Topological aspects of ideal conduction

B. Hetényi and M. Yahyavi
Bilkent University, Ankara, TURKEY

Topological invariants

- Drude weight as equilibrium susceptibility
 - Hamiltonian: \(W(\Phi) = \sum_{i} \frac{|\phi_{i} + \Phi|^{2}}{2m} + \frac{\Phi}{2m} \)
 - \(\Phi \) represents perturbation (electric field)
 - Current: \(J(\Phi) = \frac{\partial E_{\Phi}(\Phi)}{\partial \Phi} \)
 - Drude weight: \(D = \frac{1}{N} \sum_{i} \frac{\partial E_{\Phi}(\Phi)}{\partial \Phi} \)

- Relation to other ideal transport quantities
 - Drude weight: \(D \)
 - Meissner weight: \(D^{*} \)
 - Superfluid weight: \(D^{**} \)

- Drude weight as a topological invariant
 - Similar to the modern theory of polarization (King-Smith & Vanderbilt: PRB 1993; Resta: RMP 1994)

- Drude weight as a topological invariant
 - Topological invariants
 - Quantization of transport related quantities
 - Edge currents at interfaces

- Quantum Hall effect & TKNN invariant
 - Kane-Mele model: edge states
 - Hamiltonian (Kane and Mele, PRL 2005):

- **Quantum systems**
 - Characterized by topological invariant
 - Quantization of transport related quantities
 - Edge currents at interfaces (Halperin, PRB 1984)
 - Quantum Hall systems, topological insulators

- Berry phase & Berry curvature
 - Adiabatic cycle:
 - Continuous limit:
 - Drude weight:
 - Ideal conduction:

- **Topological systems**
 - Characterized by topological invariant
 - Quantization of transport related quantities
 - Edge currents at interfaces

- **Quantum Hall effect & TKNN invariant**
 - Kane-Mele model: edge states
 - Hamiltonian (Kane and Mele, PRL 2005):

- **Kane-Mele model: edge states**
 - Hamiltonian (Kane and Mele, PRL 2005):

- **Drude weight/ideal conduction**
 - Derived in a seminal paper by Kohn (PR, 1964) as the criterion to distinguish conductors from insulators
 - Related to many-body localization
 - Measure of ideal (non-diffusive) conduction:

- **References:**

Edge states (cont’d)

- Band structure of system with TB/CDW interface

- Current/resolved Drude weight show similar behavior

- Transport coefficients and ODLRO
 - How can one distinguish transport coefficients \(D_{p} \), \(D^{*} \), and \(D^{**} \)?
 - Definition of \(p \)-current based on generator of \(p \)-particle translations:

- Quantization
 - Flux quantization inside a cavity of a superconductor (Deaver and Fairbank, PRL 1961; Byers and Yang, PRL 1961)

- **Topological systems**
 - Characterized by topological invariant
 - Quantization of transport related quantities
 - Edge currents at interfaces (Halperin, PRB 1984)

- **Quantum Hall effect & TKNN invariant**
 - Kane-Mele model: edge states
 - Hamiltonian (Kane and Mele, PRL 2005):

- **Kane-Mele model: edge states**
 - Hamiltonian (Kane and Mele, PRL 2005):

- **Drude weight/ideal conduction**
 - Derived in a seminal paper by Kohn (PR, 1964) as the criterion to distinguish conductors from insulators
 - Related to many-body localization
 - Measure of ideal (non-diffusive) conduction:

- **References:**