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Abstract We study some physical properties of black holes
in Null Aether Theory (NAT) – a vector-tensor theory of grav-
ity. We first review the black hole solutions in NAT and then
derive the first law of black hole thermodynamics. The tem-
perature of the black holes depends on both the mass and the
NAT “charge” of the black holes. The extreme cases where
the temperature vanishes resemble the extreme Reissner–
Nordström black holes. We also discuss the contribution of
the NAT charge to the geodesics of massive and massless
particles around the NAT black holes.

1 Introduction

Black holes are of fundamental importance today. This is
because of the fact that studies of their properties from
both theoretical and observational points of view are being
expected to shed much light on the nature of the gravity at
strong gravity regimes and at very high energy scales where
the gravitational force becomes dominant over the other inter-
actions. For this reason, they have always been at the heart
of the theoretical investigations involving gravitational phe-
nomena, especially since the discovery of the four laws of
black hole mechanics [1] and Hawking radiation [2] in the
context of general theory of relativity (GR). More impor-
tantly, the thermodynamic interpretation of the four laws [3]
and the attributions of temperature and entropy to black hole
horizon have provided useful information about the nature
of quantum gravity through holography [4,5] and its spe-
cific realization AdS/CFT correspondence [6–8]. Observa-
tionally, recent GW events [9–13] and the image taken by
Event Horizon Telescope Collaboration [14] have proven the
existence of black holes by direct observations, which has
also justified the theoretical studies conducted so far.
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The event horizon of a black hole is a globally-defined
causal boundary which separates the inside of the black hole
from the outside. More formally, it is a null surface separat-
ing those light rays reaching infinity from those falling to the
singularity inside. Since it is defined globally, the determina-
tion of the location of the event horizon requires in general
the knowledge of the global structure of the spacetime. How-
ever, in the case of static spherically symmetric spacetimes,
one can introduce convenient coordinate systems in which
the determination is made by looking for places where the
local light cones tilt over. This implies that the existence of
event horizons (and of black holes) has to do with the local
Lorentz invariance of the spacetime. Therefore, it is of great
importance to explore the properties of black holes in gravity
theories that exhibit violations of local Lorentz invariance.

Lorentz symmetry is built in GR which describes grav-
itation well at low energy scales by assuming the space-
time structure as continuous and smooth, excluding singu-
larities. But this symmetry might be broken at very high
energy scales, especially at the Planck or quantum gravity
scales, where quantum gravitational effects must be taken
into account. In fact, there are theories, such as string theory
and loop quantum gravity, contemplating that the quantum
fluctuations at or beyond the Planck scale might be so vio-
lent that the spacetime ceases to be continuous and has a
discrete structure, and thereby the Lorentz symmetry is not
valid [15,16]. This way of reasoning immediately leads to
the contemplation of gravity theories in which Lorentz sym-
metry is broken explicitly.

One way to construct a Lorentz-violating gravity theory
is to assume the existence of a vector field of constant norm
which dynamically couples to the metric tensor at each point
of spacetime. In other words, the spacetime curvature is deter-
mined together by the metric tensor and the coupled vector
field in spacetime. Such a vector field is referred to as the
“aether” because that generally defines a preferred direction
in spacetime and breaks the local Lorentz invariance. Eintein-
aether theory [17] is such a theory in which the vector field is
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timelike everywhere and explicitly breaks the boost sector of
the Lorentz symmetry. The internal structure and dynamics
of this theory have been studied extensively in the literature
[18–42].

Recently, a new vector-tensor theory of gravity called the
Null Aether Theory (NAT) [43] has been introduced into the
realm of modified gravities. This theory assumes the dynam-
ical vector field (the aether) inherent in the theory to be null at
evey point in spacetime. In the paper [43], we first studied the
Newtonian approximation of the theory and showed that it
reproduces the Poisson equation at the perturbation order by,
in some cases, rescaling the Newton’s constant GN . Then we
obtained exact spherically symmetric solutions in this theory
by properly choosing the null vector field and we showed that
there is a large class of solutions depending on the parameters
of the theory. Among these, there are Vaidya-type nonstation-
ary solutions because of the null aether behaving as a null
matter source, and for some special values of the parameters,
stationary Schwarzschild–(A)dS and Reissner–Nordström–
(A)dS type solutions with some effective cosmological con-
stant and some “charge” sourced by the aether, respectively.
We also discussed the existence of stationary black holes
among these exact solutions for arbitrary values of the param-
eters of the theory. (See [43] for details and explicit structures
of these solutions.) To see the effect of the null aether in cos-
mology, we studied the flat FLRW metric and, taking the
spatial component of null aether lying along the x axis, we
found all possible perfect fluid solutions of NAT. We also
discussed the existence of the Big-bang singularity and the
accelerated expansion of the universe in NAT. In addition
to these, to better understand the internal dynamics of the
theory, we constructed exact wave solutions by specifically
considering the Kerr–Schild–Kundt (KSK) class of metrics
[44,45] with maximally symmetric backgrounds. After giv-
ing the exact AdS-plane wave solutions of NAT in D ≥ 3
dimensions, we also obtained all possible pp-wave solutions
of the theory propagating in the flat background spacetime.
These exact wave solutions are consistent with the linearized
waves of the theory [46]. In Einstein-aether theory, spheri-
cally symmetric black hole solutions exist for special values
of parameters of the theory (see, for example, [23] and [26]).
So the solution class is restricted. On the other hand, as we
presented in our paper, in NAT there is a large class of black
hole solutions for any values of the theory’s parameters (see
also [43]). Similarly, gravitational plane wave solutions in
Einstein-aether theory exist under certain conditions on the
parameters of the theory (see, for instance, [41]). However, in
NAT we have exact plane wave and pp-wave solutions valid
for any values of the parameters of the theory (see [43]).

In this paper, we will continue our explorations in the
implications of the exact spherically symmetric solutions and
black hole spacetimes found in [43]. After giving a brief
review of the Newtonian limit and static spherically sym-

metric solutions of NAT, we will first discuss the possible
effect of the null aether field on the solar system dynam-
ics by extracting the so-called Eddington-Robertson-Schiff
parameters β and γ for our solutions, which explicitly appear
in the perihelion precession and the light deflection expres-
sions. We will see that, at the post-Newtonian order, there
is no contribution from the aether field to the deflection of
light rays passing near a massive body; that is the same as
in GR! However, there is an explicit contribution, at the
post-Newtonian order, from the aether field to the perihe-
lion precession of planetary orbits. This fact can be used
to constrain the parameters of the theory from solar sys-
tem observations. Then we shall present the details of the
black hole spacetimes by discussing the singularity struc-
ture, the ADM mass of the asymptotically flat solutions, and
the thermodynamics in order. In the thermodynamics of NAT
black holes especially, it is interesting to note that an appro-
priate definition of the NAT “charge” reduces the horizon
thermodynamics to that of the Reissner–Nordström–(A)dS
black hole in GR and the first law takes the standard form
if the theory’s parameters c2 and c3 satisfy a strict condi-
tion. Lastly, we will also discuss the circular geodesics of
massive and massless particles around the NAT black holes
to see the effect of the null aether on the particle trajec-
tories in the spacetime. We will show that the null aether
substantially changes the behavior of the circular orbits of
massive and massless particles. We will also calculate the
perihelion precession of planets and the deflection of light
rays explicitly in the case of a nonzero cosmological con-
stant.

The organization of the paper is as follows. In Sect. 2, we
give the Null Aether Theory in detail. In Sect. 3 we review
the Newtonian approximation of the theory and observe that
the results we obtained in this section are consistent with the
exact solutions in the next section. In Sects. 4 and 5, we dis-
cuss exact spherically symmetric solutions and black hole
spacetimes in NAT, respectively. In Sect. 6, we obtain the
ADM mass of the asymptotically flat NAT black holes. In
Sect. 7, we study the first law of black hole thermodynamics.
In Sect. 8, we obtain the circular orbits of massive and mass-
less particles around the NAT black holes. Finally, in Sect. 9,
we conclude by summarizing our work and indicating some
possible future directions.

We use the metric signature (−,+,+,+, . . .) throughout
the paper.

2 Null Aether theory

Aether theory is a generally covariant theory of gravity in
which the metric tensor (gμν) of the spacetime dynamically
couples, through covariant derivatives, to a vector field (vμ)
– referred to as the “ aether.” In the absence of matter fields,
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the action of the theory can be written as [43]

I = 1

16πG

∫
d4x

√−g [R − 2� − Kμν
αβ∇μvα∇νv

β

+ λ(vμvμ + ε)], (1)

where R is the Ricci scalar, � is the bare cosmological con-
stant, and

Kμν
αβ = c1g

μνgαβ + c2δ
μ
α δν

β + c3δ
μ
β δν

α − c4v
μvνgαβ,

(2)

with the dimensionless constant parameters c1, c2, c3, c4.
From now on, throughout the text, we shall use the shorthand
notation ci j = ci + c j for combinations of these constants.
When ε = −1, the aether field is timelike and this case
corresponds to the Einstein-Aether theory of [17]. In our
case, however, ε = 0 and the aether becomes a null vector
field. The Lagrange multiplier λ in (1) is introduced into the
theory to explicitly enforce the nullity of the vector field; that
is, to have

vμvμ = 0 (3)

at each point of the spacetime. Therefore the independent
variables in the theory are gμν , vμ, and λ. The field equations
are then obtained by varying the action (1) with respect to
these fields: Varying with respect to λ immediately leads to
the null constraint (3) and, making use of it, varying with
respect to gμν and vμ respectively yields

Gμν + �gμν = ∇α

[
Jα

(μ vν) − J(μ
α vν) + J(μν) vα

]
+ c1

(∇μvα∇νv
α − ∇αvμ∇αvν

)

+ c4v̇μv̇ν + λvμvν − 1

2
Lgμν, (4)

c4v̇
α∇μvα + ∇α J

α
μ + λvμ = 0, (5)

where we used the identifications

v̇μ ≡ vα∇αvμ, (6)

Jμ
α ≡ Kμν

αβ∇νv
β, (7)

L ≡ Jμ
α∇μvα. (8)

Obviously, the Minkowski metric (ημν) together with a con-
stant null vector (vμ = const.) and λ = 0 constitute a solu-
tion to NAT. Since being null, the zero ather field (i.e. vμ = 0)
with an arbitrary λ reduces the theory to the usual general rel-
ativity; however, this trivial case can be distinguished from
the nontrivial aether case by imposing certain initial and
boundary conditions on the solutions of the Einstein-Aether
equations (4) and (5). (See the discussion in [43].)

Since the aether field in NAT is null by construction, one
can always introduce a scalar degree of freedom into the the-
ory. The reasoning is as follows: First set up, at each point in
spacetime, a null tetrad eaμ = (lμ, nμ,mμ, m̄μ), where lμ and

nμ are real null vectors with lμnμ = −1, and mμ is a com-
plex null vector orthogonal to lμ and nμ, and then assume the
null aether vμ is proportional to the one null leg of this tetrad,
say lμ; i.e. vμ = φ(x)lμ. Thus this geometric construction
enables us to naturally introduce a scalar function φ(x) – the
spin-0 part of the aether field – which generally contains the
physical meaning of the aether by carrying a nonzero “ aether
charge.”

3 Newtonian limit of Null Aether theory

The Newtonian limit of the theory can be achieved by assum-
ing the gravitational field is weak and static and produced by
a nonrelativistic matter field. Also the cosmological constant
plays no role in this context so that it can be set equal to zero.
Therefore in taking the Newtonian limit, we can write the
metric in xμ = (t, x, y, z) as

ds2 = −[1+2(�x)]dt2+[1−2(�x)](dx2+dy2+dz2),

(9)

where (�x) is the gravitational potential on the order of G,
and take the matter energy-momentum tensor as

Tmatter
μν = (ρm + pm)uμuν + pmgμν + tμν, (10)

where uμ = √
1 + 2 δ0

μ is the four-velocity of the matter
field, ρm and pm are the mass density and pressure, and tμν

is the stress tensor with uμtμν = 0. Then perturbing also
the aether field appropriately, we consider only the zeroth
and first order (linear) terms in vμ and gμν in the Eistein–
Aether Eqs. (4) and (5). At this point, however, there appear
three distinct cases in perturbing the aether field, with the
associated Newtonian limits:

Case 1: Let us decompose the null aether field as

vμ = aμ + kμ, (11)

where aμ = (a0, a1, a2, a3) is a constant null vector repre-
senting the background aether field and kμ = (k0, k1, k2, k3)

is the perturbation which need not necessarily be a null vec-
tor. The null constraint (3) then implies that

a2
0 = �a · �a, (12)

k0 = 1

a0
[�a · �k + 2a2

0], (13)

at the perturbation order. Since the metric is symmetric under
rotations, we can take, without loosing any generality, a1 =
a2 = 0 and for simplicity we will assume that k1 = k2 = 0.
Then one can show that

c3 = −c1 = −c2, k3 = −2a3
3c4

c1
, (14)
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∇2  = 4πG

1 − c1 a2
3

ρm = 4πGNρm . (15)

The last Eq. (15) is in the form of the Poisson equation and
implies that Newton’s gravitation constant GN is an effective
one defined by the scaling

GN = G

1 − c1 a2
3

. (16)

Similar scaling also appears in the context of Einstein-Aether
theory [30,31]. The constraint c3+c1 = 0 can be removed by
taking the stress part tμν into account in the energy momen-
tum tensor, then there remains only the constraint c2 = c1.

Case 2: Take the null aether field as vμ = φ(�x)lμ where lμ
is a null vector defined by the geometry (9) as

lμ = δ0
μ + (1 − 2)

xi

r
δiμ, (17)

with r = √
x2 + y2 + z2 and i = 1, 2, 3. Note that any

multiplicative function of �x can be absorbed into the scalar
function φ(�x). Now assuming the perturbation φ(�x) = φ0 +
φ1(�x) where φ0 = const. �= 0 and φ1 is at the same order as
G, we obtain

c1 + c3 = 0, c2 = 0, c4 = 0, φ1 = 2φ0, (18)

∇2 = 4πG

1 − c1φ
2
0

ρm = 4πGNρm . (19)

Again, the effective value of Newton’s constant can be seen
from (19)

GN = G

1 − c1φ
2
0

. (20)

This is, however, a very restricted aether theory because there
is only one independent parameter c1 left in the theory.

Case 3: Take the zeroth order scalar aether field in Case 2 as
zero; i.e., φ0 = 0. This means that φ(�x) = φ1(�x) and is at
the same order as G. Therefore, there is no contribution to
the Eq. (4) from the aether field at the linear order in G, and
from the 00 component of (4), we get

∇2 = 4πGρm, (21)

which is the Poisson equation unaffected by the null aether
field at the perturbation order. On the other hand, from the
i th component of the aether Eq. (5) we obtain, at the linear
order in G,

(c2 + c3)r
2x j∂ j∂iφ − (2c1 + c2 + c3)x

i x j∂ jφ

+[2c1 + 3(c2 + c3)]r2∂iφ − 2(c1 + c2 + c3)x
iφ = 0,

(22)

after eliminating the Lagrange multiplier λ by using the
zeroth order equation.

In the case of spherical symmetry, outside the mass dis-
tribution of mass M , the Poisson Eq. (21) gives

(r) = −GM

r
, (23)

and the condition (22) gives

φ(r) = a1

r (1+q)/2
+ a2

r (1−q)/2
, (24)

where a1 and a2 are arbitrary constants on the order of G and
we have defined the parameter

q ≡
√

9 + 8
c1

c23
, (25)

which is always positive by definition. Therefore, we can
immediately see that the three of the parameters of NAT must
satisfy the constraint

c1

c23
≥ −9

8
. (26)

Specifically, when q = 0 (c1 = −9c23/8), we have

φ(r) = a1 + a2√
r

; (27)

when q = 3 (c1 = 0), we have

φ(r) = a1

r2 + a2r; (28)

or when q = 1 (c1 = −c23), we have

φ(r) = a1

r
+ a2. (29)

4 Spherically symmetric static solutions in Null Aether
Theory

In this section, we shall review the spherically symmetric
static solutions in NAT found previously in the original work
[43]. The metric written in the Eddington–Finkelstein coor-
dinates xμ = (u, r, θ, ϕ) is

ds2 = −
[

1 − �

3
r2 − 2 f (r)

]
du2

+ 2dudr + r2dθ2 + r2 sin2 θdϕ2, (30)

where u is the null coordinate, then taking the null aether field
– assumed to be present at each spacetime point in the theory
– is aligned with this coordinate, we obtain the solution

vμ = φ(r)δuμ, (31)

φ(r) = a1

r (1+q)/2
+ a2

r (1−q)/2
, (32)

f (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a2
1b1

r1+q
+ a2

2b2

r1−q
+ m̃

r
, for q �= 0,

m

r
, for q = 0,

(33)
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where a1, a2, m̃, and m are just integration constants and

q ≡
√

9 + 8
c1

c23
, b1 = 1

8
[c3 − 3c2 + c23q],

b2 = 1

8
[c3 − 3c2 − c23q]. (34)

As we will show later, the constants m̃ and m are the mass
parameters of the solutions. At this point, it is also important
to note that the exact solution (32) is the same as the linearized
one (24) obtained in the previous section. This means that the
null aether contribution to the metric [see Eq. (33)] comes in
at the order of G2.

Now performing the coordinate transformation

du = dt + dr

1 − �
3 r

2 − 2 f (r)
, (35)

one can bring the metric (30) into the Schwarzschild coordi-
nates

ds2 = −h(r)dt2 + dr2

h(r)
+ r2dθ2 + r2 sin2 θdϕ2, (36)

where

h(r) ≡ 1 − �

3
r2 − 2 f

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − �

3
r2 − 2a2

1b1

r1+q
− 2a2

2b2

r1−q
− 2m̃

r
(for q �= 0),

1 − �

3
r2 − 2m

r
(for q = 0).

(37)

together with

vμ = φ(r)

(
δtμ + 1

h
δrμ

)
. (38)

The metric (36) describes the spherically symmetric static
solutions in NAT, and interestingly we have lots of them due
to the free parameters q, b1, and b2 in the theory. The solution
for q = 0 is the usual Schwarzschild-(A)dS spacetime but
there are also solutions corresponding to some other specific
values of the parameter q which are of special importance;
for instance,

• When q = 1 (c1 = −c23), h(r) ≡ 1 − A − �r2/3 −
B/r2 − 2m̃/r , where A ≡ 2a2

2b2 and B ≡ 2a2
1b1: This

is a Reissner–Nordström–(A)dS type solution if A = 0.
• When q = 2 (c1 = −5c23/8), h(r) ≡ 1 − �r2/3 −

A/r3 − Br − 2m̃/r , where A ≡ 2a2
1b1 and B ≡ 2a2

2b2:
this solution with A = 0 has been obtained by Mannheim
and Kazanas [47] in conformal gravity who also argue
that the linear term Br can explain the flatness of the
galaxy rotation curves.

• When q = 3 (c1 = 0), h(r) ≡ 1 − A/r4 − Br2 − 2m̃/r ,
where A ≡ 2a2

1b1 and B ≡ �/3 + 2a2
2b2: This is a

Schwarzschild-(A)dS type solution if A = 0. Solutions
involving terms like A/r4 can be found in, e.g., [23,48].

Before concluding this section, one last remark must be
made on the possible effects of the null aether field on the
solar system observations. For this purpose, we will consider
the post-Newtonian parameters in the case of a static, spher-
ically symmetric mass distribution like the Sun. Since the
cosmological constant is totally negligible in this setting, the
metric produced by such a body can be expanded to post-
Newtonian order as [49,50]

ds2 = −
(

1 − 2GM

r
+ 2(β − γ )

G2M2

r2 + · · ·
)
dt2

+
(

1 + 2γ
GM

r
+ · · ·

)
dr2

+ r2dθ2 + r2 sin2 θdϕ2, (39)

where M is the mass of the body and β and γ are the so-called
Eddington-Robertson-Schiff parameters. These two param-
eters explicitly appear in the expressions for the perihelion
precession of a planetary orbit and the deflection of light rays
passing near the body which are respectively given by

�ϕ =
(

2 − β + 2γ

3

)
6πGM

a(1 − e2)
, (40)

ψ =
(

1 + γ

2

)
4GM

b
, (41)

where a is the semi-major axis and e is the eccentricity of
the orbit and b is the impact parameter. In general relativity,
from the Schwarzschild metric, it can immediately be seen
that β = γ = 1.

In NAT, we have the solutions given by (36) and (37).
So taking � = 0, for the case q = 0, since we recover
the usual Schwarzschild solution, we can immediately have
β = γ = 1 just as in GR, but when q is a positive integer,
the expanded metric is

ds2 = −
(

1 − 2m̃

r
− 2a2

1b1

r2 + · · ·
)
dt2

+
(

1 + 2m̃

r
+ · · ·

)
dr2

+ r2dθ2 + r2 sin2 θdϕ2, (42)

where we have assumed a2 = 0 just for simplicity. It should
be noted that the terms with q > 1 do not contribute to the
post-Newtonian order. In other words, only the term with
q = 1 has contribution to the post-Newtonian order. Now,
knowing that m̃ ∼ G and a1 ∼ G and comparing (42) with
(39), we can read off the post-Newtonian parameters as

β = 1 − a2
1b1

m̃2 , γ = 1. (43)
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Therefore, we can see from (41) that the null aether does not
affect the light deflection at the post-Newtonian order; it is
the same as in GR. However, it is obvious from (40) that it
does affect the perihelion precessions of planets as

�ϕ =
(

1 + a2
1b1

3m̃2

)
6πm̃

a(1 − e2)
, (44)

This result tells us that, if b1 > 0, the perihelion advance is
greater than that of GR, and if b1 < 0, it is less than that of
GR.

5 Black hole solutions in Null Aether Theory

The metric (36) also describes spherically symmetric static
black hole solutions in NAT. The event horizons of these
solutions are in principle determined by the positive real
roots of the equation h(r) = 0 [see Eq. (37)]. In general,
the existence of these roots crucially depends on the signs
and/or values of and the relation between the parameters
(q,�, a1, a2, b1, b2, m̃,m) appearing in (37). For example,
in the case q = 0, there are two distinct positive real roots,
which are those of the usual Schwarzschild-dS black hole,
if � > 0 and 0 < 9�m2 < 1, and there is only one posi-
tive root, which is that of the usual Schwarzschild-AdS black
hole, if � < 0. On the other hand, the determination of the
positive real roots of the equation h(r) = 0 in the other case
q �= 0 is not that easy. However, we can generally make
the following points. If q is an integer, h(r) = 0 becomes
a polynomial equation which may have at least one positive
real root representing the event horizon of the corresponding
black hole. And, if q is not an integer, the limits limr→0+ h(r)
and limr→∞ h(r) may be used to just determine the existence
of the real roots; more explicitly, since h(r) is a continuous
function of r , when the signs of the limits are opposite, it is
certain that there is at least one real root of h(r). For example,
in Table 1, we classified the cases in which there is at least
one real root of the equation h(r) = 0. There might be other
possibilities, of course, but by giving these examples, we are
trying to point out that there are black hole solutions in the
general case q �= 0 as well.

Black hole solutions may have one or multiple horizons.
We call r = r0 the largest root of h(r) and hence the one

Table 1 Some cases in which black holes certainly exist in NAT

q b1 b2 � limr→0+ h(r) limr→∞ h(r)

(0, 3) + ± − − +

(0, 3) − ± + + −
(3,∞) + − ± − +
(3,∞) − + ± + −

corresponding to the event horizon. When there is only one
event horizon, the metric function h(r) can be written as

h(r) = (r − r0)g(r), (45)

where g(r) is a continuous function for r ≥ r0 and g(r) > 0
because h(r) must be positive for r > r0. This means that

h′(r0) = g(r0) > 0 (46)

due to the continuity of g(r). When there are multiple event
horizons, say the number is m, the metric function h(r)
should be in the form

h(r) = (r − r1)(r − r2) · · · (r − rm)g(r), (47)

where g(r) > 0 for r greater than the largest root, say r0.
Again, due to the continuity of g(r) for r ≥ r0,

h′(r0) = (r0 − r1)(r0 − r2) · · · (r0 − rm)g(r0) > 0, (48)

where we assume that all the roots are distinct and the event
horizon is at r0, the largest root of (47); that is, r0 > r1 >

· · · > rm . When some or all of the roots are coincident, we
have the extreme case. For example, for two coincident roots,

h(r) = (r − r0)
2g(r), (49)

where g(r) > 0 for r > r0. Then

h′(r0) = 0. (50)

From now on, we shall admit this condition as the indicator
of an extreme black hole.

To understand the singularity structure of our solutions
given in (36) and (37), we shall calculate the two of the cur-
vature scalars; namely, the Ricci and Kretschmann scalars.
For q �= 0, they are

R = 4� + 2q

[
A1(q − 1)

r3+q
+ A2(q + 1)

r3−q

]
, (51)

K = Rμναβ R
μναβ

= 48m̃2

r6 + 8�2

3
+ 8q�

3

[
A1(q − 1)

r3+q
+ A2(q + 1)

r3−q

]

+ 16m̃

[
A1(q + 2)(q + 3)

r6+q
+ A2(q − 2)(q − 3)

r6−q

]

+ 4

[
A2

1(12 + 20q + 17q2 + 6q3 + q4)

r2(3+q)

+2A1A2(12 − 9q2 + q4)

r6

+ A2
2(12 − 20q + 17q2 − 6q3 + q4)

r2(3−q)

]
, (52)

where we made the definitions A1 ≡ a2
1b1 and A2 ≡ a2

2b2.
It can be seen that the only singularity is at r = 0. From
these, we can also recover the standard Schwarzschild-(A)dS
expressions by setting A1 = 0 and A2 = 0 simultaneously.
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6 ADM mass of asymptotically flat solutions

To obtain asymptotically flat solutions, we should immedi-
ately take � = 0, and the metric (36) becomes

ds2 = −h(r)dt2 + dr2

h(r)
+ r2dθ2 + r2 sin2 θdϕ2, (53)

where

h(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 2a2
1b1

r1+q
− 2a2

2b2

r1−q
− 2m̃

r
(for q �= 0),

1 − 2m

r
(for q = 0).

(54)

As is obvious, in the q = 0 case, the metric is just the usual
Schwarzschild spacetime which is explicitly asymptotically
flat. However, in the q �= 0 case, to achieve asymptotically
flat boundary conditions, one should consider the following
cases separately: Since q > 0 by definition (see Eq. (34)),

h(r) |r→∞= 1

×
⎧⎨
⎩

for 0<q<1 (if a1 �= 0 and a2 �= 0) or (if a1=0 or b1=0),

for 0 < q (if a2 = 0 or b2 = 0).

(55)

For stationary spacetimes with the time translation Killing
vector χμ, the ADM and Komar masses are identical. So, the
ADM mass can be calculated from

MADM = − 1

4πG

∫
B∞

∇μχνd�μν, (56)

where d�μν = −u[μsν ]d A, with d A = r2 sin θdθdϕ, is
the differential surface element on a two-sphere B living in
a spacelike hypersurface � of the spacetime. Here, uμ =
−√

hδtμ and sμ = δrμ/
√
h are the unit timelike and spacelike

normals to B, respectively, and B∞ is a two-sphere at spatial
infinity. Regarding the stationary nature of our spacetime
(36), the corresponding Killing vector field is χμ = δ

μ
t and

∇μχνd�μν = −h′

2
d A, (57)

where h(r) is given by (37) with � = 0 and the prime denotes
differentiation with respect to r . Then, the ADM mass in (56)
reduces to

MADM = r2

2G
h′ |r→∞ . (58)

For the case q = 0, the ADM mass reads as

MADM = m

G
, (59)

but for the case q �= 0, we obtain

MADM = 1

G

[
m̃ + (1 + q)

a2
1b1

rq
+ (1 − q)

a2
2b2

r−q

]
|r→∞ .

(60)

Then one realizes that, for having an asymptotically well
defined ADM mass for NAT black holes,

MADM = m̃

G

⎧⎨
⎩

for q = 1 (if a1 �= 0 and a2 �= 0) or (if a1=0 or b1=0),

for 0 < q (if a2 = 0 or b2 = 0).

(61)

It should be noted that having an asymptotically flat space-
time with a well defined ADM mass is guaranteed only
by the second case in (61). In all these cases, the ADM
mass is rescaled through the definition of G in the the-
ory; for example, in the Newtonian limit Case 1 of Sect.
3, G = GN (1 − c1a2

3) and

MADM = m̃

GN (1 − c1a2
3)

. (62)

Although both cases a2 = 0 and b2 = 0 give the same
ADM mass (61) for q > 0 for an observer at infinity, they
differ if one considers the aether field φ by putting different
constraints on the parameter q. That is,
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

If a2 = 0 ⇒ φ = a1

r (1+q)/2
, 0 < q,

If b2 = 0 ⇒ φ= a1

r (1+q)/2
+ a2

r (1−q)/2
, 0 < q= c3−3c2

c23
<1.

(63)

For both of these cases, the constraints on q parameter
guarantees that the aether field is also well behaved at asymp-
totic region.

We define the NAT charge in the following way. Let

fμν = ∇μvν − ∇νvμ (64)

be an antisymmetric tensor constructed from the null aether
vector field vμ and let the conserved current Jμ be defined
by

∇ν f
μν = 4πGJμ. (65)

It should be noted that the Einstein-Aether field equations (4)
and (5) can indeed be written in a form including the tensor
fμν . Then, from the conservation equation ∇μ Jμ = 0, we
can define the conserved charge as

QN =
∫

�

Jμdσμ, (66)
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where dσμ ≡ −uμdV with dV being the volume element of
a spacelike hypersurface � in the spacetime. Now with the
help of the Stokes’s theorem, we can write

QN =
∫

�

Jμdσμ = 1

4πG

∫
�

∇ν f
μνdσμ,

= 1

4πG

∫
B∞

f μνd�μν − 1

4πG

∫
BH

f μνd�μν, (67)

where d�μν = −u[μsν ]d A with uμ = −√
hδtμ, sμ =

δrμ/
√
h, and d A = r2 sin θdθdϕ, as before. Here, B∞ is

the boundary of � at spatial infinity and BH is the bound-
ary on the horizon. For the asymptotically flat black hole
solutions (36) the contribution of the B∞ integral becomes
zero. Thus, integrating the angular part and inserting the null
aether vector field (38), we obtain

QN = −r2

G
φ′ |r→r0 . (68)

This is the conserved NAT charge for the black hole solutions
(36). As an example, when a2 = 0, the conserved charge QN

is proportional to the parameter a1 in the solution as

QN = 1 + q

2

a1

Gr (q−1)/2
0

. (69)

7 Energy conditions

At this point, it would be interesting to see if there is any
condition on the parameter q in the solution (37) to have
a physical aether source in the field Eq. (4). The energy-
momentum tensor, tμν , of the aether field can be read from
the left hand side of (4), and so the weak energy condition
states that tμνuμuν ≥ 0 for an arbitrary timelike vector uμ.
Assuming � = 0, considering the metric (36), and taking
uμ = δ

μ
t /h, we obtain

ρ = tμνu
μuν = 1

r2 [1 − (rh)′]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− q

r3

[
2a2

1b1

rq
+ 2a2

2b2

r−q

]
(for q �= 0),

0 (for q = 0).

(70)

Here we know that r > r0 and q > 0 by definition. Then, for
q �= 0, to satisfy the weak energy condition, ρ ≥ 0, we have
the following cases.

• If a1 = 0 or b1 = 0, then b2 ≤ 0.
• If a2 = 0 or b2 = 0, then b1 ≤ 0.
• If a1 �= 0 and a2 �= 0, then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r >

(
a2

1b1

a2
2 |b2|

)1/2q

(for b1 > 0 and b2 < 0),

r0 < r <

(
a2

1 |b1|
a2

2b2

)1/2q

(for b1 < 0 and b2 > 0),

r0 < r (for b1 < 0 and b2 < 0).

(71)

8 Thermodynamics of NAT Black holes

Now we shall study the thermodynamics of NAT black holes
that we reviewed in Sect. 5. Here we first consider the case
a2 = 0. Then the metric function h(r) and the scalar aether
field φ(r) take the forms

h(r) = 1 − �

3
r2 − 2a2

1b1

r1+q
− 2m̃

r
, (72)

φ(r) = a1

r (1+q)/2
. (73)

The location of the event horizon r0 is given by h(r0) = 0
and the area of the event horizon is A = 4πr2

0 . Now let a1 =
GQr (q−1)/2

0 , where Q is related to the conserved NAT charge
QN in (69) as Q = 2 QN/(1 + q). With this identification,
(72) and (73) become

h(r) = 1 − �

3
r2 − 2G2Q2b1

r2

(r0

r

)q−1 − 2m̃

r
, (74)

φ(r) = GQ

r

(r0

r

)(q−1)/2
. (75)

At the event horizon location r0, we then have

h(r0) = 1 − �

3
r2

0 − 2G2Q2b1

r2
0

− 2m̃

r0
= 0, (76)

φ(r0) = GQ

r0
. (77)

It is interesting that the horizon condition (76) is independent
of the parameter q and, when b1 ≡ 1

8 [c3 − 3c2 + c23q] =
−1/2, it becomes that of the Reissner–Nordstrom–(A)dS
black hole in GR. In addition, the scalar aether field φ(r)
resembles the electric potential at r = r0.

Now assuming the entropy as S = k A, where k is a posi-
tive constant which takes the value 1/4 [2], and varying that,
we obtain

δS = 8πkr0
(
r0m̃δm̃ + r0QδQ + r0�δ�

)
, (78)

where r0m̃ = ∂r0
∂m , r0Q = ∂r0

∂Q , and r0� = ∂r0
∂�

. This relation
can be translated into the form of the first law of thermody-
namics as
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δm̃

G
= T δS + VφδQ + V δP, (79)

where the temperature T , the NAT charge potential Vφ , the
event horizon volume V , and the pressure P are given by

T = 1

8πGkr0r0m̃
= 1

16πGk
h′(r0), (80)

Vφ = − 1

G

r0Q

r0m̃
= −2b1

GQ

r0
= −2b1φ(r0), (81)

V = 8π
r0�

r0m̃
= 4

3
πr3

0 , (82)

P = − �

8πG
, (83)

where b1 takes −1/2 to get the standard expression for the
fist law. By using the discussions in Sect. 5, we can now
explicitly see from (80) that T > 0 for the non-extreme
cases and T = 0 for all the extreme cases.

As a remark, it is worth mentioning the following point.
The extremal event horizon r0 is a radius where h(r0) = 0
and h′(r0) = 0, and so, when � = 0, the extremal event
horizon for (76) can be obtained as

r0 = m̃, (84)

which can equivalently be written in terms of mass and aether
charge as

m̃2 = −2b1G
2Q2. (85)

This relation tells us that b1 must always be less than zero
and particularly for b1 = − 1

2 , one can obtain the relation
m̃2 = G2Q2 similar to the one in the case of the Reissner–
Nordstrom black hole in Einstein gravity, which is also obvi-
ous from (76).

The thermodynamics of the other case a1 = 0 is similar
to the case above in which a2 = 0. In this case, the metric
function h(r) and the scalar aether field φ(r) become

h(r) = 1 − �

3
r2 − 2a2

2b2

r1−q
− 2m̃

r
, (86)

φ(r) = a2

r (1−q)/2
. (87)

This time, defining a2 = GQr−(q+1)/2
0 , where Q is the NAT

“charge” again, we can write (86) and (87) as

h(r) = 1 − �

3
r2 − 2G2Q2b2

r2

(r0

r

)−(q+1) − 2m̃

r
, (88)

φ(r) = GQ

r

(r0

r

)−(q+1)/2
. (89)

At the event horizon location r0, however, we obtain the same
Eqs. (76) and (77)

h(r0) = 1 − �

3
r2

0 − 2G2Q2b2

r2
0

− 2m̃

r0
= 0, (90)

φ(r0) = GQ

r0
. (91)

The rest goes on like in the case of a2 = 0; the only difference
is that b1 must be replaced by b2 in all the Eqs. (78)–(85).

9 Null and timelike geodesics

9.1 Circular orbits

Here, we study the circular orbits at the equatorial plane, i.e
θ = π

2 , for the metric function (72) with a2 = 0. Accord-
ingly, we have two Killing vector fields Kμ = (∂t )

μ =
(1, 0, 0, 0) and Rμ = (

∂ϕ

)μ = (0, 0, 0, 1) corresponding to
the conserved energy E = −Kμ

dxμ

dσ
and conserved angular

momentum L = Rμ
dxμ

dσ
, respectively, where σ is an affine

parameter along the geodesics. Then, regarding the metric,
the energy and angular momentum magnitude of the orbiting
body are given by

E = h

(
dt

dσ

)
, L = r2

(
dϕ

dσ

)
. (92)

On the other hand, using the geodesics equation gμν
dxμ

dσ
dxν

dσ= ε, where ε = 0 and −1 denote the null and timelike
geodesics, respectively, we obtain

− h2
(
dt

dσ

)2

+
(
dr

dσ

)2

+ h

[
r2

(
dϕ

dσ

)2

− ε

]
= 0. (93)

Using the energy and angular momentum (92), we arrive at

1

2

(
dr

dσ

)2

+ V = E, (94)

where E = E2

2 and the potential V reads as

V = 1

2
h

(
L2

r2 − ε

)
. (95)

Substituting the metric function h in (72), we find the poten-
tial as

V = −ε

2
+ εm̃

r
+ L2

2r2 − m̃L2

r3 − 1

6
�L2

+1

6
ε�r2 + εa2

1b1

r1+q
− a2

1b1L2

r3+q
, (96)

where the first four terms are the standard terms as in GR
[51], and the last four terms are the new correction terms by
the cosmological constant and aether field, respectively. In
Fig. 1, we have plotted the potential function V versus r for
some sets of q, L and a2

1b1 parameters for the massive and
massless particles, respectively. For each set of parameters,
one can see that in general the deviation of the potential V
from GR potential for the massive particles is more than for
the massless particles. For both the massive and massless
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Fig. 1 The upper and lower plots are denoting the potential V for some typical values of the parameters for the massive and massless particles,
respectively

cases, by increasing q, the potential tends to GR. However,
by increasing L , the potential increases and deviates more
from GR. For b1 > 0, the potential decreases by increasing
a2

1b1 values and vice versa.
The circular orbits can be obtained as the radii where the

potential is flat, i.e dV
dr |r=rc= 0. Here rc denotes the circular

orbits. Then, the equation governing the circular orbits can
be obtained as

−εm̃

r2
c

− L2

r3
c

+ 3m̃L2

r4
c

+1

3
ε�r − ε(1 + q)a2

1b1

r2+q
c

+ (3 + q)a2
1b1L2

r4+q
c

= 0. (97)

For the GR limit by turning off the cosmological constant
and aether field (� = 0 and a1 = 0), we arrive at

− L2rc + 3m̃L2 − εm̃r2
c = 0, (98)

which admits the following solutions for the massless and
massive particles respectively
⎧⎪⎨
⎪⎩

ε = 0 : rc = 3m̃,

ε = −1 : rc± = L2±√
L4−12m̃2L2

2m̃ .

(99)

In the presence of the cosmological constant and aether
field, the Eq. (97) for the null geodesics reduces to

rc − 3m̃ − (3 + q)a2
1b1

rqc
= 0, (100)

where one can see that cosmological constant does not con-
tribute for the null geodesics but the aether field does as the
last term. Here, one may consider the particular case q = 1.
This case has two solutions as

rc± = 3m̃

2
± 3m̃

2

√
1 + 16a2

1b1

9m̃2 . (101)

Considering 9m̃2 � 16a2
1b1, we have

rc± �

⎧⎪⎪⎨
⎪⎪⎩

3m̃ + 4
3
a2

1b1
m̃ ,

−4

3

a2
1b1

m̃
.

(102)

Then, the second solution is a physical orbit only for b1 < 0.
Thus, in contrast to GR which has only one null circular orbit
as in (99), in the presence of aether field for b1 < 0, there
are two null circular orbits in which the radius of the outer
one is smaller than GR. For b1 > 0, there is only one null
circular orbit greater than the one in GR.

For the case of timelike circular orbits, solving Eq. (97)
for a generic q is impossible. Thus, one may consider the
particular case of q = 1 where the resulted equation will be
a 6th order equation for rc as (97) reduces to

L2r2
c − 3m̃L2rc − m̃r3

c+
1

3
�r6

c − 4a2
1b1L

2−2a2
1b1r

2
c=0.

(103)

Finding the general real and positive solutions to this equation
is not an easy task. However, for realizing the effect of aether
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field, one may consider � = 0 and rc > 2m̃ � 2a2
1b1 in the

Eq. (97) which leads to

L2rc − 3m̃L2 − m̃r2
c − 2a2

1b1rc = 0. (104)

This equation has two solutions as

rc± = L2 − 2a2
1b1

2m̃
± | L2 − 2a2

1b1 |
2m̃√√√√√√1 − 12m̃2

L2

(
1 − 2a2

1b1

L2

)2 . (105)

Following Carroll [51] for large L values, we obtain

rc± �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L2

m̃

(
1 − 2a2

1b1

L2

)
,

3m̃(
1 − 2a2

1b1

L2

) ,

(106)

where we have considered 1−2a2
1b1 > 0. Then, one can see

that the aether field changes the inner and outer circular orbits
of massive particles in GR given by rc− = 3m̃ and rc+ = L2

m̃ ,
respectively. Accordingly, for b1 < 0, the outer and inner
circular orbits will be larger and smaller, respectively, relative
to GR and vice versa. For

12m̃2 = L2

(
1 − 2a2

1b1

L2

)2

, (107)

these orbits coincide at

rc = 6m̃

1 − 2a2
1b1

L2

. (108)

One can see from (108) that the aether field changes the
smallest possible circular orbit for the massive particles as
rc = 6m̃ in GR.

9.2 Perihelion precession

The perihelion precession represents that non-circular orbits
are not perfect closed ellipses. To derive it, one should obtain
the evolution of the radial coordinate r as a function of angu-
lar coordinate ϕ, i.e. r = r(ϕ). To do this, using (92) we
write the Eq. (94) in the following form

1

2

(
dr

dϕ

)2 (
L

r2

)2

+ V = E . (109)

For more convenience, we introduce a new variable as x = 1
r .

Then, the above equation takes the following form

1

2

(
dx

dϕ

)2

+ Ṽ(x) = E
L2 , (110)

where

Ṽ(x) = 1

2

(
1 − 2m̃x + �

3x2 − 2a2
1b1x

1+q
)(

x2 − ε

L2

)
.

(111)

Then, Eq. (110) for the timelike geodesics becomes

d2x

dϕ2 + x = m̃

L2 + 3m̃x2 + �

3L2

1

x3

+a2
1b1(1 + q)

L2 xq + a2
1b1(q + 3)xq+2. (112)

This equation is the master equation for the perihelion pre-
cession in the context of NAT for generic q and b1 parame-
ters. Analytically solving this equation for generic q is not an
easy task and one may consider specific cases. For the case
of q = 1, this equation reduces to

d2x

dϕ2 + x= m̃

L2 + 3m̃x2+ �

3L2

1

x3 +2a2
1b1

L2 x + 4a2
1b1x

3.

(113)

Then, in comparison to the Newtonian gravity possessing the
equation d2x

dϕ2 +x = m̃
L2 , one can realize the GR, cosmological

constant and aether field corrections, respectively. One can
show that this equation admits the following solution [52]

x(ϕ) = m̃

L2 [1 + e cos(ϕ)]

+3m̃3

L4

{
1 + eϕ sin(ϕ) + e2

2

[
1 − 1

3
cos(2ϕ)

]}

+�L4

3m̃3

[
1 − 3

2
eϕ sin(ϕ)

]

+2m̃a2
1b1

L4

[
1 + 1

2
eϕ sin(ϕ)

]

+4m̃3a2
1b1

L6

{
1 + 3

2
eϕ sin(ϕ)

+3e2

2

[
1 − 1

3
cos(2ϕ)

]}
, (114)

where the first term is the solution for the Newtonian gravity
with the eccentricity parameter e, and the other terms are the
corrections by GR, cosmological constant and aether field.
Neglecting the higher order terms of the small eccentricity

parameter e and using the conditions m̃2

L2 � 1,
2a2

1b1

L2 � 1,
one can rewrite the above equation as

x(ϕ) � m̃

L2
{1 + e cos [(1 − ζ ) ϕ]} , (115)

where

ζ = 3m̃2

L2 − �L6

2m̃4 + a2
1b1

L2 . (116)
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Then, during each orbit of the planet, there is a perihelion
advance given by

�ϕ = 2πζ = 2π

(
3m̃2

L2 − �L6

2m̃4 + a2
1b1

L2

)
. (117)

One can rewrite this relation by converting L to the geomet-
ric quantities of each orbit. For this end, using the relation
governing ordinary ellipses as

r(ϕ) = (1 − e2)a

1 + e cos(ϕ)
, (118)

where a is the semi-major axis, one can obtain the angular
momentum as

L2 ≈ m̃(1 − e2)a. (119)

Then, by substituting (119) in (117), we obtain

�ϕ = 6πm̃

(1 − e2)a

[
1 − �(1 − e2)4a4

6m̃2 + a2
1b1

3m̃2

]
. (120)

Here, the correction term by the aether field is exactly same
as the one we previously obtained in (44) by using the post-
Newtonian approximation. It is seen that for � > 0 and
b1 < 0, we always have less perihelion precession relative
to GR. However, for � > 0 and b1 > 0, depending on
the value of contributions by aether field and cosmological
constant, we may have more or less precession. Also, there
is an interesting case for b1 > 0 in which the cosmological
constant and aether fields cancel out the effect of each other,
i.e for �(1−e2)4a4 = 2a2

1b1, leading to the same precession
as in GR.

9.3 Light deflection

To obtain the deflection angle of null geodesics, we set ε = 0
in the potential V in (111). Then, the equation governing null
geodesics takes the form of

d2x

dϕ2 + x = 3m̃x2 + a2
1b1(q + 3)xq+2, (121)

which shows that similar to the closed null geodesics in
Sect. 9.1, the cosmological constant does not contribute to the
light deflection angle. However, the aether field contributes.
Considering the case of q = 1, this equation reduces to

d2x

dϕ2 + x = 3m̃x2 + 4a2
1b1x

3, (122)

which has the following solution [52]

x(ϕ) = 1

r0
sin(ϕ) + m̃

r2
0

[1 − cos(ϕ)]2

+a2
1b1

2r3
0

[
−3ϕ cos(ϕ) + 1

4
sin(3ϕ)

]
, (123)

where the first term represents a straight line in polar coordi-
nates (x, ϕ), and r0 denotes the distance of closest approach
of the light from the gravitational center. Then, the second
and third terms denote the GR and aether field contributions
to the light deflection angle, respectively. The light deflection
angle, ψ , can be obtained using the condition x(π +ψ) = 0
in (123) as

ψ � 4m̃

r0
+ 3π

2

a2
1b1

r2
0

, (124)

where we have used the approximation relations sin(π +
ψ) � −ψ and cos(π + ψ) � −1 and dropped higher order
terms in m̃ and a2

1b1. Here, one realizes that depending on
the sign of the aether field parameter b1, the light deflection
can be more or less than the GR value given by the above first
term. For b1 < 0, the aether field decreases the light deflec-
tion angle relative to the Schwarzschild case in GR. This
is similar to the effect of charge in the Reissner–Nordström
solution [52,53].

10 Conclusion

In this work, we investigated the properties of the black hole
solutions found in NAT [43] which is a vector-tensor theory
of gravity with the vector field being null and defining the
aether field at each point of the spacetime. We first reviewed
the Newtonian limit of the theory and showed that the Pois-
son equation is recovered at the linear order in the grav-
itation constant G of the theory which, depending on the
form of the null vector, is related to the Newton’s constant
GN by a scaling factor. We also reviewed the exact spher-
ically symmetric static solutions in NAT and extracted the
post-Newtonian parameters β, γ from these solutions when
� = 0. In GR, these parameters are β = γ = 1 and in
NAT, for q = 0, we have the same values because the solu-
tion is the usual Schwarzschild metric in this case. How-
ever, for solutions with q > 0, taking a2 = 0 for simplicity,

we found that β = 1 − a2
1b1

m̃2 and γ = 1, meaning that, at
the post-Newtonian order, the aether does not contribute to
the light deflection expression, which is determined only by
γ , while it contributes to the perihelion advance expression,
which is determined by both β and γ . Since the perihelion

advance differs from the GR value by the term (
a2

1b1

3m̃2 ) where

b1 ≡ 1
8 [c3 − 3c2 + c23q] [see Eq. (44)], the effect of the null

aether is such that the GR value for the perihelion advance of
planets is increased (for b1 > 0) or decreased (for b1 < 0).
That is to say, solar system observations can be used to put
some constraints on the parameters of the theory.

We also studied the exact static black hole solutions in
NAT. We observed that, depending on the parameter q,
there is a large class of black hole solutions in the theory
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and showed, by calculating the curvature scalars Ricci and
Kretschmann, that all the these solutions are singular only at
r = 0. These black holes possess in general multiple event
horizons and the locations of these horizons are dependent
on the parameters (q,�, a1, a2, b1, b2, m̃,m) and the rela-
tions between them. There are also extreme cases in which
some or all of the event horizons coincide. To determine the
mass parameters of these solutions, we calculated the ADM
mass of the asymptotically flat black holes and showed that,
just like the mass parameter m in the case q = 0, the mass
parameter in the case q > 0 reads m̃ = GMADM , where G
is the gravitational constant appearing in the theory.

In the thermodynamics discussion of the NAT black holes,
we carried out a generic analysis in which the cosmological
constant is nonzero. First, defining the NAT “charge” appro-
priately, we showed that the horizon condition h(r0) = 0
and the scalar aether field φ(r0) at the horizon become simi-
lar to the ones of the Reissner–Nordström–(A)dS black hole
in GR, independently of the values of the parameter q. Then
we obtained the first law of thermodynamics in which the
contribution of the aether field appears as VφδQ, where
Vφ = −2b1φ(r0)withφ(r0) = GQ

r0
and Q is the NAT charge.

Therefore, for consistency, it turns out that b1 = −1/2 to
recover the standard form of the first law.

Lastly, we studied both the null and timelike geodesics
in the NAT black hole geometries. We explicitly derived the
general expression for the effective potential governing the
motion of the particles in the gravitational field including the
correction terms due to the cosmological constant and the
aether field. As is shown in Fig. 1, depending on the values
of (q, L , a2

1b1), it turns out that the deviation of the potential
from the GR value is more in the case of massive particles
than in the case of massless particles. In addition, by increas-
ing q, the potential tends to the GR one, while, by increasing
L , it deviates more from the GR value for both the massive
and massless particles. We also obtained the general equa-
tion governing the location of the circular geodesics for both
massive and massless particles to which there is no contri-
bution from the cosmological constant for the null geodesics
as in GR. For specifically q = 1, we showed that, in contrast
to GR possessing only one null circular orbit, there are two
circular orbits in the presence of the aether field for b1 < 0,
and of them, the outer one has a smaller radius than that of
the one in GR. For b1 > 0, on the other hand, there is always
only one circular orbit the radius of which is greater than
the one in GR. In the case of timelike geodesics, again for
b1 < 0, there are two different circular orbits: the outer and
the inner ones are, respectively, larger and smaller that the
ones in GR. As a particular case, when these circular orbits
coincide, the aether field makes the location smaller than in
GR if b1 < 0. We further studied the perihelion advance of
massive particles in this context. We explicitly calculated the

contributions of the cosmological constant and the null aether
field and showed that, when � = 0, the aether field contri-
bution is the exactly the same as the one obtained in the post-
Newtonian order. Finally, we investigated the issue of light
deflection angle. We showed that the cosmological constant
does not contribute to the light deflection angle. However,
the aether field contributes in which, depending on the sign
of the b1 parameter, the light deflection can be more or less
than in GR. Indeed, for b1 < 0, the aether field decreases the
light deflection angle relative to the Schwarzschild solution
in GR.

GR has been shown to pass all the experimental tests per-
formed so far within the solar system with great precisions
[50]. The corrections that we obtained in this work due to the
null aether field to the GR predictions are expected to be very
small and may fall into the error bands of the solar system
experiments. However, one can use these experiments to put
observational bounds on the parameters of NAT.

NAT is a new modified theory of gravity recently intro-
duced [43]. So far, we have investigated this theory from var-
ious respects: Newtonian limit, spherically symmetric solu-
tions, black holes, thermodynamics, circular geodesics, flat
cosmological solutions, exact plane waves, etc. But there are
some open problems regarding, for example, the stability
of the theory, PPN parameters, linearized waves, rotating
black holes, generic cosmological solutions, and inflationary
cosmologies. Therefore, to gain more understanding on the
internal structure and dynamics of NAT, one needs to further
investigate and pose analytical solutions to the theory.
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45. M. Gürses, S. Hervik, T.Ç. Şişman, B. Tekin, Phys. Rev. Lett. 111,

101101 (2013)
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