

Intiroduction Continued

-What is charge? How do we visualize it. What is the model. We only know
charge exists because in experiments electric forces cause objects to move. -Show cartoon comparing mass and charge

Sorre predirnjuarijes

Electron: Considered a point object with radius less than 10-13 meters with electric

C'narging by Contact / Induction using conductors

\lrcorner Show electronic electroscope (EE) with cage: gives magnitude and sign of charge. Use teflon and acrylic
to show difference

- Show uniformity of charge around sphere using EE
- Show induction:
- using conducting spheres and EE
- using electroscope
- electrophorus
- using water stream deflection need to know about electric dipoles

Show hanging charged/conducting pith ball: first attraction by induction, then contact, then conduction of charge, then repulsion

What is meant by quantization of charge?

- Discovered in 1911 by Robert A. Milikan in the oil drop experiment
. The unit of charge is so tiny that we will never notice it comes in indivisible lumps.
- Example: Suppose in a typical experiment we charge an object up with a nanoCouloumb of charge $\left(10^{-9} \mathrm{C}\right)$. How many elementary units of charge is this?

What is the force between two 3 gm pennies one meter apart if we remove all the electrons from the copper atoms? (Modeling)

$$
\square
$$

$$
y
$$ \square

So what is q?
The atom Cu has 29 protons and a 3 gm penny has $(3 / 63.5)^{*} 6^{*} 10^{23}=3^{*} 10^{22}$ atoms.
-The total charge is $q=29 * 3 * 10^{22} * 1.6 * 10-19=1.4^{*} 10^{5} \mathrm{C}$
The force is $F=10^{10}\left(1.4^{*} 10^{5}\right)^{2}=2.0^{*} 10^{20} \mathrm{~N}$
What is their acceleration as they separate?
$a=F / m=2.0^{* 1} 10^{20} / 3^{* 1} 0^{-3}=0.7^{*} 10^{23} \mathrm{~m} / \mathrm{s}^{2}$

Principle of Superposition

Warm up set 1

