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We present two classes of inhomogeneous, spherically symmetric solutions of the Einstein-Maxwell-
perfect fluid field equations with cosmological constant generalizing the Vaidya-Shah solution. Some
special limits of our solution reduce to the known inhomogeneous charged perfect fluid solutions of the
Einstein field equations and under some other limits we obtain new charged and uncharged solutions with
cosmological constant. Uncharged solutions in particular represent cosmological models where the
Universe may undergo a topology change and in between is a mixture of two different Friedmann-
Robertson-Walker universes with different spatial curvatures. We show that there exist some spacelike
surfaces where the Ricci scalar and pressure of the fluid diverge but the mass density of the fluid
distribution remains finite. Such spacelike surfaces are known as (sudden) cosmological singularities.
We study the behavior of our new solutions in their general form as the radial distance goes to zero and
infinity. Finally, we briefly address the null geodesics and apparent horizons associated with the obtained

solutions.
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I. INTRODUCTION

In the last two decades there has been an increasing
interest in studying and finding exact inhomogeneous
cosmological solutions in general relativity. Observational
effects of inhomogeneity in cosmology are discussed in
several works. Among these we note that the collection of
articles in [1-4] are worth mentioning.

There are many reasons to study inhomogeneous cos-
mological models in general relativity. Among these, the
following three mentioned by Ellis [1] (see also the
references therein) are important. Local inhomogeneity
may effect the averaged large scale dynamics of the
Universe (see also [2] and the references therein), local
inhomogeneity may effect the photon propagation hence
may change the cosmological observations, and the inho-
mogeneity at Hubble scale with the violation of the
Copernicus principle may lead to acceleration of the
Universe (see also [3] and the references therein). In his
book [5] Krasinski gives other reasons, such as the formation
of voids and interaction of the cosmic microwave back-
ground radiation with matter in the Universe can be
explained by exact solutions of the Einstein field equations
in an inhomogeneous spacetime. For all these reasons it is
worth finding new inhomogeneous solutions to Einstein’s
field equations.

Spherically symmetric cosmological models were
studied previously by many authors [4—18]. Historically,
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Lemaitre [19,20] and McVittie metrics [21] can be consid-
ered as the first inhomogeneous solutions of the Einstein-
perfect fluid field equations. Recently, it was shown that the
McVittie solution represents a black hole in an expanding
universe [22,23]. A charged version of the Mc Vittie solution
is known as the Vaidya-Shah metric [24-26] which is a
spherically symmetric solution of the Einstein-Maxwell-
perfect fluid field equations. This metric of this solution is
given as follows:

ds* = —A%di* + B*(dr* 4 r?d0” + r*sin*(0)d¢?), (1)

where

[1- 07 - 0) gt

N 2]’
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where a(¢) is any arbitrary function of time ¢, M, and Q are
constants representing the conserved quantities of mass and
charge, and k is also a constant.

Pressure, mass, and charge densities are respectively
given by

o 2/(d(n) @) a*(1) 4ka(t)
Y= Ta (W‘a%t)) ) AR (I + k)

(4)
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The uncharged (Q = 0) Vaidya-Shah solution is more
general than the McVittie solution. The McVittie solution
corresponds to Q = 0 and k = 0. In spite of this fact, the
Vaidya-Shah solution is sometimes named as the charged
McVittie solution. The Vaidya-Shah metric reduces to the
Reissner-Nordstrom metric when k =0 and a(¢) =1 in
isotropic coordinates. Note that the charge density (6) for
the Vaidya-Shah solution vanishes as k = 0 but Maxwell’s
field Fj; remains nonzero. The Vaidya-Shah solution [26]
has been studied by several authors [6-9,23] and like the
McVittie solution it has been shown that it describes a
charged black hole in an expanding universe. The charged
and uncharged cosmological black holes were also dis-
cussed in the works [10-14].

In this work, we start with the spherically symmetric
metric in the isotropic coordinates in four dimensions

ds? = —a2d® + b2(dr? + rd6® + Psin?(0)dg?), (7)

where a and b are differentiable functions of 7 and r. We
first show that the Einstein Maxwell-perfect fluid field
equations with cosmological constant reduce to a single
nonlinear ordinary differential equation for the function
b(t,r) (Theorem 1). Then we solve this differential
equation as general as possible. We use the method of
separation of variables and find two distinct classes of
solutions (Theorem 2). For the charged case, we have the
following distinct solutions:

Class 1:
o 1
b(t,r) = +B(t) ———
(t.r) Vo + iy + esr? ( co+er?
y 1
+—7’ 8
B(t) ¢y + c3r° ®)
and
class 2:
a(?)
b(t,r) = —_— 9
(t:r) = 0l + 55 o)

where a(7) and f(t) are arbitrary functions of 7, vy(r) is an
arbitrary function of r while by, by, ¢y, ¢y, ¢, c3, 0 and y
are arbitrary constants. For the uncharged case, the above
solutions reduce to the following distinct solutions:

Class 1:

2
b(t,r):( 0 L VD 2>, (10)

23/B(t) e + s e+ arr

and
class 2:

. b, + a(t)

b(t’ r) a bo +b1r2’

(11)

where b, is also an arbitrary constant. For all of the above

cases, we found a(t, r) = ¢(r) 2. We show that, in particular
for the uncharged case, the first class of solutions exhibit a
cosmological model describing a universe as a mixture of
two different Friedmann-Robertson-Walker (FRW) uni-
verses with different spatial curvatures. If the signs of
the spatial curvatures are different then we show that there
is a possibility of the change of topology of the universe. If
the spatial curvatures turn out to be the same, the spacetime
becomes a single FRW universe. We then study the
asymptotical properties of our solutions. We show that
the six parameter solution which is the generalization of the
Vaidya-Shah solution (1)—(6) is nonsingular as the radial
distance goes to zero and to infinity (Theorem 3). The
uncharged limit (Q = 0) of our solutions generalize the
McVittie solution. We show that there are surfaces X;
(b(t,r) =0) and %, (a(t,r) = 0) where the Ricci scalar
diverges (spacetime singularities). X, is a timelike surface
but %, is a spacelike surface. Physical constraints eliminate
the timelike surfaces X; and there remain only the spacelike
singular surfaces X,. This surface is commonly named as
the cosmological singularity [27] where the mass density is
regular but the pressure diverges on this surface. This
surface is also called a “sudden cosmological singularity”
[28-30]. We also obtain the apparent horizons of our
solutions which correspond to null (constant) areal distance
surfaces. We give a plot of null geodesics, apparent
horizons, and singular surface %, for the N = 2 uncharged
solution for particular values of the parameters of the
solution.

The layout of the paper is as follows. In Sec. II, we
simplify and reduce the field equations into a single
ordinary nonlinear differential equation. In Sec. III, we
solve the resulting differential equation by the use of the
method of separation of variables and obtain two different
distinct solutions. In Sec. IV, we obtain the asymptotic
behaviors of our solutions and show that the corresponding
spacetimes are nonsingular with respect to the asymptotic
values of r. In Sec. V, we study all possible special limits of
our solutions. In Sec. VI, we study the uncharged versions
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of our solutions. In Sec. VII, we investigate the possible
apparent horizons and null geodesics of the charged and
uncharged solutions. In Appendix A, we write the differ-
ential equation obtained in Sec. Il in a different form and in
Appendixes B-F we give the long expressions obtained in
Secs. IV and V. In the last Appendix we give the mass
densities when @ — 0 and a — oo respectively.

II. FIELD EQUATIONS OF THE CHARGED
FLUIDS IN FOUR DIMENSIONS

We consider the Einstein-(anti-)de Sitter-Maxwell-
perfect fluid field equations

G, +Ag,, =8xT,, +E,, (12)
where
Ty = (P +p)uutty + PGy (13)
E, = 2<FWFD“ —%FaﬂF“ﬂg,w) (14)
V F' = drout, (15)
where A, T,,, E,,, and F,, are the cosmological constant,

energy-momentum tensor of the perfect fluid, Maxwell and
Faraday tensors, respectively. To obtain our solutions, we
consider the spherical symmetric metric

ds* = —a*dt* + b*(dr? + r*d®* + r*sin?(0)d¢?),  (16)

where a and b are generic functions of both the time ¢ and
radial coordinate r, i.e. a=a(t,r) and b= Db(t,r).
Regarding the spherical symmetry in the spacetime metric
(16), the only nonvanishing component of the antisym-
metric electromagnetic Faraday tensor is

For =y, (17)

where yw = (¢, r). Using the nonzero source Maxwell
equation (15) and the metric (16), we obtain

D

and

1 b d 2
4ﬂ6—ﬁ(l[//+lﬂ<z—z>+;lﬂ>, (19)

where 6 = o(t,r) is the charge density and the dot and
prime signs denote the derivatives with respect to time and
radial coordinates, respectively.

On the other hand, using (13), (14), and (17) and

considering the perfect fluid velocity vector as u, = a62,

the 00 component of the Einstein-Maxwell-perfect fluid
equations (12) gives

1
8mp(t,r) = —WWZ
4bb'a® — b?ra® — 3b*rb* + 2brb" >
- —A
a’b*r
(20)
The 01 components reads as
bb'a — bb'a + bba' =0, (21)
while the 11 and 22 (or 33) components lead to
8 = 2y L Copdrbatobtrab
ﬂp(t,r)—ﬁy/ +m(— rba +2b’ra
+2bra*a'b’ + b*ra® + 2bb'a®
— ab*rb® + 2b*a*d) + A, (22)
and
8ap(t.r) = —— 5w
+ gy (=2b3rba + 2b*ra b+b2a’d
+bb'a® + brb"a® — ab*rb®
- b?ra® 4+ b*ra*d") + A, (23)
respectively. We can integrate Eq. (21) to obtain
b
a(t,r)=q-—, (24)

b

where ¢ = ¢(1) and b(z,r) #0. One notes that for

b(t,r) =0, the equation (21) disappears. Using (18), we
arrive at

b
y(t.r) =hq ;. (25)

where i = h(r) is an arbitrary function of r. Using (24) and
(25), the charge density o in (19) takes the following form:

dro(t, r) = % (FH +2h). (26)
—

Then, the total charge Q7 in a spherical region with radius
R (¢ constant, r constant regions) can be obtained as

Or = /// odV = 4x / ®n s armydr. (27)
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Hence, the total charge in this volume is given by
Or = r2h|r:R0' (28)
Finally, Egs. (22) and (23) reduce to
rb?b" = 4rbb'b + b*b' = 2rbb® + 2rhh.  (29)

One can integrate the differential equation (29) with respect
to time and obtain the following second order ordinary
nonlinear differential equation for b:

—rbb" + 2rb" + bb' — 2rh®> + hib =0,  (30)

where hy = hy(r) is a new arbitrary function of r.

To summarize what we have till now, we introduce the
following theorem.

Theorem 1: Einstein field equations of a charged
perfect fluid with a cosmological constant of a spherically
symmetric spacetime reduce to the following subclasses.

(i) For b(t,r) # 0, the field equations reduce to a single

ordinary nonlinear differential equation, Eq. (30),
with two arbitrary functions of r, /, and /; functions.
Then, the metric function a(¢,r) and the charge
density o(z,r) are given by (24) and (26) respec-
tively, and the energy density p(z, r) in (20) and the
pressure p(t, r) in (22) [or (23)] respectively read as

3h?
Sﬂp(t,r):?+F
1
—r—b4(3rb’2+6bb’—|—2hlb)—/\, (31)
and
8zp(t,7) SR (2bg*(rb' + b)b'
zp(t,r) =——+-—% - -
P NIRRT
— rg?bb"™ + 2rb°G) + A. (32)

(i) For b(1,r) =0, there is no 01 component for the
field equations, then Eq. (21) and the relation
between the metric functions as (24) disappears.
For this case, the Maxwell equation (15) gives
w(t,r) = h(r)a(t,r), and Egs. (20), (22) reduce to

1 4bb’ — b'*r + 2brb”
8rp(t,r) = — T W - Em — A,
(33)
8zp(t,r) = 5=y> + L (2brd'b' + b”ra
’ a*b? abtr
+2bbla+26%d) + A, (34)

where b(r) should satisfy the following equation:

2rab*h® + 2rbd'b’ + 2rab’* + abb’ + a'b*
— rabb” — ra"b* = 0. (35)

Solving this single differential equation with three
unknown functions h(r), a(t,r), and b(r) is not
possible except by supposing relations between these
functions. One possible ansatz can be considering a
specific equation of state for the perfect fluid, leading
to a relation between a(z, r) and b(r) functions.

In this work, we consider only the general dynamical
case, i.e. b(t,r) #0, and then our aim is to solve the
nonlinear ordinary differential equation (30) for the metric
function b(t, r). In the next sections, we will solve this
equation and determine all of our unknown functions
a(t,r), w(t,r), o(t,r), p(t,r), and p(z, r) accordingly.

III. EXACT SOLUTIONS OF THE
FIELD EQUATIONS

The main aim of this section is to find solutions of
Eq. (30). For this purpose, we use the method of separation
of variables. Although Eq. (30) is a nonlinear ordinary
differential equation, we can use this method by equating
the coefficients of the products of the time dependent
functions to zero. Let

N

b(t’ }") - Zan(r)ﬂn([)? (36)

n=0

where a,,(r) and f3,(t) are all independent functions of r
and ¢, respectively such that n =0, 1,2, ..., N. There are
N + 1 number of functions a,(r) depending on r in (36)
and 2 arbitrary functions A(r) and h(r) in the main
equation (30). Then, totally we have N + 3 functions of
r. The functions f3,(¢) (n =0, 1,2, ..., N) are left arbitrary
but independent functions of . The time independent term
2rh? in the main equation (30) forces us to choose one of
the time dependent functions f,(¢) (n =0,1,2,...,N) to
be a constant. Thus, without losing any generality, we let
po = 1. Hence, we have

b(t.r) = ap(r) + Zan(r)ﬂn(t)' (37)

By inserting (37) in (30), we obtain more than 2N + 1
equations. This means that when N > 2, the number of
equations becomes more than the number of unknown
functions (an overdetermined system). Hence, we use the
ansatz (36) only for N =2 and for N =1, and we
investigate these cases in detail in Secs. IIl A and III B.
Before we proceed, we refer the reader to Appendix A
summarizing the method introduced in [31,32] for solving
Eq. (30) for the uncharged case, where some particular
solutions are also addressed. To produce the most generic
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solutions including the charge, the approach in [31,32]
seems not suitable for us and we will follow the method of
separation of variables as discussed above.

A. Solutions for N=2
Letting N = 2, we have

b(t.r) = ay(r) + pi(t)a; (r) + pa()ar(r),  (38)

where, as mentioned before, o, @;, and a, are functions of
r and f; and p, are functions of 7. In Eq. (30), when the
function b in (38) is inserted, the coefficients of the time
dependent functions %, /3, ), and f3, are set to zero and
functions ag, a;, and a, satisfy the following equations:

B —rayd] +2r(d)? + oy =0, (39)
B3: —raxdy +2r(dh)? 4 ayay = 0, (40)

pr: —ragal — rajag + dragay + apary + o + hay =0,
(41)

Pai —ragdy — rasag + 4rogay, + agal, + aya + hyay = 0.

(42)

The remaining equation depends how the functions #; and
P, are related which reads as

— ragag + 2r(ah)? + agay — krh? + hyag

+ p1fr(—raydy — rapd| + 4rady + a1d + o)) = 0.

(43)

General solutions of (39) and (40) are given by
1 1

o = 7

= 44
co+cr ( )

%= Ccy+ C3 rr’
where ¢, ¢y, ¢,, and c5 are arbitrary constants. In (41) and
(42), the function aj satisfies a second order linear differ-
ential equation. Multiplying (41) by a, and (42) by «;, and
subtracting them, we obtain a as

204(0300—0102)

1
4_ 1) — , 45
% c4r(a2a1 0) (co+cir)?(ca+c3r?)? (43)
or
)
an = 5
0 Vo + i\ ep + ey
5:i€/2C4(C3C0—C1C2), (46)

where ¢, is an arbitrary constant, and we have the condition
c4(c3co — cicp) > 0. As we will see in the classification of

the possible solutions, the negative sign of § is not physical
due to its identification relation to mass. Equation (42) can
be considered as the definition of the function /,. Hence,
we have solved all equations (39)—(42). There remains only
the A function to be determined. For determining function
h, there are two possibilities as follows.

(1) If g, and S, have no relations (if f;f, # constant).

For this case, using (43), we have

—ragagy +2r(ah)? + apaly — 2rh* + hjag =0,  (47)
—royay — rapd| +4rajay +a o +apal =0, (48)

Now, Eq. (47) can be considered as the definition of
the function 4 but Eq. (48) gives ¢; = ¢3 = 0 which
means that the function b depends only on 7 which is
not our desired solution in general.
@i1) If p,f, =y where y is a constant.
For this case, we have the following single
differential equation:

—ragaf +2r(a)? + agaly — 2rh* + hyag
+y(—raidy —ropd| +4ra s+ a oy, + o) = 0.
(49)
This equation can be considered as the definition of
the function /4. Thus, by this consideration, we can

solve Eq. (30) completely. Then, the function b(z, r)
takes the form of

o 1
b(t,r) = + p(t) ——
(5.7) Vo +eriyes 4 c3r? ()COJFCle
1
v r b (50)

B(1) ca + c3r*”

B. Solutions for N=1

Considering N = 1, we have

b(t, 1) = vo(r) + p(0)i (r), (51)

where here 1(r) and v, (r) are functions of r and f(r) is a
function of 7. By inserting the function b(z,r) in (51) in
Eq. (30), vo(r) and v (r) should satisfy the following
equations:

=] +2r())? + v, =0, (52)
P —rvg| — rvf + 4rvgy + vgty + vy + by =0,
(53)

A - rvpyy + 2r(1/6)2 + v — 2rh* +vohy = 0. (54)
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The general solution of (52) is

1

Y :b0+b1r2’

(55)

where b, and b; are arbitrary constants. Equations (53) and
(54) can be considered as the definitions of the functions &
and h;. Hence, vy(r) function is left arbitrary. Then, b(z, r)
takes the following form:

p(1)

b(t,r) = —_—
(t,7) yO(r)+b0+b1r2

(56)

Thus, the following theorem represents the summary of
what is done till now.

Theorem 2: The most general solutions of the ordinary
nonlinear differential equation (30) by the method of
separation of variables are given in two classes: The first
one containing one arbitrary function of r and six arbitrary
parameters is

o 1
b(t,r) = +p(t) ———
(5.7) Vo +erie +esr? (Co‘l'le’2
1
SR - (57)

B(t) ¢y + e

corresponding to N = 2 and the second one containing two
arbitrary constants and two arbitrary functions where one
depends on r and the other depends on ¢

p(1)

b(t,r) = — -
(t:r) =)+ 520

(58)

corresponding to N = 1.

A different approach is given in Appendix A for solving
(30). Such an approach was introduced in [31] for the
uncharged case (see also [5,32]).

IV. PROPERTIES OF THE SOLUTIONS
TO THE FIELD EQUATIONS

In this section, we first investigate a singular structure of
the obtained spacetimes. There are surfaces X; and X%,
where the pressure p and mass density p diverge. Then, we
explicitly check the properties of the general solutions for
both the cases of N =2 and N = 1 as r goes to zero and
tends to infinity, in detail. Furthermore, we will address
some specific subclasses of these general solutions and
study their properties also in the next sections.

A. Singular structure of the solutions

Here, we assume that ¢, ¢, ¢,, and c3 are non-negative
constants. Regarding the field equations (12), the scalar
curvature (Ricci scalar) is given by R = 8z(p — 3p) + 4A.
Hence, if any one of the quantities p or p is singular on

some surfaces then they are the spacetime singularities.
Regarding (24), (31), and (32), if the functions » and a
vanish on some surfaces then either p or p diverges. Hence,
we will focus on the surfaces Xy = {(¢,r) € U|b(t,r) = 0}
and %, = {(z,r) € Ula(t,r) = 0}. Here, U is a part of
spacetime where —co < ¢ < oo, r > 0. In the following, we
will explore these singular surfaces.

1. Singular surfaces for the class of N=2
(1) Surface X,
Letting X = (%)% then b(z,r) = 0 leads to
the following equation:

%X2+5X+[3:0. (59)

When y # 0 this equation has real solutions only
when 6% —4y > 0. Then, there are two different
dynamical surfaces given by (depending on the sign
of )

<c0+c1r2>7 _ 6+ 252 _4yﬁ(t). (60)

¢y + c3r? 14

When y = 0 we have

(M) _ A0, (61)

cy +car?
The normal vectors of these surfaces satisfy

. 62 b/2

¢*0,b8,b = ¢ (b)* + ¢"b"? = -2 + R (62)
Thus, near the X; surface, it is clear that
g*0,bd,b > 0. Hence, X, surfaces are timelike or
null. The case 6*> — 4y = 0, representing only one
singular dynamical surface, corresponds to the un-
charged solutions which will be discussed in Sec. VI.
For physical spacetimes both § and y are positive.
Hence in such cases, the X, surface does not exist.

(i) Surface Z,

Regarding our definition for ¢(¢) as a(t,r) =

q(1) Zgg and since

b(t,r) = B(2) (co +c? frey+ c3r2> ’ (63)

then %, is defined as

_C0+C1r2_ﬂ72

X? )
ety
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The normal vector of this surface satisfies

flz a/2
v 2 rr 2 __
¢"0,a0,a = g"a> + g"a ——?4—

(69

representing that X, is a spacelike surface or
null, since a = 0 then ¢**0,a0,a < 0 near X,. Such
singularities are named as the cosmological singu-
larities [27] or sudden cosmological singularities
[28-30].

2. Singular surfaces for the class of N=1
Regarding (56), the surface X; is given by

vo(r)(bo + by r?) + B(1) = 0. (66)

which is a timelike or null surface. In this case, there exists
no X, surface.

B. Properties of the solution for N =2

Our new solution (57) can be written as
t o co+cir? co+cir?
b(t,r) = ﬂ()21+_ 0 12+27 orar)
cot+eyr B\ cotc3rt BP(t)cr+csr

(67)
Using (41), (44), (46), and (49), the functions & and &; can
be obtained as

V 6% — dy(coes — cco)r

(co+c1r?)32(cy + c3r2)3?

h(r) =

(68)
35(6’06‘3 - C1C2)2I’3
(co+ c172) 2 (cy + c3r?)Y2

hi(r) =

(69)

Then, using (28) and (68), the total charge Q7 in a spherical
region with the radius R is given by

V6 5 — (COC3 — (10 R?) (70)

(co+ ciR3)(cy + c3R)E

Or =

In our solution b(t,r) in (67) there are six arbitrary
constants. We can reduce this number to four by scaling. It
is easy to show that the function b(z, r) is form invariant
under the following scalings:

C3 :;, (71)

3|0

o 7
- /mn’ m

where m and n are arbitrary nonzero real numbers. Hence,
out of six parameters only four of them can be considered

3

(72)

N

generic. In the next sections, without loosing any generality
we use the following two different parametrizations to
represent our new solution.

(A) co=1,¢c; =k, %2 = p where y is any real number.

(B) co =1, ¢y = ki, 2 = ky where k; and k; are any real

numbers. i

Here in the case of part A we will consider only the cases
u >0,k >0, k, > 0. The reason for presenting the above
two different representations of our solution is to show how
it differs from the known exact solutions.

A. The first representation: The case of y =

For ¢3 # 0, we can consider the following 1dent1ﬁcat10ns

co =1, ¢, =k, p=alt),

1) 4
Z—u, Tomwr-@d u=2 )
1/C3 C3 C3

where ¢3 >0 and k is the spatial curvature constant
corresponding to O for the flat and to £1 for closed and
open universes in general. Using the above identifications
and the 6 in (46), we can obtain our ¢, constant as

= k1. 74
. uk # (74)

We defined our constants ¢, ¢y, ¢5, ¢3 and ¢4 in such a way
that our solution (67) reduces to the Vaidya-Shah solution
(3) (for either ¢y =0 or ¢, =0), as we will see in Sec. VA 1.
Then, our a(t, r), b(t, r), h(r), hi(r), o(t, r), p(t, ), p(t, ),
and Fy,(t, r) functions become

1 _M-0? 1+kr2

4a*(1) ptr’
M [tk M*=Q? 1 4+ks?
(1+”(1) utr? + () i )
! M 14k M= Q*1+kr
b(t’r): a()z I+— +’;+ 2Q +2 )
1+k}’ a l) ,M"—I" 4Cl (l) /l+r
(76)
_ 2|0|(1 — pk)r
"= (14 kr?)32(u + r?)3?° (77)
_ 6M (1 — uk)*r?
]’ll(r) - (1 + kr2>5/2</4 + r2)5/2 , (78)
a(t,r
Fo(t,r) =yl(1.7) zh(r)bgt ri, (79)
_ .4 o1
dro(t.r) = QI —pk) (e = k(1 + kr2):

5 ’ M2—Q? 2\3’
a3(t)(ﬂ+r2)z(l +% l;fr + 20 lﬂtkr )
(80)
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3&2(t) _ S(tr)
a*(t) b*(t.r)

(Z 5 )<
Y(t,r

+A, (82)

8up(t,r) = - A, (81)

8up(t,r) =

2

(1-M52 1k >wuw

where S(z,r),X(t,r), and Y(z,r) functions are given in
Appendix B. Here, without losing any generality, we have
set g(t)a(t)/a(t) = 1. Hence, in our new solution (75) and
(76), in addition to the mass M, charge Q and the spatial
curvature constant k, we have a new parameter u. When
u = 0, this solution reduces to the Vaidya-Shah solution (3),
as we will see in Sec. VA 1. Our solution reduces to the
Reissner-Nordstrom metric when y = k = 0 and a(7) = 1

in isotropic coordinates. When y = k = 0 and a(¢) = eV
then we obtain the Schwarzschild-Reissner-Nordstrom-de
Sitter metric with cosmological constant A.

Remark 1: We point out that in contrast to the Vaidya-
Shah solution, in our new solution, the current vector J# (or
the charge density o) is nonzero for the flat spatial curvature
constant, i.e. k = 0. On the other hand if uk = 1 where the
charge density and the total charge in a volume of radius R,
vanish, our solution reduces to the FRW metric (see
Remark 3).

For this solution, we have the following points.

(1) The surface X; is given as

2
2 y+r2:
1+ kr

Hence, %, exists only when M < 0 and |Q| > M.
Then, we conclude that X, does not exist for
physical cases.

(i1) The surface X, is given by the following equation:

-M £ Q]
2a(r)

(83)

T (M2 =Q*) (1 +kr?)—4a*(t)(u+1r*) =0, (84)
which requires M? — Q% > 0.

(iii) For the extreme case, i.e. M = |Q|, £, does not exist
and X, corresponds to a(f) =0 (the big bang
singularity).

(iv) At the spatial origin, i.e. r — 0, the metric functions
a(t,r) and b(t,r) as well as o(t,r), p(t,r) and
p(t,r) are nonsingular in general except for the
cosmological models with a(¢) — 0; see Appendix B
for more details.

(v) At the spatial infinity, i.e. r — oo, the metric
functions a(z,r) and b(t,r) as well as o(t,r),
p(t,r), and p(t, r) remains regular and the behavior
of this model at the asymptotic region is different

than the FRW solution; see Appendix B for more
details.
B. The second representation: The case of k, = o
For ¢, #0, one may also consider the followmg
identifications:

co =1, c; = ky, B =alt),

o 4y c3
=M T -0 k=2 (85
NG o 0 2= (85)

where ¢, > 0 and k; and k, are two generally different
spatial curvatures. Using the above identifications and the §
in (46), we can obtain ¢, constant as

C2M4

2(k2 - kl) , (86)

[

where k| # k,. For this case, the a(t, r), b(t, r), h(r), hy(r),
o(t,r), p(t,r), p(t,r), and Fy(t,r) functions can be
found as

1 — M*=0? 1+k; r?
4a*(t) 14k r?

a(t,r) = - , (87)
(12 i+ S )
~a(r) M [1+kr* M?>—Q*1+kr?
ber =g 2 (HW\/ 1+k;r2+ 42 (1) 1+k;r2>
(88)
_ 2[0|(ky = ky)r
") = kP £ (89)
 6M(ky — ky)*r?

M) = kAR 4 ke 0)
Fon(t.r) = wlt.r) =) 5. 1)
amo(t.r)= 31Q|(ky—ky ) (1 =k kyr*) (1 +kyr2)2

’ 2_ 2 3’
@ ()1 k) (14t [ g )
(92)
a2 r
Bap(t.r) = 3% Eg - ;f& r)) “A (93)
a? a? a
8zp(t,r) 3 28 +2 028 —%)X(t, r)
Yie.r) A (94)

M*=Q% 1+kir*\ 1.4
(1 4a (1) 14k, r? >b ( )
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where S(7,r),X(t,r), and Y(z,r) functions are given in
Appendix C.

Remark 2: We point out that the case k; =k, =k
reduces to a FRW metric with spatial curvature k (see
Remark 3).

For this solution, one realizes the following points.

(i) Depending on the sign and values of M #0 and Q #0

parameters, we have

N +kr? —M=+|0
DI = . 95
"V1i+ kP2 24(0) (95)

Hence, we have exactly the same conclusion as the
previous case that X; does not exist for physical
cases.

(i1) The surface X, is given by the following equation:

Tt (M? = Q%) (1 + kyr?) —4a*(t)(1 + kpr?) =0,
(96)

which requires M? — Q? > 0.

(iii) For the extreme case, i.e. M = |Q|, X; does not
exist and X, corresponds to a(z) = 0 (the big bang
singularity).

(iv) At the spatial origin, i.e. r — 0, the metric functions
a(t,r) and b(t,r) as well as o(t,r), p(t,r) and
p(t,r) are nonsingular in general except for the
cosmological models with a(7) — 0, see Appendix C
for more details.

(v) At the spatial infinity, i.e. r — oo, the metric
functions a(t,r) and b(t,r) as well as o(t,7),
p(t,r), and p(t, r) remains regular and the behavior
of this model at the asymptotic region is different
than the FRW solution; see Appendix C for more
details.

We summarize this section with the following theorem.

Theorem 3: The spacetime represented by our solution

for N = 2 either in (75) and (76) or in (87) and (88) are
nonsingular in the sense that all the functions a(t,r),
b(t,r), p(t,r), p(t,r), and o(t, r) either go to zero or to
a finite value as r goes to zero or to infinity.

C. Properties of the solution for N=1

For N = 1, using (53) and (54), the functions & and h,
can be obtained as

) =+ (5400 - 0. o
which can be written also as
h(r) = j:<1/6(r) + () %). (98)

Here, similar to the previous solutions and without losing
any generality, we set f(¢) = a(t), q(t)a(t)/a(t) =1,
by =1, and b| = k. Then, we have

1
a(t.r) =~ T k) (99)
b(t,r) =uy(r)+ 1062 i(tk)ﬂ , (100)
h(r) = j:<y6(r) + (1) %) (101)
2(r) = U3 (r
hy(r) = rg(r) —vy(r) + 2r7h ( z)/o(r)o (r) (102)
B B a(t,r)
Fo(or) = witr) = hir) 50, (103
dro(t,r) = 7 (lt, py (rk'(r) + 2h(r)), (104)
8rp(t,r) = 3d2(l) —|—i(—2rbb” —4bb' + b —rh?) — A
’ a*(t)  rb* ’
(105)
&2 ;
8ap(t,r) = -3 azég ;LZ
o (2b(rb’ + b)b' — rbb + rh*b) + A.

(106)

Using (28) the total charge Q7 in a bounded region with
r = Ry is given by

2kR,

Or =Rjh(Ry) = £Rj (V6(Ro) + UO(RO)TICR%

). (107)

For this solution, the behavior of the metric functions,
charge, and energy densities as well as the pressure at the
spatial origin or asymptotic region in general depend on the
explicit form of the arbitrary function (7). Then, without
its explicit form, we cannot discuss accurately the proper-
ties of the singular surfaces as well as the properties at the
spatial origin or infinity. We will introduce some special
subclasses of this general solution in Secs. VB and VIB
and discuss briefly how these subclasses can be a reason-
able physical solutions or not. For example, regarding
(100), one can show that the second term in the pressure
(106) diverges at r — oo for vo(r) - with n < 2. One
may argue that these types of solutions cannot be reason-
able physical solutions regarding their divergence at the
asymptotic region. As our next work, we will classify
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various possible subclasses for N = 1 regarding the pos-
sible physical choices for the arbitrary vy(r) function.

V. SPECIAL SUBCLASSES OF THE GENERAL
SOLUTIONS AND THEIR PROPERTIES

In this section, we investigate some particular subclasses
of our general solutions as well as their properties.

A. Subclasses of N=2

1. The case of either cy=0 but c,#0, or c,=0 but cy#0

Both these cases correspond to the Vaidya-Shah solution
(3). To show that, for example, we consider the case of
¢, = 0 but ¢y # 0 which leads to

0] 4 /
b(t,r) = PR (1 +ﬂ(t)\/§r co+cr?

Yy co+cyr?
pH1) et )]

+

(108)

where with the identifications of ¢y = 1, ¢; =k, f = a(¢),

\/%:M, c; >0, and‘:_—’;:M2 — Q7 takes the form of

a V14 kr? 1+ kr?
b =1 [”Mﬁ“w‘@&(w '
(109)

Consequently, we can also find the metric function
a(t,r) as

. =458 (1 + k)
a I,}" — )
4 Mo VTl + 2520 (1 4 kr?)

a(t)r

(110)

where without losing any generality, we have set ¢(1)a(t)/
a(t) =1. We see that our metric functions a(t,r) and
b(t,r) exactly reduce to the Vaidya-Shah solution (3).
Then, the Vaidya-Shah solution can be considered as one of
the particular subclasses of our generalized solution (50).
Also, the k parameter here is the spatial curvature constant
which in general corresponds to zero for the flat, and to £1
for the closed and open universes, respectively.

One can realize the following points about this solution.

(i) Depending on the sign and values of M # 0 and

0O # 0 parameters, we have

S0 (M F OV + k2 +2a()r =0, (111)

which exists only for unphysical cases, i.e.

M—-|0| <0.

(i) The surface X, is given by the following equation:

% (M? = Q) (1 + kr?) —4a*(1)r* =0,  (112)
which requires M? — Q? > 0.

(iii) For the extreme case, i.e. M = |Q|, X, does not exist
and X, corresponds to a(r) =0 (the big bang
singularity).

(iv) Asitis proved for the general solutions in Sec. IV B,
for r - 0 and r — o0, charge density, mass density,
and pressure remain finite also for this subclass.

2. The case of either c;=0 or c3=0

These cases correspond to the same spacetime geometry.
Then, we discuss only the case of ¢; = 0 as follows. For
this case, our solution (50) takes the following form:

_@ i Co 4 Co
blt.r) = Co (1 +ﬂ(l) V 02+C372+ﬁ2(1) 02+C3”2>.

(113)

Using (41), (44), (46), and (49), the functions h(r) and
hy(r) can be obtained as

S -4
h(r) = P, (114)
Co (e +c3r?)
36¢2r3
h(r) = ——""——=. (115)
VColer +c3r?)

Similar to the case of the Vaidya-Shah solution, we can
consider the following identifications:

Bt) =a(t),  co=1,

s 4

2y Tomr- k=2, (116)
\/C2 Cy Cy

where requires ¢, > 0. Then, the metric function b(z,r)
takes the following form:

M 1 MZ _ Q2 1
b(l‘, r) = a(t) <1 +mm+ 4a2(t) 1+ er)’
(117)

where k is the spatial curvature constant. Using the
above identifications and the 6 in (46), we obtain our ¢4
constant as

C2M4
“4T ok

k # 0. (118)

Then, our a(t,r), b(t,r), h(r), hi(r), o(t,r), p(t,r),
p(t,r), and Fy, (¢, r) functions become
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alt,r) = i (119)
(1 (M\/lﬂcr +A‘4‘Z %ZHI"’Z)
M1 M-Q* 1
blt.r)= “(’)<1+a(t)\/m+ 42 (1) 1+kr2>’
(120)
(r) = (1|f|:: oy (121)
2 3
)= (122
B B a(t,r)
Foi(t,r) =y (t,r) = h( >b(t, ) (123)
3k|Q|
dro(t,r)= — ,
a3(t)(1+kr ) (1+ M \/l+kr +1‘Za ? l+1kr2)3
(124)
L a(n)  S(nr)
8rp(t,r) =3 20 + ) — A, (125)
2 6'12 a
8up(t,r) = -3 28 + 2((128 —%)X(t, r)
Yie.r) + A (126)

M2-Q* 1 4
(1 () 1+kr2)b (t.r)

where S(t,r), X(¢t,r), and Y(z,r) functions are given in
Appendix D. Here, without losing any generality, we have
set g(t)a(t)/a(t) = 1. One can realize the following points
about this solution.
(i) Depending on the sign and values of M # 0 and
Q # 0 parameters, we have

20 M F Q| +2a(t)V'1+kr* =0,

which exists

- 10| <0.
(i) The surface X, is given by the following equation:

(127)

only for unphysical cases, i.e.

0 (M? = Q%) —4a*(t)(1 + kr*) =0, (128)
which requires M? — Q% > 0.

(iii) For the extreme case, i.e. M = |Q|, £, does not
exist and X, corresponds to a(t) =0 (big bang
singularity).

(iv) Again, as it is proved for the general solutions in
Sec. IVB, for r - 0 and r — o0, charge density,

mass density, and pressure remain finite for this
subclass.

3. The case of c4,=0

Regarding (46), this case corresponds to 6 =0 and
ay = 0. Then, the metric function b(z,r) in (50) takes
the following form:

S
co+cyr

which, similar to Secs. IVA and IV B, can be demonstrated
in both the (k, u) and (k;, k,) representations. Also, we find
that #; = 0, and the function %(r) takes the following form:

V=4y(coc3 —cicp)r

(Co + C]r2)3/2<C2 + C3r2)3/2 ’

Yy co+cr?

wuwa+@ﬂ>’ (129)

b(t,r)

h(r) = (130)

where requires the condition y < 0. One may consider
4y = —c,Q* which reduces our solution here to the
solutions with M = 0 in Secs. IVA and IV B, i.e. to the
charged massless solutions. We consider the following
identifications:

co =1, cp = ki, p=al(1),

4

o0, k=9, (131)
C2 )

where here k; and k, are generally two different spatial
curvatures. For this case, a(t,r), b(t,r), o(t,r), p(t,r),
p(t,r), and Fy (¢, r) functions read as

1_|_ Q2 14k, r?
a(t,r) = ) hr (132)
(1 -5 i)
4a()1+k2r
a(t) Q* 14k
b = e (1_4a2(t)1+k2r2>’ (133)
10|(ky — ky)r
h(r) = , 134
") (1 + kyP2)3(1 + kyr?)3 (134)
a(t,r)
Foi(t.r) =w(t.r) = h(r)w R (135)
_ _ 4 2))
47[0'(1,7‘):3‘Q|(k2 kl)(l k k2r )z(ll—i_kkrlzr) (136)
a(1)(1+ ko) (1- %5 Far)
2
Sap(r,r) =30 _SWwr) (137)
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a? a? a
8ap(t,r) =-3 a28 + 2(6128 - %)X(t, r)

Y(t,r)

QZ lJrk 2 4
320 1+k;:2)b (t.r)

_|_

+A, (138)

(1+

where we have supposed ¢, > 0 and S(z,r), X(¢,r), and

Y (¢, r) functions are given in Appendix E. Regarding (132)

and (133), this solution is the generalization of the Vaidya-

Shah solution to the case of two spatial curvature with

M =0.

For this solution, one realizes the following points.
(1) The surface X; is given by the following equation:
21: —Q2(1+k1r2)+4a2(1‘)(1+k2r2):0, (139)
where in contrast to the previous cases, it does exist
as a physical case.

(i) The surface X, is given by the following equation:
o0 QX1+ kir?) +4a*(1)(1 + kyr?) =0, (140)
where it cannot exist as a physical case.

(iii) Similarly, as it is proved for the general solutions in
Sec. IVB, for r - 0 and r — oo, charge density,
mass density, and pressure remain finite for this
subclass.

4. The case of y=0

Regarding the condition to obtain (50), i.e. B, (¢)$,(t) =7,
this case corresponds to the situation where at least one of
B1(t) and S, (¢) in (38) is zero. Then, this case reduces to the
solution N = 1 as in (51) in the Sec. III B.

B. Subclass of N=1

1. The case of vy =constant

For this case, our metric functions take the following
form:

a(t,r) = N +;&)(11 e (141)
blt,r) = vy + ‘fk) -, (142)
as well as
h(r) = %, (143)
hy(r) = (ISUE% (144)

Folt.1) = wlt.r) =) 505, (145
dno(t,r) = + 2&0((13: ::22))5: ;L(S;? : (146)
Bap(t.r) = 3?8 Tl | Z—rf)r 2+)4a(t))4 <1(21y—i(i(;<2r(2t))f
el ) o
= (52005

+4kv0(1 +kr?)? + 8kvga(t) (1 + kr?) + 4ka?(t)
(a(t) +vo(14kr?))*
+A. (148)

Then, one can find that for » — 0, all the quantities in this
solution are regular while at the asymptotic region, i.e.
r — oo, the pressure diverges by its second term in (148).
Then, regarding this unusual asymptotic behavior,
one may argue that this solution cannot be a physical
charged solution. However, in Sec. VIB 2, we will show
that the solution for 1, = constant can be a physical
uncharged solution for the flat universe (k = 0). Also,
as we stated at the end of Sec. IV C, we will classify the
possible choices by this kind of physical arguments in our
next work.

VI. UNCHARGED SOLUTIONS
AND THEIR PROPERTIES

In this section, we explore the uncharged solutions and
their properties for N =2 and N =1 in detail.

A. Uncharged solutions for N =2

To obtain the uncharged solutions for N = 2, regarding
(25) and (68), we first assume that the constants ¢, ¢y, ¢5,
and c3 are nonzero. Then, we investigate special cases
where some of these parameters vanish or they are related.
Regarding (25) and (68), there are two main possibilities to
obtain uncharged solutions.

1. The case of cyc3=c;jc;

For this case, the functions i(r) and Fy; = 0 in (68) and
(25), respectively, [as well as i (r) in (69) and & in (46)]
vanish. As a specific case, using the identification of
p(1) = a(1), cg=1, ¢; =k, £ = M and then 4 = c; in
(50), we obtain

(149)
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a(t) M
b(t,r) = 1 . 150
) = ke ( - az(t)> (150)
Then, the spacetime metric becomes
ds> = —a?(t)d* + a3(1) (dr? + r*dQ?*), (151)
: (1+kr?)?
where
W12 o =an(1425) s
) = , 1) =al(t
“ 1 + aév(lt) - ’ a2 )

By the coordinate transformations

r

t)dt = dT, —_— =
(1) 1+ kr?

the new metric in the new coordinates 7" and R becomes

dR?

dS2 = —dT2 + a%(T) m

+R2dQ2|. (153)

where a,(T) = a,(#(T)). Hence, this special case is iden-
tical to the Friedmann-Robertson-Walker model.

2. The case of 6> =4y

For this case, the function A(r) in (68) and consequently
the function Fy; = (¢, r) in (25) vanish and the uncharged
case [o(t,7) = 0] can be provided. Considering &* = 4y,
the metric function b(z, r) in (50) takes the form

o
Vo +eries 4 eyr?
B(1) & 1
co+cirt 4p(t) ey + c3r?
(@ 1 A1)
B (2\/,5@7\/62 +cyr? " \/CO +cir

and the corresponding a(¢, r) metric function will be

& 1
q(t)ﬂ( ) (L(]+Clr 4/32( ) ¢2+c3r2)
A0 )2
2\/ \/L2+L';r2 \/coJrc]rz

: ( __6 _ 1 )
= q(t)ﬂ(t) \/C°+Clr2 280) Verter (155)
B(1) ( 1 4+ -0 1 ) ’
\/c0+clr2 2p(1) \/Cz+c3r2

Similar to the previous solutions, one can set (1) = a(t )
and g(t)a(t)/a(t) = 1. Here, we assume that a(z) is
nonnegative for all 7. Thus, we find

b(t,r) =

2>2, (154)

a(t,r) =

e 1) 1 a(t) \?
b, )_<2y/a(t)\/c2+c3r2+\/c0+c1r2) - (156)

1 25 Co+01§
at,r) = — 20V et (157)
coter
] +261> C2+C;r2
_ 2.3
() = 20 —ae) (158)
(co + c1m)3(cs + c312)3
8zp(t r)zsm—i(3rb’2+6bb’+2h b)—A, (159)
' a*(t) rb* : '
at(t)y b (a(t) a(na(r)
8ap(t,r) =3 2+ - 160
e =350+ 2 (=) 19
1 L
+——(2b(rb + b)b' — rbb?) + A.  (161)
rb*b

We have the following subclasses of this general solution.
Here also we define our ¢, ¢, ¢, and c¢3 parameters in
such a way that our general solution reduces to the McVittie
solution as one of its particular subclasses.
(1) The case of ¢y, =c, =0 o0r cog=c3=0.
For this case, the metric functions (156) and (157)
take the following forms:

5 ¢
- 2a(r)r \/g

5 [a’
1+ 2a(t)r \/E

a(t,r) = (162)

by = (2L Va0 2 (163)
= \avaw ver Ve )

where by the identifications ¢y = 1, and /c; = %
they read as

at,r) = 711 _1 (164)
b(t,7) = a(t) (1 +%>2. (165)

This solution is the McVittie solution for the flat
background universe (k = 0). The density and pres-
sure profiles of this case can be obtained as

a(1)

8rp(t,r) =3 20)

—A, (166)
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(@)

(1) (@) a()\
a2(1)+2(a2(1)_m) 1—2%”—'—[\‘
(167)

8ap(t,r)=-3

Then, one finds the following points for this
solution.
(a) Z; surface exists only for M < O as

it M+ 2a(t)r=0 (168)

(b) X, surface exists only for M > 0 given by

¥: M—=2a(t)r=0. (169)
Interestingly, one notes that regarding the sign of
the M parameter, the singular surfaces can be
spacelike or timelike. However, for physical
cases M > 0, the only existing singular surface
is the spacelike surface X,. This singular surface
corresponds to the big bang singularity [22].

The case of c; =0 or ¢y = 0.

For the case ¢, = 0, the metric functions (156)
and (157) take the following forms:

1— 5 5t co+‘clr2
e
I+ 2a(t)r ’ c3]
) 1 a(t) )2
b(t,r) = + , (171
t.r) <2\/a(t) Ver ey + ¢ r? (a7)

where by the identifications ¢y =1, ¢; =k, and
-5 — M, we have

NG
(tr) = 1—2%\/14—er 172)
a(t,r 7
1—|—2a(t) V1+kr?
=0 (12 M e2) a7
r)= .
' 1+kr? 2a(t)r

This solution is the generalization of the McVittie
solution to a nonflat background universe (k # 0).
This solution can be also identified to the Vaidya-
Shah solution with Q = 0, where we have previously
addressed its asymptotic behavior in Sec. VA 1.
Then, one finds the following points for this solution.
(a) Z; surface is given by

T M1+ kr? 4 2a(t)r =

which exists only for the unphysical cases, i.e.
for M < O.

(174)

3

“

064048-14

(b) X, surface exists for M > 0 as

o MV 1+ kr? =2a(t)r =

The case of c; =0 or ¢c3 = 0.
For this case ¢; = 0, the metric functions (156)
and (157) take the following forms:

\/ catesr?

(175)

o)
- 2a(t)

1+ 2a(1) \/ catesr?

(&)
o
2
1 t
+ “<)>, (177)
€o

13}
b(t,r)=
(t.r) <2w/a(t) Ve +cesr?

where by the identifications ¢y =1, = =k, and
\/C_z = M, they read as

a(t.r) (176)

(178)

b(t.r) = alt) (1 + M )2. (179)

2a(t)V'1 + kr?

This solution is also another generalization of the
McVittie solution to a nonflat background universe
(k # 0) with a different identification set of our
integration constant parameters. We have studied the
charged generalization of this solution in Sec. VA 2
with details of its behavior at the spatial origin and
infinity. Then, to avoid repetition, one can set Q = 0
to realize the properties of this solution. Then, one
finds the following points for this solution.

(a) X; surface exists only for M < 0 as

L0 M +2a()V1+kr* =0. (180)
(b) X, surface exists for M > 0 as
Tt M —2a(n)V1+kr*=0. (181)

The case where none of the c; parameters are zero.
For this case, the metric functions (156) and (157)
take the following forms:

S5 c0+c|r
2a 1) cz+c3r
co+clr

1 + 2a t )V catesr?

a(t,r) (182)
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- 1) 1 a(t) \?
ble.r) = <2\/a(t) \/c2+c3r2+\/c0+clr2) ’

(183)

where, by identifications ¢y = 1, ¢; = ky, \/¢; = 2,
and k, = E—Z, they read as

1= 2M l+k|r§
a(t,r) = — 20V Lkr (184)
1 M 14k 2
+T(r) I+ky 2
b(t,r) M a(t)
7r -
V1P + k2 1k
M? 1
Sl 185
T a1+ kor (183)

_( M 1 N Val(t) >2
2V a) 1+ bk 1+kir?)

(186)
Remark 3: When the metric function b(z, r) takes the
form
R(1)
b 1, =T, >
(t,7) 1+ kr?

we showed, in Sec. VIA 1, that the spacetime
reduces to the FRW universe with scale factor
R(#) and spatial curvature 4k. Hence this suggests
to us that the metric function b(¢, r) in (186) is a kind
of nonlinear superposition of two different FRW
b-functions

b(t.r) = (bi(t.r) + ba(t. 7)),

where
a(1)
b (t,r) = —2——~—,
1( ) 1—|—k1r2
by, ) M 1
,r) = .
? 2v/a(t) /1 + kyr?

If k; # k, each one describes different FRW uni-

verses. The function b,(z,r) belongs to a FRW

universe with the scale factor a(¢) and the spatial

curvature 4k, and the function b,(z, r) belongs to
M2

another FRW universe with the scale factor a0 and

the spatial curvature 4k,. Hence our uncharged
solution is a kind of a nonlinear superposition of
two different FRW metrics with different spatial
curvatures. If initially a(¢) — O then the function

b, (t, r) is dominant in b(¢, r) and the corresponding
universe is initially a FRW universe with spatial
curvature 4k,; see Appendix F. On the other hand if
a(t) - oo as t — oo then the function b,(¢,r) is
dominant in the function b(¢, r) and the universe is
described by a FRW metric with the spatial curvature
4ky; see Appendix F. If k;1k, < 0 then we obtain an
interesting result saying that the universe undergoes
a kind of a topological change. In between, for
t € (0, ), the universe is a mixture of the above
two FRW universes. If k; = k, = k then the two
FRW universes collapse to a single one with the
spatial curvature 4k.

One realizes the following points for this solution.
(1) X; surface exists only for M < 0 as

T M/ + ki r? 4+ 2a(t)\/1 + k> = 0.

(187)

(i) X, surface exists for M > 0 as

ot MA/1+ kir? =2a(t)y\/1 + k,r? = 0.

(188)
3. The case of cy=c,=0

For this case, 8, &, and h; functions vanish and the metric
function b(t, r) reads as
RS
+ D E)
p(r)c 3)

t
b(t,r) = &g (1
where by defining () = 22 (1 4+ -Z-<) takes the follow-

(189)

cr
4 p(1) ¢
ing simple form:

b(t,r) :@.

(190)

Then, using suitable coordinate transformations, one can
show that this solution can be identical to the flat FRW
solution. Thus, the spatially flat FRW solution is one of the
uncharged subclasses of our general solution (50) with the
parameters of ¢y = ¢, = 0.

4. The case of c;=c3=0

For this case, 8, h, and &, functions vanish and the metric
function b(t, r) will be only a time dependant function as

b =50 (1 +ﬁf<z>5—i>-

Co
Similar to the previous case, using suitable coordinate
transformations, one can show that this solution can be
identical to the flat FRW solution.

(191)
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B. Uncharged solution for N=1

1. Uncharged solution for v(r)

One can find that both the functions A(r) and Fy; in
(101) and (103), respectively, vanish for

C
w(r) = +5kr2. (192)
Thus, we have
1
a(t,r) = = (193)
1+W5t)
a(t) Cs
b(t,r)=—"=(1+—7], 194
(t,7) 1+kr2< +a(t)> (194)

Then, regarding the coordinate transformation in Sec. VI A 1,
this solution gives also the FRW model.

2. Uncharged solution for v, = constant

For this case, one can find that both the functions A(r)
and Fy; in (101) and (103), respectively, vanish only for
k = 0 or vy = 0. Then, the condition for having uncharged
solution for v, = constant # 0 is similar to the Vaidya-
Shah solution, where the uncharged case is provided only
for k = 0. For this case, we find

a(t,r) =

: (195)

b(t,r) =vy+ a(t). (196)
Accordingly, one can show that this solution also is
identical to the flat FRW solution.

VII. APPARENT HORIZONS
AND NULL GEODESICS

The areal distance R is defined as R = rb(t, r). Among
the constant R surfaces the null ones are called the apparent
horizons. In our case there are two apparent horizons

a(b + rb')? - PPb2b* = 0, (197)
where a = qb /b. One can verify that the apparent horizons
defined above reduce to the those given in [7] for the
charged McVittie solution obtained by VRV .R = 0 where

R is defined as the areal radius. Then, there are two
possibilities as

Hi: q(b+rb')—rb*> =0, and
Hy: q(b+ rb') + rb* =0, (198)

for the location of the apparent horizon H = H; U H,.

According to the spacetime metric (16), ingoing and
outgoing radial null geodesics x* = (t,r(t),0=0y,p=1¢y),
where 6, and ¢, are constants, are given by

dr b
i +q R (199)
where “+” signs represent the “outgoing” and “ingoing”
geodesics, respectively. These null geodesics, when entered
in the apparent horizon H, stay there. To see this, when the
radial null geodesics lie in H, by taking the derivative of
r()b(r(t),t) = ¢ with respect to 7, we obtain

dr B rb

P (200

Equations (199) and (200) are consistent because the
expressions in the right-hand sides of these equations are
equal due to the nullity condition (197) or (198) of the
apparent horizon H.

To study the causal and global structures of the space-
time we have to maximally extend the existing coordinates
{0 <1 <00,7r>0,0<¢<27,0<86<nx} toa coor-
dinate system where the areal distance R is one of the
coordinates as done in [22,23,33]. We postpone a detailed
study of this case as our future work. However, just to give
an idea how the radial null geodesics (NG) behave, we plot
them in Fig. 1. In the same figure we also give apparent
horizons H;, H, and singular surface X, of this uncharged
solution given by

dr rb(1,r)
NG: — = — , 201
dt b(t,r)+rb'(t,r) (201)
1000
500
- 0
-500
-1000
'
FIG. 1. Null geodesics (dashed blue curves), singular surface

%, (thick red curve), and apparent horizons H; and H, (thin black
curves) in the de Sitter background for the uncharged N =2
solution with M =1, k = 1, p = 2. and a(t) = "0
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H: a(t,r)(b(t,r) + rb'(t,r))* — r2b(t, r)l}z(t, r) =0,

(202)
T M*(1+ kr?) —da*()(u+r*) =0, (203)
respectively, corresponding to the metric functions
_ A/ZIZ 1+k€2
a(t,r) = 4a(d) wir (204)
+

[Tk 2’
(1+2£/(It) /H-rrz)

2
1+ kr?
) (209)
N\ utr

a(t)
bt r) = 1 + kr? (1 +2a

for typical values of M, u, and k parameters in a de Sitter
background as in the terminology of FRW models.

VIII. CONCLUSION

We have found two classes of solutions of Einstein-
Maxwell-perfect fluid field equations with a cosmological
constant in a spherically symmetric spacetime. In particular
the first class corresponding to the N = 2 case contains six
parameters, four of which are essential generalizations the
Vaidya-Shah solution. The uncharged version of our
solution generalizes the McVittie solution. We showed
that there are some, depending on sign of the parameters,
timelike and spacelike surfaces where the spacetime
becomes singular. We then investigated some special limits
of our solutions in both classes. The list of charged and
uncharged solutions obtained in this paper is given in
Tables I and II.

Among all the solutions we found in this work, there are
new charged and uncharged solutions of the Einstein-
Maxwell-perfect fluid equations with cosmological con-
stant. For the uncharged case the solution corresponding to
the N = 2 class is a model of a universe which is a mixture
of two different FRW universes with different spatial

TABLE I. List of charged solutions and their special limits.
N Class Parameters Solution
N=2 I s €1, €2, €3 F0 /f() s Yo feir
o €1 €2 €3 blt.r) = 20 (1 4 5\ [0 4 o aer
I cp=0o0rc;=0 ﬂ( ) ¢
1 ; b(e.r) =" (4 5 et 4 i)
11 cy =0 B()
¢ b(l’ r) coterr? T ﬂ( ) Cz+Czr
v co=0,c#0,0rcr, =0, ¢y #0 Vaidya-Shah Solution
\ r=20 b(t.r) = ag(r) + /jrc > (identical to N = 1)
N=1 vo(r) = arbitrary, by, by #0 b(t.1) = vo(r) + 5 /i(g)lr
TABLE II. List of uncharged solutions and their special limits.
N Class Parameters Solution
N=2 I 52:47&6'0 C1,Cp Cg?éo K 1 (1) 2
) ) s L3 b l, —
( r) (2\//}(1) \/('3+('3r2 + \/co+c]r2)
IT & =4y, cg=00rc, =0 generalized McVittie to nonflat background
(k # 0) (uncharged Vaidya-Shah solution)
I B =4y,¢c,=00rc;=0 5 | B(1)\2
’ b(t,r) =
( sr) (2 F‘/i(t) \/chrc}rz NG )
v ¥ =dy,c;=c,=00rcy=c;=0 McVittie solution
\Y CpC3 = C1Cy FRW solution
VI cop=c, =0 FRW solution
VII cp=c3=0 FRW solution
N=1 I w(r) =1an FRW solution
11 1y = constant FRW solution
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curvatures. We will study in particular this solution in more
detail in a forthcoming publication.

Mathematical and physical properties of our solutions

can be summarized as follows. We proved three theorems:

(1) The first theorem is on the reduction of the Einstein
field equations into single ordinary nonlinear differ-
ential equations.

(ii) The second theorem is on the two classes of
solutions corresponding to N =1 and N = 2.

(iii) The third theorem is on the regularity of spacetime
when the radial coordinate r goes to zero and to
infinity.

Other properties are the following:

(1) Our solution corresponding to N =2 of Sec. IV
when the two spatial curvatures are equal, i.e.,
ki = k,, reduces to FRW metric if the total charge
in the universe vanishes.

(i) There exit some spacelike surfaces where the
pressure of the fluid diverges but the mass density
of the fluid distribution remains finite. Such space-
like surfaces are known as (sudden) cosmological
singularities.

(iii) Null geodesics crossing the above spacelike surfaces
remain in these surfaces.

(iv) If p =0 in the first representation in Sec. IV, we
obtain the Vaidya-Shah metric. When ¢ =0 and
spatial curvature k = 0 and the scale factor a(7) = 1
we obtain the Reissner-Nordstrém metric in iso-

tropic coordinates. When =k =0 and a(t) =

eV then we obtain a Schwarzschild-Reissner-
Nordstrom-de Sitter metric with cosmological con-
stant A. When the charge parameter Q vanishes we
obtain a generalization of McVittie metric. If the
charge parameter vanishes and y = k = 0 we get the
McVittie solution. Furthermore if a(f) =1 we
obtain the Schwarzschild metric in isotropic coor-
dinates.

(v) In particular for the uncharged case our solution can
be considered as a nonlinear superposition of two
different FRW metrics with different scale factors
and different spatial curvatures. Because of this
effect in our model our universe may start with a
FRW universe with spatial curvature k, and ends
up with a FRW universe with a different spatial
curvature kq, so that k1k, < 0. This means that the
universe may undergo a change of topology.

Note added in the proof.—Recently, we became aware of a
paper by Mashhoon and Partovi [34], focusing on the
gravitational collapse of charged fluid spheres. Although
the problem studied by Mashhoon and Partovi differs from
ours, they present an exact solution of FEinstein field
equations for inhomogeneous charge fluid distribution

which corresponds our N = 2 solution, with zero cosmo-
logical constant, in Theorem 2.

APPENDIX A: KUSTAANHEIMO-QVIST
APPROACH FOR THE CHARGED CASE

Following the Kustaanheimo-Qvist [31] approach (see
also [5,32]), one can use the change of variables L = b~!
and x = 2 to transform Eq. (30) for the uncharged case
(h = 0) to the following ordinary differential equation:

4x hl

— L — =0, Al
L2 xx+ r ( )

where using the identification F(x) = —4% (A1) can be

written in the form of
(A2)
For the case where the charge is also included we obtain

L. = F(x)L? + F,(x)L?, (A3)

where F(x) = —% and F,(x) = —i.

For the case where charge is zero, as represented in [32],
there are three different approaches to finding solutions for
(A2). The first approach is based on an ad hoc ansatz for the
function F(x) [35]. The second approach is based on the
answer to the question of “for which functions F(x)
Eq. (A2) admits one (or two) Lie point symmetries or
Noether symmetries?” [31]. The third approach introduced
by Wyman [36] is based on the solutions of (A2) which
have the Painleve property. All known solutions belong to
this class. For the case of F' = 0, the solution to (A2) is

L=L = A(t)r* + B(t). Some other subclasses with F =

(ax* + 2bx + c)‘% where a, b, and ¢ are real constants are
given in the following [32].
(i) McVittie solution: F(x) =
(i) p =p(t) solution: F(x)
6A = b(3e* — kop).
(iii) p = p(t) solution: F(x) = Oand 12AB = 3¢/ — kyu.
@iv) p=p(p), p = p(t) solution: F(x) =0 and B = €A
where € = 0, 1.
~v) p=plp), p=p(tr): F(x)=1 and A = const,
B =t and e = —4At.
Our uncharged solution given in (154) as

(3 ! LONRY
v = <2\/m\/02+0372+\/00+01r2) 44

gives a new solution to the above equation (A2) where the
function L is given by

(x(x +4R?))3, A=0.
= (2bx)73, b#0, and
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5 1 n \7?
_ ( Y0 ) , (A3)
2./B(t)Ver +e3x (oo +ex
then the function F(x) is found as
F(.X) _ ﬁ (CICZ B cOC?a)2

4 (co+ c1x)*(cy + c3x)/?"
communication.

(A6)
For the charged case we will investigate all possible new exact solutions and the properties of Eq. (A3) in a later

APPENDIX B: THE CASE OF u= i—;
For this case, S(z,r), X(¢,r), and Y(¢, r) functions are given by the following forms
32M* = 0*)(1 — ku)r?
Sy _ 3O = 01 = ke

12a*(t)k 6Ma(t)
TR PG ey Ak (ks A T RO H b+ 8hur)
3M?(1 + kp + 2kr?) 3(M? - Q?)
- 2u+ k 2 1+ k
(1+kl")( ) ( +”r+r) (1+kr2)2<ﬂ+r2)2( +Iu)
3M(M? - Q%) 3(M% — Q%)
3u + 8kur? 4 k(1 + 3uk)r* + ku?) — ———5— Bl
a1 k2o P B KL 3 ) = s (B1)
and
M [1+krr | MP=Q% 1+ks?
Lo Ve T 8w
X(t,r) = TR , (B2)
- 4a2(t) u+r?
Y(t.r) 4ka?(t) 8kMa(r)
r)=—
’ (1 +kr?)* (1+kr2)z(ﬂ+r2)%

CAM k(A 2ur* 1) = (MP = Q) [u(1 = 2ku) + 2k(1 = p)r* + k(kp = 1)r"]
( + k) (u+ )}
L 2M(M? = Q°)(1 = ku)p — k']
+a<t){ (1 : ]

+ k) (u + )

N 1 [(MZ V2 [u(2 = k) + 2kpur? + k(2ku — 1)r*] + M?*(M?
2(1)

1

(

a

Q%) [Ap + 8k(u + 1) + 4k(kp — 2)r*]
4(1 4+ kr?)*(u+ r2)*
LR ANEYE)
a*(t) 16 '

2+ )3

" [M(M2 - 0)u(1 + kr2>%]

(u+72)°
At the spatial origin, i.e. r — 0, the behavior of the functions a(z, r), b(z,r), p(t,r)

(B3)
o(t,r), and p(t,r) are given by
~ iy
r) = < , B4
(t ) (1+ \/_+Mz(?z> ( )
2 _ 2
b0.) a1+ 25+ ) )
310|(1 — pk)a ()
dro(t,r) - , B6
(l ) M% (az([) i M;/él) i M24;Q2>3 ( )
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Yo(t)

87p(t, r) > E ; +3a2(1)S(1) = A,
() _a)
8 p(f, ) -3 (l) +2<a2(l‘) a([))XO(I) +a4(t)(1 -

where p > 0 and Sy(z), X,(z), and Y () read as

16ka* (t)u* + 8Ma’ (1) (1 + 3ku) +4(3M° —

M2

4pua

0°)(

1 + kp)a

(0w’

Solr) = 64{ (4 (0 + AMalt) i + M7 =

2a(NEM(M? = Q*)(3 + ku) + u(M? - 0)? ]
(4a*(t)u + 4Ma(t)\//7 +M?* - Q*)*

’

2_02
+ i

Xo(1) = O

MZ Q2 ’
T dud(r)

Yo(t) = —4ka*(1) — 8kMa(t) 4AM’k— (M?

~ 0%)(1-2ky)

VH w

Q?)

4

-0? M M>-Q?
2<r>) (1 tart 4020)#)

9

4+A7

- 0*)(1 = ku)p

1
+a2( 4/44
1
(

[M(M2

_ Q2)2:| 1 M2 _ Q2)3:|
2/1% '

(
a(1) +a4(t) [ 16u*

Then, all the functions a(z,r), b(t,r), p(t,r), 6(t,r), and p(z,r) remain finite at the spatial origin.
At the spatial infinity, i.e. r — oo, assuming y > 0 and k > 0, the behavior of the functions a(z, r), b(t, r), p(t, r),

and p(t,r) are given by

1— (MZ—Q2)k
4a’(t)

a(t,r) — R
Mk *)k
<1+ )t 4a<>)

b(t,r) - 0,

3101(1 — k)
(1) (1 + M4 120

dro(t,r) —

)

8rp(t,r)

Brp(t,r) > =3 jz(t) + 2<a (1 —d(t)>X1(f)

where k > 0 and S,(¢), X,(¢), and Y,(¢) are given by
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a(r)

|:(M2 _ Q2)2(2 _ kﬂ) 4 [\42(M2 — QZ)[4,M + 8]{(/4 + 1)]:|
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(B8)

(B11)

o(t,r),

(B12)

(B13)

(B14)
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16ka’ (1) + 8Ma> (1)k3(3 + kp) + 4(3M? — Q?)(1 + k)a? (1) k>

$i(1) = 64 (4a>(t) + 4Ma(t)Vk + (M? — Q*)k)* ’ (BI8)
2a(H)MIG(M?* — Q2)(1 + 3ku) + (M?* — Q*)*k*u (B19)
(4a*(1) + 4Ma()Vk + (M?* — Q¥)k)* ’
I+ 2 ko )
(1) =—— k“f;‘(ffg : (B20)
a2 a 2 2 2 _
Y,() = 4 k3(t) B 8Mk%(t) _AME 4+ (M sz )(kp — 1)
L] [ZM( M - Q2)<ku - 1)] Lt [(Mz = 0°)(2kp — 1) + AM>(M? — %) (ku = 2)
a(r) a*(1) 4k
1 [M(M Q2 a1 (M2 = 0%k
+a3(t)[ ]+ . [ < } (B21)

Then, all functions a(t, r), b(t,r), p(t,r), o(t, r), and p(¢, r) remain regular at the asymptotic region. Also, it is seen that
regarding the above forms of p(t, r), o(t,r), and p(z,r) functions, the behavior of this solution at the spatial infinity is
different than the FRW solution.

APPENDIX C: THE CASE OF k, = z—z

For this case, S(t,r), X(¢,r), and Y(¢, r) functions are given by the following forms:

32M? — Q%) (ky — kp )2 124%(1)k, 6Ma(t)
S(t,r) = - - ky + 3k + kykao(ky + 3ko)r* + 8k k
") I+kr 0 +kr?)? U+ (14 kP23 + k) e+ 3k 2k + 3k)r* o)
3MP(ky + Ky + 2k ko) 3(M? - Q?)
1+ k)3 (1 + kyr?)? (14 k) (1 + kyr?)?

3M(M2 - Q)

2+ (ky + k) r?) -

(ky + ky)

(M — 07k,

- ky + 3ky + Skykor? 4 kiko(ky + 3k )r*) — , Cl1
2a(0)(1 + kPR 1 g SRl 3007 g e b
l_i_ﬂ 1+k 12 +M2 Q2 1+k, r?
a(t) '\ 1+kyr? (t) 14kyr?
X(1.r) = S (c2)
- 4d2(1) 1+1<2r2
Y(t.r) 4k a*(t) 8k Ma(t)
V)= — - 1
(T4 k)t (1 4+ k)31 + kzr )2
_ 4M2k](1 + 2k2r + k%r“) - ( - Q2)[(k2 - 2k1) + 2k1k2(k2 - 1)1’2 + k]kz(kl - kz)r4]
(14 k2> (1 + kpr?)?
LM =@ ki)
a(t) (1+ k)i + )]
i 1 [(M? = Q%)?[2ky — ky + 2kikor® + kyko (2ky — ky) 1]
a*(1) 41+ k)2 (1 + kyr?)*
n M?(M? — O?)[4ky + 8kiky (1 + k) + 4kyky (ki — 2Ky ) 1]
4(1 4 k) (1 + kyr?)*
- [M<M2 ~ Q) hy(1 + klrﬂ - {@(Mz - 0)’(1+ klrzq (c3)
a’(t) 2(1 + kyr?)?2 a*(1) 16(1 + kor?)3 '
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At the spatial origin, i.e. r — 0, the behavior of the functions a(z, r), b(t,r), p(t,r), o(t,r), and p(z,r) are given by

a(t,r) — - % (C4)
’ (1 +%+%)’
M M2 _ Q2
b(t,r) = a(r) <1 +W+W>’ (Cs5)
192[Q|(k, — ky)a’ (1)
Ano(t.r) = e + 4Maz(t) +ME— Q%) (C6)
a(1)
8rp(t,r) =3 20) +a*(1)So(1) — A, (C7)
@ (@) _a) 20
sapt.1) =325+ 2( G~ S %O+ I 1 gy )
where Sy(t), X((¢), and Y,(¢) functions are
(1) — 185610+ SM (ks + 38,) + 4P ()32 = Q%) ky + o)
e (4 (1) + 4Ma(1) + (M° = Q%))*
2a(t)M(M?> — Q%) (k, + 3k) + (M — Q2)2k2} (C9)
(4a*(t) + 4Ma(t) + (M? — Q?))* '
Mo M-Q
Xo(t) = H”# (C10)
- 4a2 (1)
and
Yo(1) = —4ka*(t) — 8k, Ma(t) — 4M>k, + (M? — Q%) (ky — 2k;) + % 2M(M? = 0*)(k, — ky)]
1 [(M? = Q) (2ky = ki) + M>(M? — Q°)[4ky + 8k ky (1 + k)]
i) [ 4
1 [Mky(M? - Q%) 1 [ky(M? - Q%)
] e R 0] )

Then, similar to the metric functions, we see that o(z, r), p(t, ), and p(t, r) are regular at r — 0, except for cosmologies
with a(t) — 0.

At the spatial infinity, i.e. r — oo, assuming k; > 0 and k, > 0, the behavior of the functions a(z,r), b(t,r), p(t,r),
o(t,r), and p(z,r) are given by

1 — (M2-0?)k,
4a®(1)ky
a(t,r) - (1 N ™ N (MZ—QZ)kI)’ (C12)
d(l)\/lzz 4(12(1)](2
b(t,r) = 0, (C13)
_ 1

(4a*(t)ky + 4Ma(t)Vkiky + (M? = Q?)k)?’
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(1)
8”p(t’ r) - a2(t) az([)Sl(t) _Aa
@) (@0 al) Y.
Bep(t.7) *‘3a2<z>+2<a2<t>‘%>xl(’” == e N I

where S, (1), X,(t), and Y,(¢) functions read as

5, (1) = 64 {16k1k4 a* (1) + 8Ma (1)ky3ky3 (ky + 3ky) + 4a?(1)(3M?* — Q) (ky + k)
e (4a%(1)k, + 4Ma(1) v/ K, + (M? = @)k, )*
| 2a(OMER (O - 0)(ks +3k) + (M? - 0 ko]
(4a®(t)ky + 4Ma(t)vk1k2 + (M?* = Q*)ky)* ’

M (M2Q2>
U Vet e

Xl(t) l _ (MZ Qz)kl ’
4> (1)ky
and
4a*(1) 8Ma(t) 4M*ky + (M? — Q*)(ky — ky)
Yi(t) =- JER 5 i
1 K 152
L {2M<M2 — 0*)(k - kz)} 1 {(w — 02P(2k — ko) + 4V (M
) k%Ik% Clz(l) 4k, k;
L M(M? — Q*)k: L] (M? - )k,
a*(1) 242 a*(1) 16k5 '

(C15)

(C16)

(C17)

(C18)

(C19)

Then, all functions a(t, r), b(t, r), p(t,r), o(t, r), and p(t, r) remain regular at the asymptotic region. Also, one realizes that
regarding the above forms of p(z,r), o(t, ), and p(¢, r) functions, the behavior of this solution at the spatial infinity is

different than the FRW solution.

APPENDIX D: THE CASE OF EITHER ¢;=0 OR ¢;=0

For this case, we have

6Mka(r)  3k(3M>— Q)  OM(M*>— Q¥k  3k(M?— Q%)

S(t,r) = 3 7
(£.7) (1+&2)p (L+k2) 2a()(1 + k) " 4a 201+ k)t
M2 Q2 1

4a* (1) 14+kr?

X(t,r) = \/1;11(; — (1) 1+ ’
- 4a*(1) 14+kr2
Y(t ) _k(M2_Q2) 1 |:2M(M2_Q2)k:| 1 |:(M2_Q2)2k+2M2(M2_Q2)k
) = 4(1 + kr?)3 m (1+ krz)% a2(1) (1 + kr?)*

a31(t){ 2(( 1+ k2 )>‘5 ] a“l(t) ﬁ%t kQ;;Z]
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APPENDIX E: THE CASE OF ¢;,=0

For this solution, we have

3Q2(k2 - k1)2r2 12612(t)k1 3Q2 3Q4k2
S(t,r) = — - k, +k . (E1
(&,7) 1+ k231 + k) (1 4k r2) (1+k1r2)2(1+k2r2)2( L 2>+4a2(t)(1+k2r2)4 (E1)
1 — 0* 14k r?
4a%(1) 1+kyr?
X(tr) = —2S0 2 (E2)
I+ 4a* (1) 14k, 12
Y(t,r) = — 4kya* (1) _QZ[(k2—2k1)+2k1k2(k2— D)7+ kiky(ky = ky) 7]
T (k) (L4 k)3 (1 + kpr?)?
+ 1 Q4[2k2 - kl + 2](1](21"2 + k1k2(2k1 - k2)l’4] 1 k2Q6(1 + klrz) (E3)
a’(t) 41+ k) (1 + k)t a*(t) [ 16(1 +kyr?)® |

APPENDIX F: REDUCTION TO THE
FRW SOLUTIONS

In Sec. VI A 1, we showed that when the metric function
b(t,r) takes the form of

R(1)

b(t,r) :m,

(F1)

the corresponding spacetime metric reduces to the FRW
metric. Here, we show how the corresponding matter
density at both a(z) — 0 and a(t) — oo limits reduce to
the matter density given by the standard Friedman equation
for an FRW universe.

(i) For a(t) — 0, regarding (186), we have

M? 1
4a(t) 1 —+ kz}’z ’

b(t,r) — (F2)

The corresponding matter density p(z, r) can be read
from (31) as

3 64ka?(1)

8rp(t,r) — ? +3 Y A, (F3)

where using ¢(7) = % and R(r) = % reduces to

the following standard Friedmann equation:

R(t 4k
(1) 3

Bap(t,r) —» 3R2(t) R0

-A, (F4)

describing an FRW universe with the scale factor
R(t) and spatial curvature 4k,.
(ii) For the case of a(f) — oo, from (186), we have

a(r)

b(t. .
( r)_)1+k1r2

(F5)

The corresponding matter density can be obtained
from (31) as

4k,
a(t)
where it represents the matter density of a FRW

universe with the scale factor R(¢) = a(t) and spatial
curvature 4k;.

3
8mp(t,r) — 7 +3 A, (Fo6)
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