
 

Non-Einsteinian black holes in generic 3D gravity theories

Metin Gürses*

Department of Mathematics, Faculty of Sciences, Bilkent University, 06800 Ankara, Turkey

Tahsin Çağrı Şişman †

Department of Astronautical Engineering, University of Turkish Aeronautical Association,
06790 Ankara, Turkey

Bayram Tekin ‡

Department of Physics, Middle East Technical University, 06800 Ankara, Turkey

(Received 10 July 2019; published 25 September 2019)

The Bañados-Teitelboim-Zanelli (BTZ) black hole metric solves the three-dimensional Einstein’s theory
with a negative cosmological constant as well as all the generic higher derivative gravity theories based on
the metric; as such it is a universal solution. Here, we find, in all generic higher derivative gravity theories,
new universal non-Einsteinian solutions obtained as Kerr-Schild type deformations of the BTZ black hole.
Among these, the deformed nonextremal BTZ black hole loses its event horizon while the deformed
extremal one remains intact as a black hole in any generic gravity theory.
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I. INTRODUCTION

The black hole in 2þ 1 dimensions, the Bañados-
Teitelboim-Zanelli (BTZ) metric [1,2], as a solution to
vacuum Einstein’s gravity with a negative cosmological
constant, shares many of the features of the (3þ 1)-
dimensional realistic Kerr black hole. Due to the local
triviality of Einstein’s gravity in 2þ 1 dimensions, the BTZ
solution has been a remarkable tool in exploring the
quantum nature of the black hole geometry such as a
microscopic description of black hole entropy (see the
review [3] and the references therein). Three important
features of the BTZ geometry should be stressed. First,
being a locally Einstein metric, it solves all the metric based
higher curvature gravity equations derived from the most
general action

I ¼
Z

d3x
ffiffiffiffiffiffi
−g

p
LðRiem;∇Riem; � � �Þ: ð1Þ

Such metrics are called universal which are unaffected by
the quantum effects [4,5]. Generically, for dimensions

greater than three, Einstein metrics fail to solve higher
derivative theories but in three dimensions since the
Riemann tensor can be written in terms of the Einstein
tensorGμν as Rμανβ ¼ ϵμασϵνβσGσρ, any Einsteinian solution
also solves the higher derivative theory as long as the
cosmological constant is tuned accordingly. This fact is
quite important and paves way to study the Einstein metrics
such as the BTZ black hole as solutions to the low energy
quantum theory of gravity at any scale defined by the action
(1) where the nonmetric fields are set to zero or constant
values. Secondly, the BTZ geometry can be dressed with
two arbitrary functions to represent all the locally
Einsteinian metrics yielding the Bañados geometry as [6]

ds2 ¼ l2

�
dr2

r2
þ
�
rduþ 1

r
fðvÞdv

�

×

�
rdvþ 1

r
gðuÞdu

��
; ð2Þ

where u and v are null coordinates. The geometry corre-
sponds to the nonextremal rotating BTZ black hole for
constant nonvanishing values of f and g; and to the
extremal rotating BTZ black hole when one of these
constants becomes zero. Thirdly, within the cosmological
Einstein’s theory, the BTZ black hole has the uniqueness
property under the conditions described in [7,8].
Due to the importance of the BTZ black hole, one would

like to know its uniqueness and also whether it is preserved
as a black hole under the deformations described as
gμν ¼ ḡμν þ hμν in the generic higher derivative theory (1).
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Here, hμν is not a small perturbation, hence just like the
BTZ black hole ḡμν, the deformed metric gμν is expected to
solve the full field equations with the condition that the
black hole property is kept intact. Without a further
specification of the field equations of the theory, one
cannot proceed further with this most general deformation
in a theory independent way. Therefore, to keep the
universal nature of the BTZ black hole under this defor-
mation in the setting of the most general higher derivative
theory, we shall consider a specific deformation which is
called the Kerr-Schild–Kundt (KSK) type whose univer-
sality (i.e., it solves the generic gravity theory once a linear
scalar partial differential equation is solved) has been
shown in [9–11]. The KSK metric is in the form

gμν ¼ ḡμν þ 2Vλμλν; ð3Þ

where V is a scalar field and λ is a null vector field which
satisfy the properties

λμλμ ¼ 0; ∇μλν ≡ ξðμλνÞ;

ξμλ
μ ¼ 0; λμ∂μV ¼ 0; ð4Þ

for both the background and the full metric. The ξ vector is
defined via the second equation in (4) once the λ null vector
is chosen (a way to generate viable λ vectors from smooth
curves was given in [12]). For the KSK metrics, the Ricci
tensor becomes

Rμν ¼ ðQVÞλμλν −
2

l2
gμν;

where l is the AdS length and the operator Q is defined as

QV ≡
�
ḡμν∇̄μ∇̄ν þ 2ξμ∂μ þ

1

2
ξμξμ −

2

l2

�
V:

Then, for the pure cosmological Einstein theory, the non-
linear field equations Rμν ¼ 2Λgμν become linear in V and
boil down to [13]

QV ¼ 0; ð5Þ
once the trace of the field equations is solved as
Λ ¼ −1=l2. Given the background metric in some local
coordinates, one can find the local solution. For a general
gravity theory with the highest derivative order of (2N þ 2)
in the field equations withN ≥ 0, the field equations reduce
to [9,10,14]

YN
n¼1

ðQ −m2
nÞQV ¼ 0; ð6Þ

whose generic solution is V ¼ VE þPN
n¼1 Vn where the

Einsteinian part (VE) and the other (massive) parts, assum-
ing nondegeneracy, satisfy the following equations:

QVE ¼ 0; ðQ −m2
nÞVn ¼ 0: ð7Þ

One can also interpret these equations as transverse-
traceless perturbations of the background space; therefore,
they correspond to massless and massive gravitons. In
three dimensional Einstein’s theory, since there are no
gravitons, VE corresponds to pure gauge transformations
when the deformation hμν is assumed to be a perturbation
about the exact background. On the other hand, the Vn
solutions are the non-Einsteinian solutions with the Ricci
tensor Rμν ¼ ðPN

n¼1m
2
nVnÞλμλν − 2=l2gμν.

II. DEFORMATIONS OF BTZ

Along the lines described above, let us consider the
deformations of the BTZ black hole

ds̄2 ¼ −hdt2 þ dr2

h
þ r2

�
dϕ −

j
2r2

dt

�
2

; ð8Þ

with hðrÞ ¼ −mþ r2

l2 þ j2

4r2. We shall call the generic
deformation BTZ waves since the general solution will
be of the wave form depending on the null coordinates. As
we shall show below, among these only a subclass will
remain a black hole. In (8), m and j are constants
representing the mass and angular momentum, respectively.
The outer and inner horizons of the black hole are located at

r2� ¼ ml2

2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

j2

m2l2

s !
; ð9Þ

which coalesce for the extremal case j ¼ �ml at
r20 ¼ ml2=2.
To understand if and how the black hole nature of the

BTZ metric is changed by the KSK deformation, let us
study the event horizon. In the generic case, the symmetries
of the BTZ geometry are no longer symmetries of the KSK
geometry. Hence, the detection of the event horizon cannot
be done with the Killing vectors; instead, since the horizons
will be null hypersurfaces defined as level sets of r, let us
consider where the surface normal ∂μr becomes a null
vector in the BTZ-wave geometry as

Ω≡ gμν∂μr∂νr ¼ 0: ð10Þ

Using (3) and (8), Ω becomes

Ω ¼ hðrÞ − 2Vðλμ∂μrÞ2
¼ 2Vðt; r�;ϕÞðλrjr¼r�Þ2: ð11Þ

Here, to have Ω ¼ 0, Vðt; r�;ϕÞ ¼ 0 is a possibility but
recall that the metric function V must satisfy a theory
dependent differential equation. Then, to keep the BTZ
black hole intact in a theory independent way,
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λrjr¼r� ¼ 0 ð12Þ

must be satisfied. In this way, one has the deformed
black hole solutions for all generic gravity theories.
There can be other black hole solutions where the profile
function V satisfies the condition Vðt; r�;ϕÞ ¼ 0 or hðrÞ −
2Vðλμ∂μrÞ2 ¼ 0 for different r values. In these cases, since
V takes different functional forms in different gravity
theories then such black hole solutions will be theory
dependent; and given the theory, one can construct these.
Since we are interested in the KSK-type deformations of

the BTZ black hole which keep the event horizon intact, we
considered a null hypersurface of constant r to locate the
event horizon. However, for the KSK metric (3), in general,
a null hypersurface of the form Fðt; r; θÞ ¼ constant should
be considered to locate a horizon as

ḡμν∂μF∂νF − 2Vðt; r; θÞðλμ∂μFÞ2 ¼ 0: ð13Þ

In addition to the undeformed event horizon given with
(12), to have a deformed horizon for the KSK geometry,
this equation should be considered which will be studied
elsewhere [15]. The analysis of (13) in its full generality is a
tedious task; however, to get some understanding, for the
λμ ¼ ∂μu case,1 let us consider the r ¼ fðuÞ hypersurface
which becomes null if

0 ¼ hðrÞ − 2λr
�
df
du

þ Vðt; r; θÞλr
�
: ð14Þ

To have an equation in r and u with a solution r ¼ fðuÞ,
one must have V ¼ Vðu; rÞ with a λr depending only r.
Then, the KSK property λμ∂μV ¼ 0 reduces to

λr
∂V
∂r ¼ 0; ð15Þ

which requires either λr ¼ 0 or V ¼ VðuÞ. For λr ¼ 0, (14)
becomes hðrÞ ¼ 0 so it does not provide a generalization as
r ¼ fðuÞ. Thus, one needs to have V ¼ VðuÞ in general.
For this case, ∂μV ¼ Vuλμ and ḡμν∇̄μ∇̄νV ¼ 0, so QV
reduces

QV ¼
�
1

2
ξμξμ −

2

l2

�
V: ð16Þ

To obtain an Einsteinian solution, QV ¼ 0 must be satis-
fied which is the case for any V ¼ VðuÞ if ξ2 ¼ 4=l2. The
condition ξ2 ¼ 4=l2 is satisfied for the BTZ waves con-
structed in the next section. Thus, one may find a solution
for (14) indicating a null hypersurface of the form r ¼ fðuÞ
exists if V ¼ VðuÞ. However, the V ¼ VðuÞ solution is an

Einsteinian metric which is already represented in the
Bañados geometry. Note that this case also covers the
shifted horizons, that is r ¼ constant but r ≠ r�, by having
f ¼ constant and V ¼ constant. On the other hand, to have
a non-Einsteinian KSK geometry for an horizon of the form
r ¼ fðuÞ, the metric function V ¼ VðuÞ must satisfy

ðQ −m2
nÞVn ¼

�
1

2
ξμξμ −

2

l2
−m2

n

�
V ¼ 0; ð17Þ

where mn depends on the parameters of the higher
derivative theory. Since ξμ is theory independent, (17)
cannot be satisfied in general. Therefore, it is not possible
to obtain a non-Einsteinian KSK geometry that has a
horizon of the form r ¼ fðuÞ. In [15], we will study more
general horizon forms such as r ¼ fðu;ψÞ with ξμ ¼ ∂μψ
which require more general V beyond V ¼ VðuÞ.
In the discussion below, we will show that the condition

(12), which keeps the BTZ event horizon intact, can be
satisfied if and only if the BTZ seed is extremal so that a
subclass of the BTZ waves will be a deformed version of
the extremal BTZ black hole.

III. BTZ-WAVE CONSTRUCTION

Now, let us obtain the BTZ-wave metrics by a direct
construction. As a consequence of the second property in
(4), let us choose the null one-form field λμ to be exact,
λμ ¼ ∂μuðt; r;ϕÞ. Then, the condition that λμ be null yields

−
�∂u
∂t
�

2

−
j
r2
∂u
∂t

∂u
∂ϕþ

�
h
r2

−
j2

4r4

��∂u
∂ϕ
�

2

þ h2
�∂u
∂r
�

2

¼ 0: ð18Þ

Notice that all coefficients are a function of r, so the easiest
way to satisfy the nullity condition is to consider a u whose
derivatives are either a function of r or a constant as2

uðt; r;ϕÞ ¼ c1tþ c2ϕþ wðrÞ: ð19Þ

This ansatz provides a solvable set of differential equations
for the KSK metric properties. The solution can be put in a
simpler form if the BTZ metric is written in terms of r�
with hðrÞ ¼ ðr2−r2þÞðr2−r2−Þ

r2l2 and j ¼ 2σrþr−
l where σ represents

the direction of rotation which we choose to be σ ¼ þ1.
For this nonextremal BTZ seed, the λμ and ξμ one-forms are
found to be

λμ ¼
�
1;

l2rðrþ þ ϵr−Þ
ðr2 − r2þÞðr2 − r2−Þ

; ϵl
�
; ð20Þ

1This choice is motivated at the beginning of the next section.

2There can be other choices for the function u providing
different solutions which will be discussed elsewhere [15].
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and

ξμ ¼
�
−
rþ þ ϵr−

l2
;−

rðαþ βÞ
l2αβ

;
ϵrþ þ r−

l

�
;

where ϵ is equal to �1, α and β are defined as αðrÞ ¼
ðr2 − r2þÞ=l2 and βðrÞ ¼ ðr2 − r2−Þ=l2. From (20), λr can
be calculated to be

λr ¼ hðrÞλr ¼
rþ þ ϵr−

r
: ð21Þ

The black hole event horizon condition (12) is not satisfied,
so the BTZ deformation for the nonextremal case is not a
black hole in the generic theory. Yet, the resulting metric
is a solution to the generic theory if V satisfies the
constraint λμ∂μV ¼ 0 and (6) for the specific theory. The
constraint can be solved in a theory independent way and
the solution is

Vðt; r;ϕÞ ¼ F
�
tþ rþ ln α − ϵr− ln β

2ðβ − αÞ ;

ϕþ r− ln α − ϵrþ ln β
2ðβ − αÞ

�
; ð22Þ

where F is a smooth function.
Above, we discussed the nonextremal case, now let us

focus to the extremal case j ¼ ml with hðrÞ ¼ ðr2−r2
0
Þ2

l2r2 and

j ¼ 2r2
0

l . For this case, the sign choice ϵ becomes important
as one arrives at two different metrics. For ϵ ¼ þ1, with a
similar construction as in the nonextremal case, the λμ and
ξμ one-forms become

λμ ¼
�
1;

2rr0l2

ðr2 − r20Þ2
;l
�
; ð23Þ

and

ξμ ¼
�
−
2r0
l2

;−
2r

r2 − r20
;
2r0
l

�
:

From (23), λr can be calculated to be

λr ¼ 2r0
r

: ð24Þ

Again, the black hole event horizon condition (12) is not
satisfied, so the BTZ deformation for the extremal case with
ϵ ¼ þ1 is not a black hole in the generic theory.
For ϵ ¼ −1, the KSK metric construction for the

extremal case differs in a subtle way from the nonextremal
construction such that (18) requires wðrÞ in (19) to be
constant. As a result, the λμ and ξμ one-forms become

λμ ¼ ð1; 0;−lÞ; ð25Þ

and

ξμ ¼
�
0;

2r
r20 − r2

; 0

�
: ð26Þ

From (25), λr can simply be found to be

λr ¼ 0: ð27Þ
This time, the black hole event horizon condition (12) is
satisfied, so the BTZ deformation for the extremal case with
ϵ ¼ −1 is a black hole in the generic theory. Here, the
metric function V must satisfy λμ∂μV ¼ 0 yielding

l2

r2 − r20

�
l
∂V
∂t þ

∂V
∂ϕ
�

¼ 0; ð28Þ

with the solution

V ¼ Vðt − lϕ; rÞ: ð29Þ
The explicit form of V will be given below for Einstein’s
theory and the new massive gravity (NMG) [16].

A. Extremal-BTZ wave solution
of Einstein’s gravity

We showed that the only possible KSK deformation of a
BTZ black hole which keeps the black hole nature intact is
the extremal BTZ black hole deformed with the constant
null vector field of λμ ¼ ð1; 0;−lÞ. Now, let us find the
metric function V for the cosmological Einstein’s gravity
by solving (5). With (26), the field equation for V becomes

r
∂2

∂r2 VEðu; rÞ −
∂
∂r VEðu; rÞ ¼ 0; ð30Þ

where we defined u ¼ t − lϕ which is in fact the generat-
ing function for λμ as λμ ¼ ∂μu. If r ≠ r0, the Einsteinian
solution becomes

VEðu; rÞ ¼ c1ðuÞr2 þ c2ðuÞ; ð31Þ

yielding the metric

ds2 ¼ ds̄2 þ 2ðc1ðuÞr2 þ c2ðuÞÞðdt − ldϕÞ2;
where ds̄2 is the extremal BTZ seed. This result is
consistent with the Bañados geometry (2) and the analysis
of [8]. As in the case of the Bañados geometry which
dresses the BTZ black hole with two arbitrary functions,
our generic solution with arbitrary c1ðuÞ and c2ðuÞ are of
the nonlinear wave type which we called the BTZ wave. To
understand this solution better, we can compute its mass
and angular momentum using the Abbott-Deser approach
[17]. Assuming c1ðt − lϕÞ ¼ c2ðt − lϕÞ ¼ 0 and r0 ¼ 0
to be the background, the mass corresponding to the
background timelike Killing vector ζμ ¼ ð−1; 0; 0Þ is
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M ¼ mþ 2
π

R
2π
0 dϕc2ðt − lϕÞ, and the angular momentum

corresponding to the background Killing vector ζμ ¼
ð0; 0; 1Þ is J ¼ mlþ 2l

π

R
2π
0 dϕc2ðt − lϕÞ. We have kept

mass and angular momentum computation with generic
c1ðuÞ and c2ðuÞ. Since this solution is no longer stationary,
its mass angular momentum are time dependent via these
functions. Note that the extremality condition is intact as
J ¼ Ml. The function c1ðt − lϕÞ corresponds to a pure
gauge and does not appear in the mass and angular
momentum expressions. Of course, for a stationary black
hole solution, the arbitrary u dependent functions should be
taken as constants aswementioned for (2). Then, oneobtains
time-independent mass and angular momentum. The dis-
cussion is exactly like the case of the Bañados metric [6,8].

B. Extremal-BTZ wave solution of NMG

Now, we study the solution of cosmological new massive
gravity given with the action

I ¼ −
1

κ2

Z
d3x

ffiffiffiffiffiffi
−g

p ðR − 2Λ0 þ L2KÞ; ð32Þ

whose field equations are

Gμν þ Λ0gμν −
L2

2
Kμν ¼ 0; ð33Þ

where Kμν ¼ 2□Rμν − 1
2
ð∇μ∇μ þ gμν□ÞRþ 4RμανβRαβ −

3
2
RRμν − gμνK and the trace K¼gμνKμν¼RμνRμν− 3

8
R2.

Putting the metric of the extremal BTZ wave defined by λμ
given in (25) yields the field equations

1

l2
þ Λ0 þ

L2

4l4
¼ 0; ð34Þ

ðQ −m2
gÞQV ¼ 0; ð35Þ

where m2
g is the mass of the spin-2 graviton of the NMG

theory given as

m2
g ¼

1

L2
−

1

2l2
: ð36Þ

The first equation determines the effective cosmological
parameter l. The second equation (35) determines the
metric function V and has the general solution

Vðu; rÞ ¼ VEðu; rÞ þ Vpðu; rÞ; ð37Þ
where u ¼ t − lϕ and VE is the Einsteinian solution (31)
while Vp is the solution of the massive operator ðQ −m2

gÞ
which can be found as

Vpðu; rÞ ¼ c3ðuÞðr2 − r20Þð1þpÞ=2

þc4ðuÞðr2 − r20Þð1−pÞ=2; ð38Þ

with p≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

gl2 þ 1
q

. The reality of p is equivalent to the

Breitenlohner-Freedman (BF) bound [18]. It is important to
note that the solution (37) to this quadratic theory solves all
higher curvature theories as long as the corresponding
effective cosmological constant equation is satisfied. Using
the construction of [19], one can show that the finiteness of
mass and angular momentum requires c3ðuÞ ¼ c4ðuÞ ¼ 0
for 0<p<1, c3ðuÞ¼0 for 1 < p, or c4ðuÞ ¼ 0 for p < −1
yielding the mass M ¼ mð1þ 2

2p2−1Þ and the angular

momentum J ¼ Ml such that extremality is kept intact.

IV. CONCLUSIONS

We have studied the exact deformation of the BTZ black
hole in the context of generic gravity and showed that the
nonextremal black hole loses its exact horizon and the
resulting deformed metric is of wave type, which we called
the BTZ wave. Surprisingly, the deformed extremal black
hole remains a black hole. There are several ways to read
this result: First, the nonextremal BTZ is unique in generic
gravity while the extremal one is not as in the case of
Einstein’s theory; second, considering the deformations as
generic quantum or classical corrections, the nonextremal
BTZ is not preserved as a black hole solution to the generic
gravity while the extremal one remains a black hole in any
generic gravity theory. Lastly, regarding the r ¼ 0 singu-
larity after the KSK deformation, note that all the curvature
invariants of the KSK metrics are constant; therefore, there
is no curvature singularity.
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