
MATH 101: HOMEWORK 3: Spring 2011
For all Sections

(Due on the week of March 28: first hour of the last lecture day)

1a. Let f(x) = x2/3(x2 − 4). Find the open intervals on which f is increasing and
decreasing and identify the extrema of f and the points where they occur.

Solution: One has f ′(x) = 8
3x−1/3(x2 − 1), and the critical points are x = ±1

(with f ′ = 0) and x = 0 (with f ′ = ∞). The derivative is positive at x → +∞
and it changes sign at each critical point (as all exponents are odd). Thus, f is
increasing on (−1, 0) and (1,+∞) and decreasing on (−∞,−1) and (0, 1); the local
maximum is f(0) = 0, and the local minima are f(−1) = f(1) = −3.

1b. Let f(x) = x2/3(x − 5). Find the domain, possible symmetries, intervals of
increasing and decreasing, critical points, extrema, intervals of concavity, points of
inflection, and asymptotes. Sketch the graph.

Solution: The domain is all real numbers. There are no symmetries (the function
is neither even nor odd). The derivatives are:

f ′ =
5
3
x−1/3(x− 2), f ′′ =

10
9

x−4/3(x + 1).

From the first derivative: the critical points are x = 2 (with y′ = 0) and x = 0 (with
y′ = ∞); the derivative is positive at x → +∞ and changes sign at each critical
point. Hence, the function is increasing on (−∞, 0) and (2, +∞) and decreasing
on (0, 2); it has one local minimum f(2) = −3 3

√
4 ≈ −4.8 and one local maximum

f(0) = 0.
From the second derivative: one has y′′ = 0 at x = −1 and y′′ does not exist at

x = 0. The second derivative is positive at x → +∞, it changes sign at x = −1, but
it does not change sign at x = 0. Hence, the graph is concave down in (−∞,−1)
and concave up in each of the intervals (−1, 0) and (0, +∞). The only point of
inflection is x = −1, y = f(−1) = −6.

The graph has no asymptotes: no vertical asymptotes since the function is con-
tinuous everywhere, and no oblique asymptotes since at x → ±∞ the function
grows like x5/3, which is not linear.

The graph is shown in the figure. (Note that there is an inflection point at
(−1,−6) which Maple does not show well.)

2a. Find the limit lim
x→+∞

(
x2 + 1
x + 2

)1/x

.

Solution: Denote the limit in question by A. Then

ln A = lim
x→+∞

ln(x2 + 1)− ln(x + 2)
x

∗= lim
x→+∞

(
2x

x2 + 1
− 1

x + 2

)
= 0

(where ∗ indicates L’Hôpital’s rule) and A = e0 = 1.

2b. Find the values of parameters a and b such that

lim
x→0

(
tan 2x

x3
+

a

x2
+

sin bx

x

)
= 0.
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Solution: First, note that limx→0
sin bx

x
= b (with or without L’Hôpital’s rule).

For the other two terms, we have

lim
x→0

(
tan 2x

x3
+

a

x2

)
= lim

x→0

tan 2x + ax

x3

∗= lim
x→0

2 sec2 2x + a

3x2
= lim

x→0

2 + a cos2 2x

3x2 cos2 2x

Since 3x2 → 0 and cos 2x → 1, this limit is infinity unless 2 + a cos2 2x → 0, which
is the case if and only if a = −2. Assuming a = −2, we can apply L’Hôpital’s rule
two more times:

lim
x→0

2− 2 cos2 2x

3x2

∗= lim
x→0

8 cos 2x sin 2x

6x
= lim

x→0

4 sin 2x

3x

∗= lim
x→0

8 cos 2x

3
=

8
3
.

Hence, a = −2 and b = −8/3.

3. The stiffness S of a rectangular beam is proportional to its width times the
cube of its height. Find the dimensions of the stiffest beam that can be cut from a
cylindrical log of diameter d.

Solution: Let w and h be the width and the height of the beam, respectively.
Then w2 + h2 = d2 and, hence, S(h) = h3

√
d2 − h2. Strictly speaking, this ex-

pression makes sense on the open interval h ∈ (0, d) only, but we extend it to the
closed segment [0, d]. Thus, we need to find the absolute maximum of the function
S(h) = h3

√
d2 − h2 on [0, d].

Compute the derivative S′ = h2(3d2−4h2)/
√

d2 − h2 and find the critical points:
h = 0, h = d, and h = d

√
3/2. (The other two points h = −d and h = −d

√
3/2 are

not in the interval.) The endpoints 0 and d are already among the critical points.
Compute the values: S(0) = S(d) = 0 and S(d

√
3/2) = 3d4

√
3/16, and compare;

the maximum is attained at h = d
√

3/2 (and hence w = d/2).
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4a. Use known formulas for areas to evaluate
∫ 0

−4

√
16− x2 dx.

Solution: The integral in question represents the area of one quoter of the disk of
radius 4 =

√
16 about the origin (the quoter that is in the quadrant x ≤ 0, y ≥ 0).

Hence, it equals 1
4π(4)2 = 4π.

4b. Find the values a < b that minimize the integral I(a, b) :=
∫ b

a

(x4 − 2x2)dx.

Solution: The integrant x4 − 2x2 = x2(x2 − 2) is negative for −√2 < x <
√

2
and positive for x < −√2 or x >

√
2. Hence, it is obvious geometrically that I(a, b)

takes its minimal value, which is negative, at (a, b) = (−√2,
√

2). For a formal
proof, observe that I is positive whenever a < b ≤ −√2 or

√
2 ≤ a < b, and for

the other pairs, we can estimate I using the additivity property. For example, if
a ≤ −√2 ≤ b <

√
2, one has

I(a, b) = I(a,−
√

2) + I(−
√

2,
√

2)− I(b,
√

2) > I(−
√

2,
√

2)

since I(a,−√2) ≥ 0 and I(b,
√

2) > 0 by the domination property.

5a. Compute
∫ 1

−1

(x2 − 2x + 3)dx.

Solution: ∫ 1

−1

(x2 − 2x + 3)dx =
(

x3

3
− x2 + 3x

) ∣∣∣∣
1

−1

=
20
3

.

5b. Compute
∫ π

0

1
2
(cos x + |cos x|)dx.

Solution: We have cos x ≥ 0 for x ∈ [0, π/2] and cos x ≤ 0 for x ∈ [π/2, π].

∫ π

0

1
2
(cosx + |cosx|)dx

=
∫ π/2

0

1
2
(cos x + cos x)dx +

∫ π

π/2

1
2
(cos x− cos x)dx

=
∫ π/2

0

cos x dx = − sin x

∣∣∣∣
π/2

0

= 1.


