of |21]?,...,|2,|? (in
particular, of each |z;|2) in a small neighborhood of 0.

In the second lemma, we take a function with some of the properties of F’

of the previous lemma and show that we can suitably normalize it so that the
Taylor expansion of the new f has a certain simple form.

Lemma 3.2. Given a real-analytic F € Co(U™) with a unique global maz-
tmum modulus of 1 at the origin, there exists a polyradial f having all the prop-
erties of F' and such that

f(2) =1=Y a7+ O(l2]*)

j=1
with Ra; >0, j =1,...,n. Further, if F belongs to an M*-space, so does f.

Proof. Fix ¢ > 0. Since the maximum of |F| is unique, there is an r € (0,1)
such that |F(2)| < 1—¢ when z € U"\rU". Put ¢ = £. The function

n
|F(2)] +cl?
is 1 at z = 0 and is strictly less than 1—e+cn = 1 if z € U"\rU”, hence
attains its maximum at some p € rU™; thus |F(2)| +c|z|? < |F(p)| +c|p|?, for
all z € U™. Taking z € T" shows that |F(p)| > c¢(n—|p|?) > 0. So g = F/F(p) is

well-defined. Pick ¥ € M* such that ¥(0) = p; e.g., take ¥(z) = ®p(2). Finally
put f = (go ¥)#. This f satisfies the requirements of the lemma. Indeed,

|F(2)] | clz|* —clp|?
|[F(p)l = |F(p)I

> c|z|® — c|p|?® = c|z — p|* + 2¢R(z — p, p);

1-]g(2)| =1—
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hence
(g0 ¥)(2)| < 1—c|¥(2) —p|* — 2cR(¥(2) - p, p).
But
_ (Ipi]? = 1)z
Pp; (Z]) p;j = 15,2
and

1-lp* _ A =1IpiDA+1psl) o (1= Ip[)(A +1IpsD)
|1 — pjz;] 11— 5,21 = 1+pjllzl

21-|pj|21-r.

Thus |¥(z) —p|? > (1 —r)?|2|? and
(g0 ¥)(2)] < 1= (1 ~1)%2|” — 2cR(¥(2) ~ p, p)-

When we polyradialize, since we take the average on a torus, the last term
will drop by the mean value property, because it is harmonic in each variable
seperately and is 0 at the origin. Therefore

1f(2)] = [(goW)#| < 1—c(1—r)|2.

But f(0) = 1, f is real-analytic and decreasing in every direction from the origin.
Then near 0 we must have

F(2) =1= ajlz* + O(l2|*)

=1

with ®a; > 0 for j = 1,... ,n. Third-order terms do not appear in the expansion
due to polyradialization. Finally, the last assertion is obvious when we consider
the way f is obtained from F. m]

In the last lemma, we prove that the positive integer powers of f actually
form an approximate identity.

Lemma 3.3. Suppose

(a) f:U™ — U is polyradial and continuous,
(b) [f(2)| <1ifz#0,
(c) there are 0 # a; € C such that f(2) = 1—37_, a;jlzi> + O(|2|*) near 0.

Fizpe (;‘T':_—IZ,%) Form =2,3,..., let €, = m™P, and take ¢, so as to satisfy

fEmUn emf™duy, = 1. Then as m — oo,
(i) em = O(m"),
(il) [, yn|cmf™| dpn = O(1),
(iii) km = sup{lemf™(2)| : 2 € U"\e,x, U} — 0.
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Proof. Let a; = Raj, bj = Sa;, and note that necessarily each a; > 0. The
first two terms of f can be factored out to yield

n
F(2) = [T = a5lz1%) + O(l2*) = K(2) + O(l2[*)
i=1
near 0. Put r; = |z;| and r = |z|. We have
|1— ajr?|2 =1- 2(1,-7‘12 + |a,~|2r§ =1- rf(2aj - |aj|2r]2~) <1

as soon as r? < 2a;/|a;|?. By restricting our attention to smaller r, we achieve
|K| < 1. Now f™—K™ = (f-K)(f™ '+ f"?K+---+ fK™ 2+ K™").
Each of the m terms in the second factor is not greater than 1 in absolute value
in a small enough neighborhood of 0. Hence near 0, |f™ — K™| < m|f — K| and

(3.2) M™(z) = ﬁ(l - ajr]z)m + O(mr?).

J=1

When we integrate f™ over the polydisc ¢,, U, using Hélder Inequality, the
second (error) term of (3.2) becomes

m [ rtdu, = m/ (21? + - + |2n?)? ditn
enUn enUn

Snm/ |zl di
emUn

€m
=n’m |21|* dpn, = 2n2mef,'{"'2/ 5 dt
enUn 0
1 2 2nta
= gn'men ™,

and this last form is O(me2r+4) = O(m!~27+4P) = o(m~") as m — oo, because
by hypothesis (2n+4)p > n+1. And the first term of (3.2) becomes

n Em
H[ (1 —a;r3)™2r;dr;.
j=1"0

Now looking at the one-dimensional case without the subscripts,

Em efn
m/ (1—ar?)™2rdr =m/ (1-az)™dz
0 0

= rrall - - ek
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But limp_oo(l —ae2)™” = limm—oo(l —am=2P)m” = =% Then since
le=*| =e™® <1 and 2p < 1, limy,—00(1 — a2, )™*! = 0. Consequently

- fm — =L
m—oo (m+1)laf o’

Em
(3.3) lim m / (1—ar?)™2rdr
m—00 0

Going back to the multi-dimensional case, using (3.3) we see that

. n m o
lim [m /emlU"f dun‘—"}gnoo]I-I

m—+00

n Em
m/ (1—ayr2)™2r; dr;
=1 0
n
1
= H m >0,
g=1"
which proves (i).
For small r > 0, |1 — a;r?|> = 1—2a;77 + |a;|?r} < 1—3a;r}. Then
n
(3.4) 1) < T -ar}).
Jj=1

Applying (3.3) with m/2 in place of m and noting that e < £m/2, We get
n n
(T) f"‘| dpn, < limsup/ (T) f"‘| dpin
2 m—00 em/z]Un 2

L m €m/2
< lim H—/ (1—ajr12~)m/22rj dr;
j=1 2 Jo

limsup
m—oo Je,Unr

and this proves (ii).

Put tn, = sup{|f(2)| : z € U"\&,,U"}. Since the only global maximum of
|f| is at 0, for large enough m, this supremum is attained on 9(e,U™), say at
Zm. Without loss of generality, 7, = |2m,| = €m. For such large m, zp, is small
enough to use (3.4). Therefore

k
t2, = |f(zm)® < [[A—ajr2,) < 1-arrZ,
j=1
=1- alefn =l—agm < exp(—alm‘z”)

and for some constant C,
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km < Cm™T = Cm™(t2,)™/? < Cm™exp (—%lml_zl’) -0

as m — 00, because 2p < 1. This completes the proof of (iii). m]

Now we prove Theorem A by showing that an M*-algebra of Co(U™) would
actually be dense in Co(U™). The proof uses the fact that such an algebra would
be an ideal in Co(U™) under the convolution using Mébius transformations in
place of translations, which was already used in Lemma 3.1.

Proof of Theorem A. Let X be an M*-algebra of Co(U™) with & # {0}.
By Lemma 3.1, X has a polyradial real-analytic function f with a unique global
maximum modulus of 1 at 0. A normalized f can be expressed as f(z) =
1= 370 ;21> + O(|2]*) near 0 with Ra; > 0 for 1 < j < n, by Lemma 3.2.
Lemma 3.3 applies to f and we obtain &,,, ¢y, and ky,. In addition, x, can be
freely exchanged with u, as needed in Lemma 3.3, because u, < Kk, < Cu, for
some real number C, as long as the domain of integration is bounded away from
dU™; and €,U", which includes all €, U™ for m = 2,3,..., indeed is.

Let C.(U™) denote the collection of functions in Co(U™) with compact sup-
port in U™, and pick a polyradial g € C.(U™). Define

()= [ ™ (@u()a(w) dia).

Since suppg CC U™, the integral exists and h,, is well-defined for every integer
m > 2.

Claim: h,, — g uniformly on U™ as m — oco. As in the proof of Lemma
3.1, hm € X; so writing g(2) = [;u tmf™(w)g(2) dpn(w) and letting K(w) =

[T= (= lw;?)?,

(@) =9(2) = [ emf™(w) (@) ~ 9(2) K (w)] den(w)

€m

t[ et o(@aw) - 9K ()] den(w)
Un\e,, Un
=TI+1I.

Let w € €,U". Then for large m,

w;(1 - |%[*) < _tm

< 2em;
1-2Zw; l—¢ep — m

|(ij (wJ) _zjl =

s0 |®,(w) — 2| < 2v/nem, independently of z € U™. It follows that, as m — oo
which forces w — 0, |®,(w) — 2| — 0, and by the uniform continuity and the
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polyradiality of g, |g(<I>w(z)) —g(z)| — 05 also |g(<I>w(z)) ——g(z)K(w)| — 0, all
uniformly in z € U". Thus, by (ii) of Lemma 3.3,

1219080 = gKloo [ Jenf™]drn =0 a5 m—co.

€m

By (2.2), (iii) of Lemma 3.3, and since suppg CC U™,

I < kb |g(<I>z(w ) —g(z)K(w)| don (w)
Ur\e, Un

<o [ Jo@.(w) = 9()K w)] dia(w)

<t ( [ Moo @) @l dmntw) + [ 190 dun(w))

=t ([ oWl dia(u) + 1)) <o ([ loldsat (a1

< km (llgllz ey + lgllso) — 0 as m — oo.

Hence the claim is established and g € X.

Therefore X’ contains the smallest M*-invariant subalgebra ) of C.(U")
which includes all the polyradial functions in C.(U™). Y is a self-adjoint sub-
algebra of X C Co(U™), so it contains real-valued functions. ) seperates the
points of U™: If 2, w € U” and z # w, take a g € Y with g(0) = 1 and
0 < g(2) < 1 for z # 0; then (go ®,)# € Y seperates z and w. Clearly Y van-
ishes nowhere in U™. Then, since X is closed, by the Stone-Weierstrass Theorem,
Co(U™) = cl(Y) € X C Co(U™), where cl denotes uniform closure. The proof is
now complete. O

4. MOBIUS SUBALGEBRAS OF C(U™)

In this section, we present the proofs of Theorems B, C, D, and E. In some
of their corollaries, we will state the results in a more detailed form for the case
n = 2 and k = 1, or more specifically for algebras instead of spaces. Often we

will use the term function to mean a continuous function on a subset or all of
on.

4.1. M-Algebras Containing &,(U"). We first find the biggest
M-spaces of C(U™) in some sense.
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Proof of Theorem B. Let F € X and f = F|,. Then H=F —P|[f] €
£.(U") C X and P[f] = F—H € X. Now let Y = X|,, take a sequence
{fm} in Y, and suppose f,, — f uniformly on T". f,, = Fm|1p. for some
Fpn € X and F,, = P[fn]+ Hy, for some H,, € £,(U"). Also suppa |fm — fx| =
SUpgn |Fm — Hm — (Fi — Hg)|, so there is an F € X with Fy, — Hy, converging
uniformly to F on U". Then fm = (F — Hm)|pn = F|pm, i€, f = F|,. This
shows that Y is closed; thus ) is an M-space of C(T™). Poisson integrals of its
elements are in X, and X’ consists of these Poisson integrals plus the functions

in £,(U™). o
Remark 4.1. The M-spaces of C(T") are given by Gowda [1] and in dimen-
sion n there are 1 (27:’_;_"24 of them. When n = 2, this number is a manageable

14, and writing (¢,n) for ({1,(2) € T?, the spaces are

(a') {O}v C’ Z(T2)v plh(Tz), CC(T) +C11(T)a C(Tz)a
(b) Ac(T) + Ap(T), A(T?), A(T?) +C¢(T) +Cy(T), cl(Z2(T?) +.A(T?)),
(c) conjugates of the spaces in (b),

where Z(T?) = cl(span{(Pn?,¢P7? : p, ¢ € N}), C¢(T) the subspace of C(T?)
consisting of functions that depend only on ¢, A¢(T) the subspace of C(T?)
spanned by {1,{,¢?,...}, and plh(T") those f € C(T™) whose Poisson integrals
are pluriharmonic in U™. Clearly there are too many spaces to list if n > 2. But

when we specialize to algebras, there are only 5 in each dimension, and these are
also listed in [1]:

A) {0},

(B) C,

(C) A(T™),
(D) conjA(T"),
(E) C(T™).

Note. A twice-differentiable function f defined in an open set in C" is said
to be pluriharmonic if
of _
sz 0z,

(J, k=1,...,n).

Corollary 4.2. The M-spaces of C(U?) containing £2(U?) are

(1) 82(U2)r 82(U2) + C) 82(U2) + z(U2)’ 82(U2) + plh(Uz),
£2(U%) +P.(U) + Py (U), C(T?),
(ii) £2(U?)+A4,(U) + Ay (U), £2(U?) + A(U?),
£3(U?) + A(U?) + P, (U) + Po(U), E2(U?) +cl(Z(U?) + A(U?)),
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(iii) conjugates of the spaces in (ii),

where (z,w) denotes an element of U™, P,(U) consists of functions which are
Poisson integrals of members of C¢(T), and plh(U™) is the set of all f € C(U™)
that are pluriharmonic in U™.

Proof. We take the Poisson integrals of the functions in the spaces in (a),
(b), (c) of Remark 4.1, and note that &,(U") 4+ P(U") = C(T"). O

Corollary 4.3. There are precisely 5 M-algebras of C(U") containing
En(UM):

(i) &.(U"),

(ii) €. (U™)+C,

(iii) &€,(U™) +.A(U™),
(iv) En(U™)+ conj A(U™),
(v) C(T").

4.2. M-Algebras Between £, (U") and &1 (U"). Next we find the M-
algebras between any two consecutive algebras in (1.4). The problem is open
for the M-spaces. The following lemma solves essentially the same problem for
continuous functions defined on Tj.

Lemma 4.4. LetY be a closed M-invariant subalgebra of C(T}) satisfying
the condition y|Tk+1 = {0} for some k, 1 <k <n—1. Then Y must be one of

(i) {0},

(i) Kr(Tk),

(iii) Ax(Tk),

(iv) conj Ak (Ty),

W) {f €CTN): ]y, =0}

Proof. Assume Y # {0}. Fix ¢" € U"* and let
(4.1) Q=Q(¢") ={(¢",¢"): ¢' € T*}.

Topologically @ is just T*. Put Z = Y|q. Z is an algebra invariant under the
automorphisms of the first k variables, i.e., it is an M-invariant subalgebra of
C(T*). To prove Z is also closed, take a sequence {fn} in Z with f,, — f
uniformly on Q. Each f,, is the restriction to @ of some F,, € Y, but we need
an extension dominated by multiple of || fm || q-

Y has an element Gy not identically 0. Suppose, with no loss of gener-
ality, RGy attains its maximum My at a = (1',a"”) € Ty, where 1’ denotes a
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k-tuple of 1’s. Then, given (a small) ¢ > 0, there is a (small) § > 0 such
that RGo(e™1,... €%, a") > My — € on the set given by |9;] < §, j = 1,...,k.
This set is a cartesian product of (small) arcs. For j = 1,...,k, choose b; such
that 0 < b; < 1 and each so close to 1 that for Uo(2) = (—¢pw(2),2") and
G1 = Goo ¥y, we have RG1(e*?1,... e a"") > My — ¢ on the (much larger) set
given by |9;| < m—§6, j =1,...,k. (Here, we are actually looking at the restric-
tion of g to the set given by |21| = -+ = |zx| = 1.) Let ¥1(2) = (2/,0q ("))
and G2 = G10%¥;. Then %G#(l’,ﬂ") # 0; in fact it is close to My, provided
that € and 6 are sufficiently small. This procedure assures that ) possesses a
function G5 whose polyradialization is nontrivial.

There are ¢ € T, with the property |G¥ (¢)| = ||G¥ ||z, = M. Again without
loss of generality, |c1] = -+ = |ex| = 1 and |¢;] < 1 for j = k+1,...,n. Pick
¢ so that max{1—|c¢;| : k+1 < j < n} is minimal. Let Us(2) = (2, e (2"))
and G3 = Rn_k(G2# oW,), where R,_j denotes radialization in the last n—k
variables. Since Gf is radial in the first k¥ variables and ¥2 does not change
them, we can also write Gz = (G¥ o W5)#. We have |G3(¢’,0")| = |Gs(c/,0")] =
|G¥ (¢)] = M and |Gs(¢,2")| < M if 2" # 0 due to the action of Rn—.

Next, to obtain Q(0") as the peak set of some polyradial G4, choose d € T;,
such that 1 > |di| = -+ = |dg| > max{|¢;| : k+1 < j < n}. By the definition
of ¢, |Gf(d)| < M. Let ¥3(2) = (pa(7'),2") and G4 = (G30¥3)#. Then
|G4(¢’,0”)] = |G5(¢’,0")] = M and |G4(¢',2")| = |G3({',2")| < M if 2" # 0.
Also for any 0 € Su, |G4(Co(1)s--+ 1Co(k)s Zo(kt1)s- -+ »Za(n))| < M if 2" # 0, by
the way d is chosen and by radialization, as explained in the last paragraph of
the proof of Lemma 3.1. Finally let U4(z) = (2/,p4/(2")) and G = 17 (G40 ¥y).
Then G € Y, G|g =1, and |G| < 1 elsewhere on T.

For any £ € N, GF,, € ) is an extension of f,, to Ty. Take a subsequence
{fm;} for which |fm;,, — fm;| = |Fm,,; — Fm;| < 2797 on Q. Also, for each
J, take £; large enough so that |Fp,,, — Fm,||G%| < 279 on Ty. Such an ¢;
exists, because |F,,, — Fm;| < 277 in a neighborhood of @ in T} depending on
J, and |G| < §; for some §; < 1 outside this neighborhood in Tjx. Now we define
F =Fn, + Z;‘;l G%(Fm,,, — Fm,). Then F € Y since the series is uniformly

convergent on Tj; and F|g = limj_,o Fi,;|lo = limj—oo fm; = f. This proves

lo
that Z is closed. Hence Z is one of the nontrivial M-algebras of C(T*), as listed
in (B)—(E) of Remark 4.1.

A given Q is only one “slice” of T}, but the same analysis can be done on any
Q given by some (¢o(k+1):---1do(n)) € T* and o € S,,. Since Y is M-invariant,
its restriction to each @) is the same. Therefore ) must be one of the five algebras
referred to in the statement of the lemma. O
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Corollary 4.5. M-algebras of continuous functions on the topological
boundary of the unit bidisc which restrict to {0} on the distinguished boundary
are:

(i) {0},
(ii) functions that are constant on each circle @ and Q2,

(iii) functions with no negative Fourier coefficients on Q1 and Q,
(iv) functions with no positive Fourier coefficients on Q1 and Q-,

(v) {f € C(0U?) : f|1r2 =0}.

Q1 and Q2 are defined in (2.5). Of course the constant mentioned in (ii)
may vary from one circle to another. If we assume ) to be only M*-invariant,
then Y can restrict differently on permuted copies of Q. For example, in the
special case mentioned in Corollary 4.5, it is possible to have ) | o= A(T) and

y | Qa = €O A(T).

Proof of Theorem C. Let Fe X, f = FlTk, and for z € U™, put

(4.2) G(z) = F(2) = Y_ Pilf1(2),

where the summation runs over all the (Z) distinct k-element subsets of {1,...,n}
and the partial Poisson integral Py is taken each time over those k variables thus
indicated. If w € U™ has k components of unit length, say (w,...,ws), then
Pi[f](w) = f(w) = 0 if Py involves any of the last n — k variables, because then
in the integral at least k+ 1 arguments of f have length 1 and X C &1 (U™).
So G(w) = F(w)— Pg[f](w) with Py operating on the first k variables. But
then F(w) = Pg[f](w) by the choice of w. Hence G = 0 whenever any k of its
arguments are of unit length, i.e., G € £,(U™).

Puty=2x | 1, and consider a sequence {fm} C Y uniformly convergent to

fonTg. Each f, = leTk for some F,, € X. We can find G, € £,(U") C X so

that F, = Y Pi[fm]+Gm. Then Y Py[fm] € X as well. Define Q(g") similar
to (4.1) (but with varying positions for the k components of unit length) and
compute:

(Z) S;lplfm —fol = (:) max sup Ssup IPk[fm - fe]l

q"'€ln—* Q(q")

> Z sup  sup |Pi[fm — fe]
g €ln-+ Q(g")

=S " sup|Plfm — fol| > sup | Pilfm — £
un U

= SBPIFm = Gm — (Fe— Gy)l,
]Un
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since Py attains its supremum on T*. Above, max and Y run over the same
set as in (4.2). Thus {F,, — G} is uniformly convergent on U™ to a function
F € X. Since Gy, € E(UM), (Fp — Gm)lTk = fm — FlTk = f. This shows that

Y is closed. ) is also M-invariant since T} is, and satisfies ) I Tewr = {0} since

X does.
The definition of G shows that

X = E(U")+ Y PulY).

Hence X must be the sum of £(U™) and the k-partial Poisson integrals of one
of the five algebras obtained in Lemma 4.4. (i) and (v) of that lemma supply
E(U™) and Ek41(U™). The Poisson integrals of the remaining three provide the
other three algebras referred to in the statement of the theorem. Since each of
these contain &(U™), we get the desired result. O

Corollary 4.6. M-algebras of C(U?) containing Co(U?) that restrict to
{0} on T? are

(i) Co(U?),

(ii) functions that are constant on each circle Q1 and Qs,
(iii) functions with no negative Fourier coefficients on Q1 and Q2,
(iv) functions with no positive Fourier coefficients on Q1 and Q2,

(v) &2(U2).

Some Other M-Algebras of C(ﬁ"). We now investigate what happens
when we intersect an M-space with £,(U"). The possible intersections are {0},
E(U™), K (U™), Ax(U™), and conjAx(U™), for k =1,...,n— 1. Theorem A can
be visualized as the special case when the intersection is £,(U").

Proof of Theorem D. We may assume X # {0}. Define linear functionals
L and M on X by

Lf=f(0) and Mf=/Tnfd)\n.

Suppose there is an f € X with Mf = 0 but Lf # 0. Then f#(0) = Lf # 0;
so f# #0, and f#|, = Mf# = Mf = 0. But this implies f# € X NE,(U™),
a contradiction. Thus the null space of L contains the null space of M. Since
X # {0}, by the M-invariance of X, L, and hence also M, is clearly onto C.
Then by a factorization argument, there exists a linear ¢ : C — C such that
L = co M. In other words, for some ¢ € C,

(4.3) f0)=c - fdXn (f € X).
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Take a z € U™, pick ¥ € M with ¥(0) = z, and apply (4.3) to fo ¥ € X:
£ = (Fow)0) =c [ (Fow) i,

= cP[f o ¥](0) = cP[f](¥(0)) = cP[f](2),

using (1.5). Letting z — ¢ € T™ gives f({) = c¢f(¢); so ¢ = 1. Therefore, every
f € X is the Poisson integral of its restriction to T". Consequently supg, |f| =

supr- | f.
Let Y =X IT", and take a sequence {fp,} in Y such that f,, — f uniformly

on T". Each f,, = ml’n‘n for some F,, € X and F,,, = P[fn,]. By the equality

of the suprema of f,, — fx and F,, — F, F;, — F uniformly on U” and F € X.
Hence f = F|Tn, f€)Y,and ) is closed. Y is clearly M-invariant. Thus Y is
one of the M-spaces of C(T™). It follows that X’ consists of the Poisson integrals

of functions in one of these spaces. O
Corollary 4.7. M-spaces of C(U?) intersecting £2(U?) in {0} are:

(1) {0}’ C, Z(U2)a plh(Uz), Pz(U) + Pw(U), P(Uz):
(i) A.(U)+ Au(U), A(U?), A(U?) + P,(U) + P (U), cl(Z(U?) + A(U?)),

(iii) conjugates of the spaces in (ii),

where (z,w) and P,(U) are as in Corollary 4.2.

Corollary 4.8. There are exactly four M-algebras of C(U™) which inter-
sect in {0} with £,(U™):
(i) {0},
(ii) C,
(iii) A(U™),
(iv) conj A(U™).

Proof. P(U™) is not an algebra although it is obtained from an algebra,
c(T). O

Proof of Theorem E. Define on X the linear functionals

n

LF = / F(¢',0")d\e(¢") and MF = / FdA,.
T*

If there is an F' € X with MF = 0 and LF # 0, then F#ITn = MF =0, so
F# € £,(UM). Since also F# € X, we conclude F# € £,(U") by hypothesis. But



360 H. T. KAPTANOGLU

F#(¢',0") = LF # 0 contradicts this. Hence the null space of M is contained
in the null space of L. Consequently there is a ¢ € C such that LF = cMF, i.e.,

(4.4) /T F(CL0M) d(¢) = /T Fdx, (F € X).

If 2 € Uk, choose ¥ € M so as to have ¥({',0”) = (¢',2") and let
G = Fo V. Applying (4.4) to G in place of F, we get

[ Feanane) = [ a@onan@)=c[ Gir
T# Tk Tn
= ¢P[G](0) = cP[F](0',2").
Letting 2" — (" € T" ¥, we obtain
[P ¢nan@) = [ Fe.¢an),
Tk Tk

which shows that ¢ = 1. Therefore
n
[P = [ P 1

Tk Tn

joian 1= 236l

1—|z]?

dAn(C)

B /Tk Pok[F)({,2") dAk(C)

after integrating in the last n — k variables. Here P,_ is the partial Poisson in-
tegral in the last n — k variables. Written in a different form, the above equalities
state

/ (F = Pa_g[F)) (¢, 2") dMe(¢) =0 (F € X, 2" € Un—F).
Tk
Since X is M-invariant, in particular for any ¥ € M?*, we also get

/ (Foll — Py y[FoU])(¢,2")dM(¢) =0 (F € X, 2" € UMF).
T*

Denoting F — P,,_;[F] by G and using the M*-invariance of the partial Poisson
integral, this last equation can also be written as

(4.5) [E (GoW)(C," ) dNe(¢)) =0.

We want to conclude that G is identically 0 for each z”” € U"~*. Fix such
a 2’ and suppose RG(¢',2") # 0. Put m = max{RG(¢,2") : ¢’ € T*¥}. Then,
as in the proof of Lemma 4.4, given £ > 0, for an appropriate ¥ € M*, we can
have ®(G o ¥) > m —¢ on a large part of TX. Then the integral in (4.5) cannot
be equal to 0. This contradiction proves that

F(¢,2") = Poi[FI(¢',2")

! k I n—k
=P[F](§',z”) (FEX,C eT , 2 el )
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The second equality holds by extending the Poisson integral to be equal to F' on
Ty. Fix p' € T and let

P=P@p)={(,7"): 2" €T"*}.

P is a copy of the closed polydisc U"~* in Tj. Then by the M-invariance of X,
on every P(p') and on its permuted copies in Tk, every F' € X can be expressed
as the (partial) Poisson integral of its restriction to (a subset of) T™.

For F € X, let f = F|,. Since

Ty = U U P(pf’(l)""apa(kz))a
p' €Tk 0€Sn

H=F—P[f] € &(U") C X and P[f] = F—H € X. If we let Y = X|,,, using
the equality of the maxima of f and F — H, we see that ) is an M-space of
C(T™). Then as in Theorem A, X consists of the Poisson integrals of members
of these plus the functions in £ (U™). O

Corollary 4.9. M-spaces of C(U?) intersecting £2(U?) in Co(U?) are:

(i) CO(Uz)’ CO(U2) + Cy CO(Uz) + Z(Uz), CO(UZ) + plh(UZ)’
CO(Uz) + Pz(U) + Pw(U)’ CO(UZ) + P(U)a
(i) Co(U?) +A,(U) + Ay (U), Co(U?) + A(U?),
Co(U?) + A(U?) + P, (U) + Py (U), Co(U?) + cl(Z2(U?) + A(U?)),

(iii) conjugates of the spaces in (ii),

where the notation is as in Corollary 4.2.

Corollary 4.10. There are only four M-algebras of C(U™) that have an
intersection of £ (U™) with £,(U™):

(i) Sk(Un)a

(ii) &(U™)+C,

(iii) & (U™)+.A(U"),
(iv) £x(U™) + conj A(U™).
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