

•Topics

- -What is electric charge? Point objects, Size. Atomic model -Methods of charging objects. Friction, Contact, Induction, Machines
- -Instruments to measure charge
- -Quantization of charge and conservation of charge
- -Coulombs Law and examples
- -Principle of superposition and examples

-Charge is analogous to mass

Introduction

 "In the matter of physics, the first lessons should contain nothing but what is experimental and interesting to see. A pretty experiment is in itself more valuable than 20 formulae." Albert Einstein

Charged Hair Van de Graaff Demo

- How does this gadget produce a mini-lightning bolt?
- What upward forces are keeping your hair up?
- How are these forces produced?
- Why do the hair strands spread out from each other?
- Why do they spread out radially from the head?
- Is hair a conductor or insulator? How can we find out? Does it depend if is wet or dry.
- To understand what is going on we need a model of electricity.

Some preliminaries

- Electron: Considered a point object with radius less than 10¹⁰ meters with elecharge e= -1.6 x 10⁻¹⁹ Coulombs (SI units) and mass m.= 9.11 x 10⁻³¹ kg
- Proton: It has a finite size with charge +e, mass m_p = 1.67 x 10⁻²⁷ kg and with radius
 0.805 +/-0.011 x 10⁻¹⁶ m scattering experiment
 0.890 +/-0.014 x 10⁻¹⁵ m Lamb shift experiment
- Neutron: Similar size as proton, but with total charge = 0 and mass m_n=
 Positive and negative charges exists inside the neutron
- Pions: Smaller than proton. Three types: + e, e, 0 charge.
 0.66 +/- 0.01 x 10⁻¹⁵ m
- Quarks: Point objects. Confined to the proton and neutron,
- Not nee
 Proton (uud) charge = 2/3e + 2/3e -1/3e = +e
 Neutron (udd) charge = 2/3e -1/3e -1/3e = 0
 - An isolated quark has never been found

Model of electricity

 \bigcirc

Carbon or diamond

Consider solid material like a piece of copper wire. The proton core is fixed in position in a lattice like structure. In a conductor, some electrons are free to move about. How many electrons are there free to move about?

Copper (Face Centered Cube)

Question: What is the electrical charge in the material that we are talking about? What is responsible for the conduction of electricity? How many electrons are moving about?

Copper atom: Z=29(protons), N= 34(neutrons), 29 Electrons

Methods of Charging Objects: Friction, Contact, and Induction

- Normally atoms are in the lowest energy state. This means that the material is electrically neutral. You have the same number of electrons as protons in the material.
- How do we change this?
- How do we add more electrons than protons?

Charging Insulators by Friction/Rubbing

- Rub two materials together: Show teflon/silk
- Show that there is a net charge on the teflon and silk using aluminum leaf electroscope.

Summary Silk(+) on teflon(-) Silk (-) on acrylic (+) Wood doesn't charge Charged objects always attract neutral objects Show Triboelectric series Not only chemical composition important, structure of surface is important - monolayer of molecules involved, quantum effect. (nanotechnology)

	Steel
Rabbit Fur	
Acrylic	
Human Hair	
Lead	
	Balloon
Aluminum	Polyurethane

Charging by Contact / Induction using conductors

- Show electronic electroscope (EE) with cage: gives magnitude and sign of charge. Use teflon and acrylic to show difference
- Show uniformity of charge around sphere using EE.
- Show induction:
- using conducting spheres and EE
- using electroscope
- electrophorus
 using water stream deflection need to know about electric dipoles
- Show hanging charged/conducting pith ball: first attraction by induction, then contact, then conduction of charge, then repulsion

Conservation of charge

- Rubbing does not create charge, it is transferred from object to another
- Teflon negative silk positive
- Acrylic positive silk negative
- Nuclear reactions $\gamma^0 = e^+ + e^-$
- Radioactive decay ²³⁸U₉₂ = ²³⁴Th₉₀ + ⁴He₂
- High energy particle reactions $e^{-} + p^{+} = e^{-} + \pi^{+} + n^{0}$

What is meant by quantization of charge?

- Discovered in 1911 by Robert A. Milikan in the oil drop experiment
- The unit of charge is so tiny that we will never notice it comes in indivisible lumps.
- Example: Suppose in a typical experiment we charge an object up with a nanoCouloumb of charge (10.⁹ C). How many elementary units of charge is this?
- Q=N*e so N= Q/e = 10.9 C/ 1.6*10 -19 C/e = 6*109 = six billion units of charge or 6 billion electrons.

-0

Why are neutral objects always attracted to positive or negative charged objects

For example: •Rubbed balloon is attracted to wall •Comb is attracted to small bits of paper •Clothes in the dryer stick together.

- 1. Put wood on the spinner and place charged teflon and plastic rods near it. Try a twig from a tree.
- 2. Put the 2 x 4 on a curved glass surface and try it.
- 3. Place charged rod on spinner and place your hand Near it.

What is the explanation of all of these phenomena?

Charging Objects using Electrostatic Machines

- •Otto von Guericke in 1660 charged a 7" Sulphur sphere
- •Lord Kelvin Water Drop Generator (Early 18'th century)
- •Wimshurst Machine (1880)
- •Van de Graaff Generator (1931)

Wimshurst Machine

Warm up set i

1. HRW6 22.P.019. [52295] What is the total charge in coulombs of 83.0 kg of electrons?

Number of electrons = 83.0 kg/9.11*10⁻³¹ kg = 9.11 *10⁺³¹ electrons

Q= 9.11 *10⁺³¹ *-1.60*10⁻¹⁹C =-1.46e+13 C= =-1.46 10⁺¹³C

2. HRW6 22.P.023. [52297] How many electrons would have to be removed from a coin to leave it with a charge of ±1.5 10-7 C2

Assume the coin is neutral.

Number of electrons = 1.5*10 ⁻⁷ C/ 1.60*10⁻¹⁹C = 9.38e+11C = 9.38 10⁺¹¹ C