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We formulate stationary axially symmetric (SAS) Einstein-Maxwell fields in the framework of 
harmonic mappings of Riemannian manifolds and show that the configuration space of the fields 
is a symmetric space. This result enables us to embed the configuration space into an eight­
dimensional flat manifold and formulate SAS Einstein-Maxwell fields as a O'-model. We then 
give, in a coordinate free way, a Belinskii-Zakharov type of an inverse scattering transform 
technique for the field equations supplemented by a reduction scheme similar to that of 
Zakharov-Mikhailov and Mikhailov-Yarimchuk. 

PACS numbers: 04.20.Jb, IUO.Qr, 11.10.Lm, 11.1 S.Kc 

1. INTRODUCTION 

Completely integrable systems and, in connection with 
these, Backlund transformations have attracted much atten­
tion in recent years. As a result we now have a better under­
standing of the nature of certain nonlinear partial differen­
tial equations of mathematical physics, and this enables us to 
devise methods for systematic generation of exact solutions 
at least in two dimensions. One of these methods is the in­
verse scattering transform technique of Belinskii and Zak­
harov. !,2 It consists of (I) representation of the nonlinear 
system in the form of compatibility conditions of a more 
general overdetermined system of linear matrix equations 
depending on a complex spectral parameter; (2) explicit inte­
gration of a Backlund transformation for these equations, 
thus generating new solutions from the known ones, 

The Belinskii-Zakharov integration technique was first 
applied, by the authors, to the Einstein vacuum field equa­
tions where the space-time admits two commuting Killing 
vectors, These authors obtained all multisoliton solutions of 
Einstein's equations for stationary axially symmetric (SAS) 
vacuum and colliding plane gravitational wave space-times. 
The method was later extended and applied by Aleksejev3 to 
SAS Einstein-Maxwell equations. In both formulations the 
parametrization of the problem was such that the relevant 
linear eigenvalue equation contained the space-time metric 
functions directly, 

In this work we present, in a coordinate-free way, a 
different formulation of the inverse scattering transform 
technique of Belinskii and Zakharov for the integration of 
SAS Einstein-Maxwell field equations written in terms of 
complex Ernst4 potentials. In Sec. 2, we first show that the 
use of Ernst potentials enables one to formulate SAS Ein­
stein-Maxwell field equations as equations determining har­
monic mappings5

,6 from a base manifold, which is a three­
dimensional flat space, to a four-dimensional Riemannian 
manifold called the configuration space of the fields. It turns 

out that the configuration space is a Riemannian symmetric 
space with the isometry group SU(2,1), in agreement with 
previous results 7-9 that Ernst equations are invariant under 
the action of this group. This property enables us to write the 
kinematical content of the theory in terms of the Maurer­
Cartan equations for SU(2, I) while the dynamical content 
(i.e., the field equations) appear in the form of conservation 
of Noether currents, both expressed in terms of the set of 
eight Killing vectors that the configuration space admits. 
Using 3 X 3 matrix representation of the generators of 
SU(2, I) we define a Lie algebra valued flat connection I-form 
which can be integrated to give the 3 X 3 Hermitian matrix, 
found recently by Gurses and Xanthopoulos, \0 characteriz­
ing SAS Einstein-Maxwell fields as a O'-model. The symmet­
ric space property of the configuration space is reflected by 
the fact that this matrix leaves invariant the metric of the 
three-dimensional complex vector space on which the group 
SU(2, I) acts. As a final remark of Sec. 2, we note that the 
configuration space can be embedded into an eight-dimen­
sional flat space, generalizing the result of Matzner and 
Misner!! for SAS Einstein vacuum to the electrovacuum 
case. 

In Sec. 3, we present a Belinskii-Zakharov type of in­
verse scattering formulation for the integration of SAS Ein­
stein-Maxwell field equations. Using the flat connection 1-
form of Sec. 2 and its Hodge dual with respect to a 
two-dimensional Euclidean space E 2 and introducing a com­
plex spectral parameter, we construct a new connection 1-
form defined on E 2 X C whose curvature vanishes modulo 
the field equations. The associated linear eigenvalue equa­
tion follows immediately while gauge transformations of the 
connection are nothing but Backlund transformation for the 
field equations. Using the technique invented by Belinskii 
and Zakharov, a particular form of Backlund transforma­
tion can be integrated explicitly for the 3 X 3 matrix, charac­
terizing the solution in terms of a known solution. The pro­
cedure, however, does not guarantee the symmetric space 
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property of the 3 X 3 matrix, which is crucial for the parame­
trization ofSAS Einstein-Maxwell fields. To solve this prob­
lem, one has to modify the integration scheme by imposing 
additional conditions an the Backlund transformation. This, 
the so-called reduction problem, was solved by Zakharov 
and Mikhailov l2 and Mikhailov and Yarimchuk, 13 and is the 
subject of Sec. 4. We also include an appendix for the details 
of Sec. 2. 

2. THE CONFIGURATION SPACE FOR SAS EINSTEIN­
MAXWELL FIELDS 

The equations governing SAS Einstein-Maxwell fields 
in terms of complex Ernst potentials E( p,z) and (/> (p,z) are 

(E + "E + 2(/>fP )V2E = 2(VE + 2fPV(/> )·VE, 

(2.1) 
(E + "E + 2(/>fP )V2(/> = 2(VE + 2fPV(/> I-V(/>. 

Here V and V2 are, respectively, the flat space gradient and 
Laplace operators in cylindrical coordinates ( p,z,¢ J. Equa­
tions in (2.1) can also be regarded as equations determining 
harmonic mappings! M_M', where M and M' are two Rie­
mannian manifolds with metrics 

M: ds2 = dp2 + dz2 + p2 d¢ 2, (2.2) 

M': ds'2 = F -21dE + 2fP d(/> 12 - 4F -I d(/> dfP, (2.3) 

where F = ~(E + "E) + (/>fP. To see this, it is enough to consid­
er the set of basis I-forms {(JA (A,B, ... = 1,2,3,4) of the cotan­
gent space T * (M ') of M'. which are orthonormal with re­
spect to the metric g' of M '. These satisfy the integrability 
conditions d{(JA + {(JAB A. {(JB = O. which enables one to deter­
mine the connection I-forms {(JAB = - {(JBA' The basis I-

. forms {(JA along with the connection I-forms {(JAB' when 
pulled back to M using the map f, ~ = j*O{(JA and 
nAB =j*O{(JAB' satisfy 

(2.4) 

displaying the Riemannian structure of the induced vector 
bundlej-I T (M ')-M transported from that of the tangent 
bundle T (M ')_M I. Introducing now the Hodge dual oper­
ation (*). which is determined by the Riemannian structure 
of M. the field equations (2.1) can be written as 

d*~ + n AB A. *cf1 = O. (2.5) 

Ii(/> 

- (E + "E - 2(/>fP )/2 

i/i"E(/> 

where 

F = !(E + "E + 2(/>fP ). 

in agreement with the results of Gurses and Xanthopoulos. 10 

Because of Eqs. (2.10) and (2.13) the field equations (2.1) can 
be written in terms of the matrix P as 

d[(*dP)P- I] =0. (2.15) 

This form for the SAS Einstein-Maxwell field equations is 
particularly suitable for the application of inverse scattering 
transform techniques for generation of soliton solutions. 

The matrix P given in (2.14) leaves the metric of the 
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while the variational principle for the problem is M = 0 with 

(2.6) 

The Riemannian manifold M' with the metric given in Eq. 
(2.3) is called the configuration space for SAS Einstein-Max­
well fields and is a Riemannian symmetric space. This prop­
erty implies that there exists eight Killing vectors generating 
the isometry group SU(2.1) of M' and that the line element 
(2.3) can be written as (see the Appendix for details) 

d ,2 _ 1 ...J.l v 
S - 21J"v'" ® T • (2.7) 

where r-' (/i. v ... · = 1.2 ..... 8) are the corresponding Killing 1-
forms satisfying the Maurer-Cartan equations 14 

dr-' + !C" a{3r A. rI3 = O. (2.8) 

with C" a{3 being the structure constants of SU(2.1) and 

(2.9) 

being the constant group metric. (See the Appendix for de­
tails.) The invariance of the action integral (2.6) under 
SU(2.1) implies the existence of eight Noether currents 
j*0r-'. which are conserved. i.e .• 

d *(f*or-') = O. (2.10) 

As it is for the case of a symmetric space. these conservation 
laws are in one-to-one correspondence with the field equa­
tions (2.5) or equivalently (2.1). 

Using the 3 X 3 matrix representation of the generators 
X" of SU(2.1) we can now define Lie algebra valued connec­
tion I-form 

(2.11) 

which. because of the Maurer-Cartan equations (2.8). satis­
fies 

dW+ WA. W=O. (2.12) 

This implies that the curvature of W vanishes identically; 
hence 

(2.13) 

where P is a 3 X 3 Hermitian matrix with unit determinant. 
Using Eqs. (2.11) and (2.13) the matrix Pcan be determined. 
up to a constant gauge transformation. as 

i("E - E + 2(/>! )/2) 
- i/iE(/> • 

E"E 

(2.14) 

I 
complex vector space on which the group SU(2.1) acts invar-
iant. i.e .• 

PyP=y. 

where 

y=( ~. 
-/ 

o 
-1 
o 

(2.16) 

(2.17) 

By defining Z = yp. the configuration space can be consid­
ered as the four-dimensional hypersurface Z 2 = I. embed­
ded in an eight-dimensional flat space with the metric 
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ds'z = -! Tr(dZ ® dZ), 

where 

( 

Zg - jiZz {i(Z7 + iZ6 ) 

Z = 1 {it - Z4 + iZ5 ) i + JiZz 

- ZI .j2( - Z5 + iZ4 ) 

The embedding equations are 

ZI = F- 1
, Zz = - 3(/)if> IF, 

Z3 = €UF, Z4 = !i{(/) - if> )IF, 

Z5 = !((/) + if> )IF, Z6 = !(E'<P + €if> )IF, 

Z7 = F(E'(/) - €if> )1 F, Zg = i(l - €)I2F, 

and the line element (2.18) becomes 

_ dS,2 = (dZ I ® dZ 3 + ! dZ 2 ® dZ 2 + 4 dZ 4 ® dZ 7 

(2.18) 

(2.20) 

+ 4 dZ 5 ®dZ 6 
- dZ 8 ®dZ 8

), (2.21) 

which has zero signature. This generalizes the results of 
Matzner and Misner l

! for the SAS Einstein vacuum to the 
SAS Einstein-Maxwell case. 

3. THE INVERSE SCATTERING TRANSFORM 
TECHNIQUE 

Even though the base manifold M, whose metric is giv­
en by Eq. (2.2), is a three-dimensional flat space, the fact that 
the map/is independent of the azimuthal coordinate ifJ 
makes M effectively two-dimensional. For a coordinate-free 
formulation of the inverse scattering transform technique, 
we shall from now on consider the two-dimensional Euclid­
ean space E 2 as the base manifold M. Therefore, in what 
follows the Hodge dual operation (*) should be understood 
as the one defined with respect to the Riemannian structure 
on E 2. The field equation given by (2.15) will then read 

d [Ll (*dP)p-l] = 0, (3.1) 

where Ll is a scalar function on E 2, satisfying 

d(Ll -1* dLl) = O. (3.2) 

The explicit functional form of Ll depends on the particular 
choice of local coordinates by 

(3.3) 

whereg is the metric of the three-dimensional base manifold 
M of the previous section. 

The flat connection I-form W defined in Eqs. (2.13) and 
(2.14) is not suitable for the application of an inverse scatter­
ing transform technique to generate soliton solutions of the 
field equations. This is because its curvature vanishes identi­
cally without any references to the field equations. What is 
needed is a connection whose curvature vanishes on the solu­
tion submanifold (i.e., modulo the field equations) and, fur­
thermore, contains a complex parameter in such a way that 
the connection defined in Eq. (2.13) is obtained in the limit 
that the value of the parameter goes to zero. For this purpose 
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we introduce a generalized exterior derivative operator D, 
satisfying D 2 = 0, by 

D=d- - dB-(aB)-1 a 
aA aA' 

(3.4) 

where A is a complex parameter independent of the coordi­
nate on E 2 and 0 (A,E 2) is any scalar function with the prop­
erty 

lim D = d. (3.5) 

Next we consider a linear eigenvalue problem for a 3 X 3 
matrix '/I (A,E 2) written as 

D'/I = - fllJl, (3.6) 

where 

(3.7) 

and a(A,E 2
) and b (A,E 2

) are complex functions defined on 
E 2 X C satisfying 

lim a(A,E 2) = 1, lim b (A,E 2) = O. 
,(->0 ,(->0 

Integrability ofEq. (3.6) requires 

Dfl+flA fl=O 

(3.8) 

(3.9) 

on the solution submanifold which restricts further the func­
tions a and b to satisfy 

a2 + Ll 2b 2 - a = 0 (3.10) 

and 

Da =Ll*Db. (3.11) 

With this choice we now have a connection I-form which is 
integrable because of the field equations (3.1) and which sat­
isfies 

limfl= W (3.12) 

Using Eqs. (3.6) and (3.12), we see that the matrix P can be 
identified as 

P(E 2
) = lim '/I(A,E 2

). 
,(->0 

(3.13) 

Except for the condition given by Eq. (3.5) the function 
B (A,E 2) is arbitrary, with different choices leading to differ­
ent functions a and b and hence to a different linear eigenval­
ue problem. But, as wiII be seen later, its choice is crucial for 
the explicit integration of a Backlund transformation using a 
solution of the "matrix Riemann problem." In theory, given 
a proper function B (A,E 2) Eqs. (3.10) and (3.11) can be solved 
for a and b satisfying the conditions given in Eq. (3.8). These 
functions together with the definition of the connection 1-
form fl, given in Eq. (3.7), determine the linear eigenvalue 
Eq. (3.6) completely. 

We are now at a position in which we can apply the 
inverse scattering transform technique of Belinskii and Zak­
harov to the problem under consideration. For this purpose 
we assume the knowledge of a particular solution Po of(3.1) 
in terms of which we construct the corresponding connec­
tion I-forms Wo = - (dPo)P 0- I, flo = a Wo + bLl * Wo, and 
hence the function '/Io{A,E 2), by solving Eq. (3.6). A transfor­
mation of the form 
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(3.14) 

definesanewmatrix IJIleadingtoanewsolutionP [usingEq. 
(3.13)] of(3.1}. where. by Eq. (3.6). the matrix X is restricted 
to solutions of 

(3.15) 

Even though the above procedure guarantees that P is a 
solution to Eq. (3.1). it does not yet provide solutions to SAS 
Einstein-Maxwell equations. To represent SAS Einstein­
Maxwell fields. the new matrix P must also satisfy the sym­
metric space property (2.16) and must be Hermitian. These 
additional conditions. which can be demonstrated easily to 
be consistent with the field equation (3.1). put additional re­
strictions on the matrices IJI and X. This. the so-called reduc­
tion problem. will be the subject of the next section. 

4. THE REDUCTION AND INTEGRATION 

In order for a solution P of (3.1) to represent SAS Ein­
stein-Maxwell fields. it must be consistent with the parame­
trization given by Eq. (2.14). This means that the matrix P 
should be Hermitian (P = P t) and. furthermore. must satisfy 
the symmetric space property 

(yP)2 = I. (4.1) 

where y is given in Eq. (2.17). It can easily be shown that 
these conditions restrict the connection I-form W to satisfy 

WP - PW t = O. yW + Wty = O. (4.2) 

which in turn imply that we should have 

a (A)P - pa t(A) = O. ya (A) + a t(A)y = O. (4.3) 

With these in mind. if we now reconsider the linear eigenval­
ue equation (3.6) and Eq. (3.15) for X. we find that 

PylJl(r) = IJI(A)J. IJIt(X)y=ylJl-I(A). (4.4) 

and that 

(4.5) 

where J is a 3 X 3 matrix satisfying DJ = O. J 2 = I. and r: 
A __ r(A.E 2) is a fractional linear transformation on the com­
plex A plane with ~ = I leaving the function (J (A.E 2) invar­
iant. The functions a(A.E 2) and b (A.E 2) transform under r as 

a(r.E2) = 1 - a(A.E 2). 

(4.6) 
b (r.E2) = - b (A.E 2). 

leaving conditions (3.10) and (3.11) invariant. 
The remaining problem is explicit construction of the 

matrix X. satisfying the requirements in (4.5) with a given Po. 
This can be carried out as done by Belinskii and Zakharov. 1.2 

Zakharov and Mikhailov. 12 Mikhailov and Yarimchuk. 13 

and Eri§ and Gurses 15 once the local coordinates on E 2 and 
the set of functions I (J.a.b J are fixed. For the integration of 
SAS Einstein-Maxwell equations a convenient choice is the 
one given by Belinskii and Zakharov. namely. 

L1 = p. (J (A,p,z) = p21U - A 12 - z. 

a(A,p) = p2/(A 2 + p2). b (A,p) = A I(A 2 + p2). (4.7) 

r= _p2IA. 

1492 J. Math. Phys., Vol. 25, No.5, May 1984 

Whether this set is unique or not. or whether a different 
choice satisfying all the requirements mentioned above leads 
to different solutions to the field equations is still under in­
vestigation. 

For the N-soliton configuration it is assumed that the 
matrix X (A,p,z) is of the form 

2N R. 
X=I+ L -'-. 

i~IA-Il, 
(4.8) 

where the scalar functions Il, are the roots of the equation 

(J (p,,p,z) = - Wi (consts) (4.9) 

and the matrices R i are independent of the complex spectral 
parameter A. The above form for X together with Eq. (4.5) 
implies that 

P=x(O)Po' (4.10) 

For reasons that will become clear later we shall choose the 
2N poles of X to be related pairwise as 

IlN+k =r(pk)' k= 1.2 •...• N. (4.11) 

The unknown matrices Ri will be determined using Eqs. 
(3.15) and (4.5). Since R, are independent of the spectral pa­
rameter A. it suffices to consider these equations at the poles 
A = Ilk and look at the residues at these points. Considering 
the relation XX - I = I at the poles A = Ilk' we get 

RkX-I(Pk) = o. k = 1.2 ..... 2N. (4.12) 

displaying the fact that the matrices Rk are degenerate. 
Equation (3.15) evaluated at A = Ilk gives 

(DRk - RkaO)X-II,(~l'k = O. k = 1.2 ..... 2N. (4.13) 

which. using the fact that the matrix IJI 0- I satisfies 

DIJI 0- I - IJI 0- lao = O. 

shows that we have 

Rk = Mk IJI 0-I(Pk)' k = 1.2 .... ,2N, 

(4.14) 

(4.15) 

where, for the moment, the matrices Mk appear to be arbi­
trary except that they have to be degenerate because of(4.12). 
To determine M k • we consider the two reduction conditions 
given by Eq. (4.5). The first condition. when evaluated at 
A = Ilk' requires that X - I should have poles at A = Ii k and 
that 

2N RkyR;y 
Rk + L _ = 0, k = 1,2, ... ,2N. (4.16) 

'~l Ilk -Ili 

On the other hand, the second condition ofEq. (4.5) requires 

2N RkPoR; 
RkPO + L =0. k=I,2 .... ,2N. (4.17) 

i~l r(pk)-Ili 

Since the 3 X 3 matrices Mk are degenerate, writing 

Mk = mknk + PkqL k = 1.2, ... ,2N, (4.18) 

Eqs. (4.16) and (4.17) reduce to two systems oflinear algebra­
ic equations which must consistently be solved for the col­
umn matrices m k' n k. P k' and q k' The consistency of the two 
systems, apart from the particular ordering of the poles Il i as 
given in Eq. (4.11). requires that we should have 

Jtnk =nN+k, Jtqk =qN+k' k= 1.2, ... ,N, (4.19) 

which can equivalently be written as 
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(4.20) 

With these conditions, Eqs. (4.16) and (4.17) become identi­
cal. Hence, using anyone of these equations, we obtain the 
following set of linear algebraic equation: 

I ( 1 _ ) [(n;Siknk )mi + (q;Siknk)Pi ] 
i=1 Ili -Ilk 

= y(t/l1;{J.lk))-lnk , 

2N 1 L [(n;Sikqk)mi + (q;Sikqk)Pi ] 
i= I Ili - Ilk 

= y(t/l1;{J.lk))-lqk , 

where 

(4.21) 

(4.22) 

By use of these equations we determine the column vectors 
m k andpk in terms of the column vectors nk and qk. 

So far the vectors n k and q k which have been choosen as 
constant vectors by Belinskii and Zakharov as a particular 
solution ofEq. (4.13) appeared to be arbitrary. We shall show 
that their choice is indeed the unique solution. Using Eqs. 
(4.15), (4.18), and (4.14) in Eq. (4.13), we obtain 

(Dn!)t/lo-l{J.lk)X- I IIl=ltk = O. 

Knowing the fact 

n!t/lo-l{J.ldx- I IIl=ltk =0, 

then (4.23) can be written as 

(4.23) 

(4.24) 

Dn! = Hkn!. att!. =Ilk' (4.25) 

where Hk 's are I-forms (not matrix-valued). Applying D op­
erator (t!. = Ilk) to (4.25), we get 

(4.26) 

Since DAD = 0, then Hk = Drk III =ltk' where 
rk [ = rk(E 2

)] are arbitrary functions. Hence n! in Eq. 
(4.25) can be solved exactly as 

(4.27) 

where nOk 's are constant vectors. On the other hand, it can be 
shown from the linear set (4.21) that the vectors m k 's are also 

scaled by the factors eYk. Hence the degenerate matrix Mk 
given in (4.18) and the new solution P does not contain these 
functions. The same results are also valid for the vectors qk 
and Pk. Therefore we do not lose any generality by taking nk 
and qk as constant vectors. 

5. CONCLUDING REMARKS 

The symmetric space property and hence the a-model 
formulation of the SAS Einstein-Maxwell problem may lead 
to some other new results. One of them has recently been 
given by Mazur. 16 He, independently, using such a formula­
tion, proved the uniqueness of the Kerr-Newman black-hole 
solution. Einstein-Maxwell field equations for space-times 
admitting only one Killing vector formally look like the field 
equations given in Eq. (2.1). The crucial difference is that the 
differential operators are functions of the metric variables 
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for the former case. Nevertheless, generalizing the differen­
tial operator Din (3.4), there is a hope oflinearizing the E-M 
field equations for space-times admitting a non-null Killing 
vector. Work along this direction is in progress. 

Although in this work we concentrate on soliton solu­
tions for SAS Einstein-Maxwell fields, the procedure can be 
applied with minor modifications to every field theory which 
can be formulated in the framework of harmonic mappings 
of Riemannian manifolds provided that the configuration 
space is a Riemannian symmetric space and the base mani­
fold is effectively two-dimensional. Recently,1O it was shown 
that there is a close relationship between static axially sym­
metric self-dual SU(3) Yang-Mills and SAS Einstein-Max­
well fields. Thus, the solution generation technique present­
ed here may also be used to obtain the monopole or the 
instanton solutions for SU(3). Furthermore, since the dimen­
sion of the matrices may be arbitrary, static axially symmet­
ric self-dual SU(N) Yang-Mills fields can be treated as well. 

ACKNOWLEDGMENTS 

Two of the authors (AE and AK) would like to thank 
the Turkish Scientific and Technical Research Council 
(TBT AK) for financial support. 

APPENDIX 

Choosing the complex tetrad I-forms as 

WI = F -I(d€ + 2fP dl/J), w2 = F -I(dE + 2l/J dfP), 

(AI) 
w3 = 2F -1/2 dl/J, w4 = 2F -1/2 diP. 

The line element (2.3) for the configuration space can be 
written as 

(A2) 

The connection I-forms are 

Wl
l = -W

2
2 = - !w l + !w2

, 

I 4 1 4 
W3=W2= -2W , (A3) 

W
2

4 = w3 
I = - ~W3, 

W
3

3 = w\ = - !w l + lw2
• 

Using these, the tetrad components of the curvature tensor 
are found as 

R ' I R ,2 R '3 R ,4 1 
- 112 = 212 = 334 = - 434 = 2' 

(A4) 
R ' I - R 1\ - R ,2 - R ,2 - R ,3 

134 - 314 - - 234 - 423 - 123 

- R ,3 R ,4 R ,4 1 
- - 312 = 214 = 4\2 = 4' 

while the nonzero components of the Ricci tensor are 

R'\2= -a' R'34=a· (A5) 

Hence, R ' = - 6 is the curvature scalar. Hence we have 

R ~B = - ~~B (A,B, ... = 1,2,3,4), 
where 

o 
o 
o 
-1 
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therefore (M' ,g~B)' is an Einstein space. In addition to this 
property we have 

R GBCDR 'G AEF + R ~GCDR 'G BEF 

+ R ~BGDR 'G CEF + R ~BCGR 'G DEF = 0, (A8) 

iantly constant. This in turn means that M' is a Riemannian 
symmetric space. For this case the two properties together 
mean that M ' is a harmonic space in the sense of Walker. 17 
Thus M' has eight Killing vectors, 1'p = hp A a/ayA 

meaning that the Riemann curvature tensor of M' is covar­
I 

(/-l,V,oo., = 1,2,00.,8), With {yA} denoting the set [~,"E,<p,(jj J 
these are 

. a . a 
1'1 =1- -1-, 

a~ iTe 
'n. a .d; a 

1'2 = 1'Y - - 1'Y-= 
a<p a<p' 

.2 a -2 a 'n. a ,d;- a 
1'3 = -it:- - + lE- - -1'Y~- + 1'Y~-=, 

a~ iTe a<p a<p 

a - a a a 
1'4 = - 2<P - - 2<P - + - + -=, 

a~ iTe a<p a<p 

2 
'n. a 2·d; a . a . a 1'5 = 1'Y - - 1'Y - + I - - I -=, 

a~ iTe a<p a<p 

2 ·n. a 2·d;- a .( 2n. 2) a '(2d; 2 -) a 1'6 = - 1'Y~ - + 1'Y~ - + I ~ - 'Y - + I 'Y - ~ -=, 
a~ iTe a<p a<p 

1'7 = 2<P~!.... + 2(jj"E!.... + (~+ 2<P 2) ~ + ("E + 2(jj 2) ~, 
a~ iTe a<p a<p 

a _ a a - a 
'I's = 2~-+ 2~-+ <p-+ <p-=. 

a~ iTe a<p a<p 

These Killing vectors satisfy the SU(2, 1) algebra 

where 

- C\6 = C\5 = C\s = C\7 = - C 5
24 = C\s = - C 6

27 , 

C 6
34 = - C 6

6S = C\6 = - C 7
35 = - C\s = C 8

13 = 1, 

C 1
1S = -C33S=CS47=Cs56=2, 

C 145 = - C 367 = 4, - C 246 = C 257 = 6. 

The corresponding Killing I-forms rP = h p A dyA are given as 

1'1 = - iF -2{!C + <p(jj"E} d~ + iF -2{~C + <p(jjd dE + iF -2(jj{E d<P - iF -2<p~"E d(jj, 

r = ~ iF -2<p(jj d~ - ~ iF -2<p(jj dE - ~ iF -2(jj (~ + "E) d<P + ~ iF -2<p (~ + "E) d(jj, 

r = ! iF -2 d~ - ! iF -2 dE + iF -2(jj d<P - iF -2<p d(jj, 

1'4 = _ ~ F -2{"E(<P + (jj) + 2<P(jj 2} d~ - ! F -2{~(<P + (jj) + 2<P 2(jj} dE, 

+ l F -2{C + ~"E + 2~(jj 2} d<P + ! F -2{C + ~"E + 2"E<P 2} d(jj, 

r = -! iF -2{€,((jj _ <P) + 2<P(jj 2} d~ + ! iF -2{~(<P - (jj) + 2<P 2(jj} dE, 

- ! iF -2{C + ~"E - 2~(jj 2} d<P + ! iF -2{C + ~"E - 2"E<P 2} d(jj, 

1'6 = a iF -2(<P + (jj) d~ -1 iF -2(<p + (jj)dE + ~ iF -2{(jj 2 - !(~ + "E)} d<P - ! iF -2{ <p 2 - ~(~ + "E)} d(jj, 

1'7 = -IF-2(<P - (jj) d~ + 1F-2(<P - (jj) dE +! F-2{(jj 2 + !(~ + "E)} d<P +! F-2{<p 2 + !(~ + "E)} d(jj, 

(A9) 

(AW) 

(All) 

~ = ~ F-2{"E + <p(p} d~ + ~ F-2{~ + <p(jj} dE +! F-2(jj {€' - d d<P +! F- 2<p {~-"E} d(jj. (AI2) 

They satisfy the Maurer-Cartan equations 

drP + ! CP aPr" 1\ rP = 0. 

Using these, the line element of M' can be written as 

d'S2 = 1 'Y1 rP®1'v 
2 ·'J-lV ' 

d'S2 = _1'1 ®r - ~ r®r - 41'4 ® 1'7 

_ 4r ®1'6 + 1'S ®1'S. 
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(A13) 

(AI4) 

We now define a Lie algebra valued connection I-form 
Was 

W=XprP, 

whereXp is the 3 X 3 matrix representation of the generators 
of the group SU(2, 1) satisfying 

[Xp,xv] = capvXa' 

Since the group metric 1] pv can also be written as 
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1J~v = ~tr(X~Xv + X,X~). The line element (A2), or, equiv­
alently, (AI4), can also be written as 

dS,2 = 1 tr(W® WI, (AIS) 

where, written out explicitly in terms of the Killing I-forms, 

( 

-!ir+~ 

W = .j2( - r4 + ir) 
_ r1 

.j2(ir6 + r7) 

~ir 

.j2(ir4 - r) 

because of the Maurer-Cartan equations (AI3). The curva­
ture 2-form ofthis connection vanishes identically, i.e., 
dW + W/\W=O. 
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