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Abstract. This paper is an extended foreword to the paper of Manjul
Bhargava [1] in these proceedings, which gives a short and elegant proof
of the Conway-Schneeberger Fifteen Theorem on the representation of
integers by quadratic forms.

The representation theory of quadratic forms has a long history, start-
ing in the seventeenth century with Fermat’s assertions of 1640 about the
numbers represented by x2 + y2. In the next century, Euler gave proofs of
these and some similar assertions about other simple binary quadratics, and
although these proofs had some gaps, they contributed greatly to setting
the theory on a firm foundation.

Lagrange started the theory of universal quadratic forms in 1770 by
proving his celebrated Four Squares Theorem, which in current language is
expressed by saying that the form x2+y2+z2+t2 is universal. The eighteenth
century was closed by a considerably deeper statement – Legendre’s Three
Squares Theorem of 1798; this found exactly which numbers needed all four
squares. In his Theorie des Nombres of 1830, Legendre also created a very
general theory of binary quadratics.

The new century was opened by Gauss’s Disquisitiones Arithmeticae of
1801, which brought that theory to essentially its modern state. Indeed,
when Neil Sloane and I wanted to summarize the classification theory of
binary forms for one of our books [3], we found that the only Number Theory
textbook in the Cambridge Mathematical Library that handled every case
was still the Disquisitiones! Gauss’s initial exploration of ternary quadratics
was continued by his great disciple Eisenstein, while Dirichlet started the
analytic theory by his class number formula of 1839.

As the nineteenth century wore on, other investigators, notably H. J. S.
Smith and Hermann Minkowski, explored the application of Gauss’s concept
of the genus to higher-dimensional forms, and introduced some invariants
for the genus from which in this century Hasse was able to obtain a complete
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and very simple classification of rational quadratic forms based on Hensel’s
notion of “p-adic number”, which has dominated the theory ever since.

In 1916, Ramanujan started the byway that concerns us here by asserting
that

[1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 1, 3], [1, 1, 1, 4], [1, 1, 1, 5], [1, 1, 1, 6], [1, 1, 1, 7],
[1, 1, 2, 2], [1, 1, 2, 3], [1, 1, 2, 4], [1, 1, 2, 5], [1, 1, 2, 6], [1, 1, 2, 7], [1, 1, 2, 8],
[1, 1, 2, 9], [1, 1, 2, 10], [1, 1, 2, 11], [1, 1, 2, 12], [1, 1, 2, 13], [1, 1, 2, 14], [1, 1, 3, 3],
[1, 1, 3, 4], [1, 1, 3, 5], [1, 1, 3, 6], [1, 2, 2, 2], [1, 2, 2, 3], [1, 2, 2, 4], [1, 2, 2, 5],
[1, 2, 2, 6], [1, 2, 2, 7], [1, 2, 3, 3], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 3, 6], [1, 2, 3, 7],
[1, 2, 3, 8], [1, 2, 3, 9], [1, 2, 3, 10], [1, 2, 4, 4], [1, 2, 4, 5], [1, 2, 4, 6], [1, 2, 4, 7],
[1, 2, 4, 8], [1, 2, 4, 9], [1, 2, 4, 10], [1, 2, 4, 11], [1, 2, 4, 12], [1, 2, 4, 13], [1, 2, 4, 14],
[1, 2, 5, 5], [1, 2, 5, 6], [1, 2, 5, 7], [1, 2, 5, 8], [1, 2, 5, 9], [1, 2, 5, 10]

were all the diagonal quaternary forms that were universal in the sense ap-
propriate to positive-definite forms, that is, represented every positive inte-
ger. In the rest of this paper, “form” will mean “positive-definite quadratic
form”, and “universal” will mean “universal in the above sense”.

Although Ramanujan’s assertion later had to be corrected slightly by
the elision of the diagonal form [1, 2, 5, 5], it aroused great interest in the
problem of enumerating all the universal quaternary forms, which was ea-
gerly taken up, by Gordon Pall and his students in particular. In 1940, Pall
also gave a complete system of invariants for the genus, while simultaneously
Burton Jones found a system of canonical forms for it, so giving two equally
definitive solutions for a problem raised by Smith in 1851.

There are actually two universal quadratic form problems, according
to the definition of “integral” that one adopts. The easier one is that for
Gauss’s notion, according to which a form is integral only if not only are all
its coefficients integers, but the off-diagonal ones are even. This is sometimes
called “classically integral”, but we prefer to use the more illuminating term
“integer-matrix”, since what is required is that the matrix of the form be
comprised of integers. The difficult universality problem is that for the
alternative notion introduced by Legendre, under which a form is integral
merely if all its coefficients are. We describe such a form as “integer-valued”,
since the condition is precisely that all the values taken by the form are
integers, and remark that this kind of integrality is the one most appropriate
for the universality problem, since that is about the values of forms.

For nearly 50 years it has been supposed that the universality problem
for quaternary integer-matrix forms had been solved by M. Willerding, who
purported to list all such forms in 1948. However, the 15-theorem, which I
proved with William Schneeberger in 1993, made it clear that Willerding’s
work had been unusually defective. In his paper in these proceedings, Manjul
Bhargava [1] gives a very simple proof of the 15-theorem, and derives the
complete list of universal quaternaries. As he remarks, of the 204 such
forms, Willerding’s purportedly complete list of 178 contains in fact only
168, because she missed 36 forms, listed 1 form twice, and listed 9 non-
universal forms!
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The 15-theorem closes the universality problem for integer-matrix forms
by providing an extremely simple criterion. We no longer need a list of
universal quaternaries, because a form is universal provided only that it
represent the numbers up to 15. Moreover, this criterion works for larger
numbers of variables, where the number of universal forms is no longer finite.
(It is known that no form in three or fewer variables can be universal.)

I shall now briefly describe the history of the 15-theorem. In a 1993
Princeton graduate course on quadratic forms, I remarked that a rework-
ing of Willerding’s enumeration was very desirable, and could probably be
achieved very easily in view of recent advances in the representation theory
of quadratic forms, most particularly the work of Duke and Schultze-Pillot.
Moreover, it was an easy consequence of this work that there must be a con-
stant c with the property that if a matrix-integral form represented every
positive integer up to c, then it was universal, and a similar but probably
larger constant C for integer-valued forms. At that time, I feared that per-
haps these constants would be very large indeed, but fortunately it appeared
that they are quite small.

I started the next lecture by saying that we might try to find c, and
wrote on the board a putative

Theorem 0.1. If an integer-matrix form represents every positive inte-
ger up to c (to be found!) then it is universal.

We started to prove that theorem, and by the end of the lecture had
found the 9 ternary “escalator” forms (see Bhargava’s article [1] for their
definition) and realised that we could almost as easily find the quaternary
ones, and made it seem likely that c was much smaller than we had expected.

In the afternoon that followed, several class members, notably William
Schneeberger and Christopher Simons, took the problem further by produc-
ing these forms and exploring their universality by machine. These calcula-
tions strongly suggested that c was in fact 15.

In subsequent lectures we proved that most of the 200+ quaternaries
we had found were universal, so that when I had to leave for a meeting
in Boston only nine particularly recalcitrant ones remained. In Boston I
tackled seven of these, and when I returned to Princeton, Schneeberger and
I managed to polish the remaining two off, and then complete this to a proof
of the 15-theorem, modulo some computer calculations that were later done
by Simons.

The arguments made heavy use of the notion of genus, which had en-
abled the nineteenth-century workers to extend Legendre’s Three Squares
theorem to other ternary forms. In fact the 15-theorem largely reduces to
proving a number of such analogues of Legendre’s theorem. Expressing the
arguments was greatly simplified by my own symbol for the genus, which
was originally derived by comparing Pall’s invariants with Jones’s canonical
forms, although it has since been established more simply; see for instance
my recent little book [2].



26 J. H. CONWAY

Our calculations also made it clear that the larger constant C for the
integer-valued problem would almost certainly be 290, though obtaining a
proof of the resulting “290-conjecture” would be very much harder indeed.
Last year, in one of our semi-regular conversations I tempted Manjul Bhar-
gava into trying his hand at the difficult job of proving the 290-conjecture.

Manjul started the task by reproving the 15-theorem, and now he has
discovered the particularly simple proof he gives in the following paper,
which has made it unnecessary for us to publish our rather more complicated
proof. Manjul has also proved the “33-theorem” – much more difficult than
the 15-theorem – which asserts that an integer-matrix form will represent all
odd numbers provided only that it represents 1, 3, 5, 7, 11, 15, and 33. This
result required the use of some very clever and subtle arithmetic arguments.

Finally, using these arithmetic arguments, as well as new analytic tech-
niques, Manjul has made significant progress on the 290-conjecture, and I
would not be surprised if the conjecture were to be finished off in the near
future! He intends to publish these and other related results in a subsequent
paper.
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On the Conway-Schneeberger Fifteen Theorem

Manjul Bhargava

Abstract. This paper gives a proof of the Conway-Schneeberger Fif-
teen Theorem on the representation of integers by quadratic forms, to
which the paper of Conway [1] in these proceedings is an extended fore-
word.

1. Introduction. In 1993, Conway and Schneeberger announced the
following remarkable result:

Theorem 1 (“The Fifteen Theorem”). If a positive-definite quadratic
form having integer matrix represents every positive integer up to 15 then it
represents every positive integer.

The original proof of this theorem was never published, perhaps because
several of the cases involved rather intricate arguments. A sketch of this
original proof was given by Schneeberger in [4]; for further background and
a brief history of the Fifteen Theorem, see Professor Conway’s article [1] in
these proceedings.

The purpose of this paper is to give a short and direct proof of the
Fifteen Theorem. Our proof is in spirit much the same as that of the original
unpublished arguments of Conway and Schneeberger; however, we are able
to treat the various cases more uniformly, thereby obtaining a significantly
simplified proof.

2. Preliminaries. The Fifteen Theorem deals with quadratic forms that
are positive-definite and have integer matrix. As is well-known, there is a
natural bijection between classes of such forms and lattices having integer
inner products; precisely, a quadratic form f can be regarded as the inner
product form for a corresponding lattice L(f). Hence we shall oscillate freely
between the language of forms and the language of lattices. For brevity, by
a “form” we shall always mean a positive-definite quadratic form having
integer matrix, and by a “lattice” we shall always mean a lattice having
integer inner products.
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A form (or its corresponding lattice) is said to be universal if it represents
every positive integer. If a form f happens not to be universal, define the
truant of f (or of its corresponding lattice L(f)) to be the smallest positive
integer not represented by f .

Important in the proof of the Fifteen Theorem is the notion of “escalator
lattice.” An escalation of a nonuniversal lattice L is defined to be any lattice
which is generated by L and a vector whose norm is equal to the truant of
L. An escalator lattice is a lattice which can be obtained as the result of a
sequence of successive escalations of the zero-dimensional lattice.

3. Small-dimensional Escalators. The unique escalation of the zero-
dimensional lattice is the lattice generated by a single vector of norm 1.
This lattice corresponds to the form x2 (or, in matrix form, [ 1 ]) which fails
to represent the number 2. Hence an escalation of [ 1 ] has inner product
matrix of the form [

1 a
a 2

]
.

By the Cauchy-Schwartz inequality, a2 ≤ 2, so a equals either 0 or ±1. The
choices a = ±1 lead to isometric lattices, so we obtain only two nonisometric
two-dimensional escalators, namely those lattices having Minkowski-reduced
Gram matrices

�
1 0
0 1

�
and

�
1 0
0 2

�
.

If we escalate each of these two-dimensional escalators in the same man-
ner, we find that we obtain exactly 9 new nonisometric escalator lattices,
namely those having Minkowski-reduced Gram matrices

2
4

1 0 0
0 1 0
0 0 1

3
5 ,

2
4

1 0 0
0 1 0
0 0 2

3
5 ,

2
4

1 0 0
0 1 0
0 0 3

3
5 ,

2
4

1 0 0
0 2 0
0 0 2

3
5 ,

2
4

1 0 0
0 2 0
0 0 3

3
5 ,

2
4

1 0 0
0 2 1
0 1 4

3
5 ,

2
4

1 0 0
0 2 0
0 0 4

3
5 ,

2
4

1 0 0
0 2 1
0 1 5

3
5 , and

2
4

1 0 0
0 2 0
0 0 5

3
5.

Escalating now each of these nine three-dimensional escalators, we find
exactly 207 nonisomorphic four-dimensional escalator lattices. All such lat-
tices are of the form [1]⊕ L, and the 207 values of L are listed in Table 3.

When attempting to carry out the escalation process just once more,
however, we find that many of the 207 four-dimensional lattices do not esca-
late (i.e., they are universal). For instance, one of the four-dimensional esca-
lators turns out to be the lattice corresponding to the famous four squares
form, a2 + b2 + c2 + d2, which is classically known to represent all inte-
gers. The question arises: how many of the four-dimensional escalators are
universal?

4. Four-dimensional Escalators. In this section, we prove that in fact
201 of the 207 four-dimensional escalator lattices are universal; that is to
say, only 6 of the four-dimensional escalators can be escalated once again.
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The proof of universality of these 201 lattices proceeds as follows. In
each such four-dimensional lattice L4, we locate a 3-dimensional sublattice
L3 which is known to represent some large set of integers. Typically, we
simply choose L3 to be unique in its genus; in that case, L3 represents all
integers that it represents locally (i.e., over each p-adic ring Zp). Armed
with this knowledge of L3, we then show that the direct sum of L3 with its
orthogonal complement in L4 represents all sufficiently large integers n ≥ N .
A check of representability of n for all n < N finally reveals that L4 is indeed
universal.

To see this argument in practice, we consider in detail the escalations

L4 of the escalator lattice
2
4

1 0 0
0 2 0
0 0 2

3
5 (labelled (4) in Table 1). The latter

3-dimensional lattice L3 is unique in its genus, so a quick local calculation
shows that it represents all positive integers not of the form 2e(8k+7), where
e is even. Let the orthogonal complement of L3 in L4 have Gram matrix
[m]. We wish to show that L3⊕ [m] represents all sufficiently large integers.

To this end, suppose L4 is not universal, and let u be the first integer not
represented by L4. Then, in particular, u is not represented by L3, so u must
be of the form 2e(8k + 7). Moreover, u must be squarefree; for if u = rt2

with t > 1, then r = u/t2 is also not represented by L4, contradicting the
minimality of u. Therefore e = 0, and we have u ≡ 7 (mod 8).

Now if m 6≡ 0, 3 or 7 (mod 8), then clearly u − m is not of the form
2e(8k + 7). Similarly, if m ≡ 3 or 7 (mod 8), then u − 4m cannot be of
the form 2e(8k + 7). Thus if m 6≡ 0 (mod 8), and given that u ≥ 4m, then
either u − m or u − 4m is represented by L3; that is, u is represented by
L3⊕ [m] (a sublattice of L4) for u ≥ 4m. An explicit calculation shows that
m never exceeds 28, and a computer check verifies that every escalation L4

of L3 represents all integers less than 4 × 28 = 112. It follows that any
escalator L4 arising from L3, for which the value of m is not a multiple of
8, is universal.

Of course, the argument fails for those L4 for which m is a multiple of
8. We call such an escalation “exceptional”. Fortunately, such exceptional
escalations are few and far between, and are easily handled. For instance, an

explicit calculation shows that only two escalations of L3 =
2
4

1 0 0
0 2 0
0 0 2

3
5 are

exceptional (while the other 24 are not); these exceptional cases are listed
in Table 2.1. As is also indicated in the table, although these lattices did
escape our initial attempt at proof, the universality of these four-dimensional
lattices L4 is still not any more difficult to prove; we simply change the

sublattice L3 from the escalator lattice
2
4

1 0 0
0 2 0
0 0 2

3
5 to the ones listed in the

table, and apply the same argument!
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It turns out that all of the 3-dimensional escalator lattices listed in Ta-
ble 1, except for the one labeled (6), are unique in their genus, so the univer-
sality of their escalations can be proved by essentially identical arguments,
with just a few exceptions. As for escalator (6), although not unique in its
genus, it does represent all numbers locally represented by it except possibly
those which are 7 or 10 (mod 12). Indeed, this escalator contains the lattice2
4

1 0 0
0 4 2
0 2 8

3
5 , which is unique in its genus, and the lattices

2
4

2 -2 2
-2 5 2
2 2 8

3
5 and

2
4

3 0 0
0 5 4
0 4 5

3
5, which together form a genus; a local check shows that the first

genus represents all numbers locally represented by escalator (6) which are
not congruent to 2 or 3 (mod 4), while the second represents all such num-
bers not congruent to 1 (mod 3). The desired conclusion follows. (This fact
has been independently proven by Kaplansky [3] using different methods.)

Knowing this, we may now proceed with essentially the same arguments

on the escalations of L3 =
2
4

1 0 0
0 2 1
0 1 4

3
5 . The relevant portions of the proofs

for all nonexceptional cases are summarized in Table 1.
“Exceptional” cases arise only for escalators (4) (as we have already

seen), (6), and (7). Two arise for escalator (4). Although four arise for
escalator (6), two of them turn out to be nonexceptional escalations of (1)
and (8) respectively, and hence have already been handled. Similarly, two
arise for escalator (7), but one is a nonexceptional escalation of (9). Thus
only five truly exceptional four-dimensional escalators remain, and these are
listed in Table 2. In these five exceptional cases, other three-dimensional
sublattices unique in their genus are given for which essentially identical
arguments work in proving universality. Again, all the relevant information
is provided in Table 2.

5. Five-dimensional Escalators. As mentioned earlier, there are 6 four-
dimensional escalators which escalate again; they have been italicized in
Table 3 and are listed again in the first column of Table 4. A rather large
calculation shows that these 6 four-dimensional lattices escalate to an addi-
tional 1630 five-dimensional escalators! With a bit of fear we may ask again
whether any of these five-dimensional escalators escalate.

Fortunately, the answer is no; all five-dimensional escalators are uni-
versal. The proof is much the same as the proof of universality of the
four-dimensional escalators, but easier. We simply observe that, for the 6
four-dimensional nonuniversal escalators, all parts of the proof of universal-
ity outlined in the second paragraph of Section 4 go through—except for
the final check. The final check then reveals that each of these 6 lattices
represent every positive integer except for one single number n. Hence once
a single vector of norm n is inserted in such a lattice, the lattice must au-
tomatically become universal. Therefore all five-dimensional escalators are
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universal. A list of the 6 nonuniversal four-dimensional lattices, together
with the single numbers they fail to represent, is given in Table 4.

Since no five-dimensional escalator can be escalated, it follows that there
are only finitely many escalator lattices: 1 of dimension zero, 1 of dimension
one, 2 of dimension two, 9 of dimension three, 207 of dimension four, and
1630 of dimension five, for a total of 1850.

6. Remarks on the Fifteen Theorem. It is now obvious that

(i) Any universal lattice L contains a universal sublattice of dimension at
most five.

For we can construct an escalator sequence 0 = L0 ⊆ L1 ⊆ . . . within L,
and then from Sections 4 and 5, we see that either L4 or (when defined) L5

gives a universal escalator sublattice of L.
Our next remark includes the Fifteen Theorem.

(ii) If a positive-definite quadratic form having integer matrix represents the
nine critical numbers 1, 2, 3, 5, 6, 7, 10, 14, and 15, then it represents every
positive integer.
(Equivalently, the truant of any nonuniversal form must be one of these nine
numbers.)

This is because examination of the proof shows that only these numbers
arise as truants of escalator lattices.

We note that Remark (ii) is the best possible statement of the Fifteen
Theorem, in the following sense.

(iii) If t is any one of the above critical numbers, then there is a quaternary
diagonal form that fails to represent t, but represents every other positive
integer.

Nine such forms of minimal determinant are [2, 2, 3, 4] with truant 1, [1, 3, 3, 5]
with truant 2, [1, 1, 4, 6] with truant 3, [1, 2, 6, 6] with truant 5, [1, 1, 3, 7] with
truant 6, [1, 1, 1, 9] with truant 7, [1, 2, 3, 11] with truant 10, [1, 1, 2, 15] with
truant 14, and [1, 2, 5, 5] with truant 15.

However, there is another slight strengthening of the Fifteen Theorem,
which shows that the number 15 is rather special:

(iv) If a positive-definite quadratic form having integer matrix represents
every number below 15, then it represents every number above 15.

This is because there are only four escalator lattices having truant 15, and
as was shown in Section 5, each of these four escalators represents every
number greater than 15.

Fifteen is the smallest number for which Remark (iv) holds. In fact:
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(v) There are forms which miss infinitely many integers starting from any
of the eight critical numbers not equal to 15.

Indeed, in each case one may simply take an appropriate escalator lattice of
dimension one, two, or three.

(vi) There are exactly 204 universal quaternary forms.

An upper bound for the discriminant of such a form is easily determined;
a systematic use of the Fifteen Theorem then yields the desired result. We
note that the enumeration of universal quaternary forms was announced
previously in the well-known work of Willerding [5], who found that there
are exactly 178 universal quaternary forms; however, a comparison with our
tables shows that she missed 36 universal forms, listed one universal form
twice, and listed 9 non-universal forms. A list of all 204 universal quaternary
forms is given in Table 5; the three entries not appearing among the list of
escalators in Table 3 have been italicized.

Acknowledgments. The author wishes to thank Professors Conway and
Kaplansky for many wonderful discussions, and for helpful comments on an
earlier draft of this paper.
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Three-dimensional Represents nos. Check
escalator lattice Truant not of the form∗ If m Subtract up to

(1)

2
4

1 0 0
0 1 0
0 0 1

3
5 7 2eu7 6≡ 0 (mod 8) m or 4m 112

≡ 0 (mod 8) does not arise -

(2)

2
4

1 0 0
0 1 0
0 0 2

3
5 14 2du7 6≡ 0 (mod 16) m or 4m 224

≡ 0 (mod 16) does not arise -

(3)

2
4

1 0 0
0 1 0
0 0 3

3
5 6 3du− 6≡ 0 (mod 9) m, 4m, or 16m 864

≡ 0 (mod 9) does not arise -

(4)

2
4

1 0 0
0 2 0
0 0 2

3
5 7 2eu7 6≡ 0 (mod 8) m or 4m 112

≡ 0 (mod 8) [See Table 2] -

(5)

2
4

1 0 0
0 2 0
0 0 3

3
5 10 2du5 6≡ 0 (mod 16) m or 4m 1440

≡ 0 (mod 16) does not arise -

(6)

2
4

1 0 0
0 2 1
0 1 4

3
5 7 7du− or 6≡ 0, 3, 9 (mod 12)

7, 10 (mod 12) & 6≡ 0 (mod 49) m, 4m, or 9m 3087

≡ 0 (mod 49) does not arise -

≡ 0, 3, 9 (mod 12) [See Table 2] -

(7)

2
4

1 0 0
0 2 0
0 0 4

3
5 14 2du7 6≡ 0 (mod 16) m or 4m 224

≡ 0 (mod 8) [See Table 2] -

(8)

2
4

1 0 0
0 2 1
0 1 5

3
5 7 2eu7 6≡ 0 (mod 8) m or 4m 252

≡ 0 (mod 8) does not arise -

(9)

2
4

1 0 0
0 2 0
0 0 5

3
5 10 5du− 6≡ 0 (mod 25) m or 4m 4000

≡ 0 (mod 25) does not arise -

Table 1. Proof of universality of four-dimensional escalators
(nonexceptional cases)
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“Exceptional” New unique in Unrepresented Check
Lattice genus sublattice numbers m Subtract up to

2
664

1 0 0 2
0 2 0 1
0 0 2 1
2 1 1 7

3
775

2
4

1 0 0
0 2 1
0 1 3

3
5 5du+ 40 m or 4m 160

2
664

1 0 0 0
0 2 0 1
0 0 2 1
0 1 1 7

3
775

2
4

2 0 1
0 2 1
1 1 7

3
5 2eu1, 2

eu5,

2du3, 2
du7, 3

du+
1 m 14

2
664

1 0 0 1
0 2 1 0
0 1 4 3
1 0 3 7

3
775

2
4

2 1 1
1 4 0
1 0 4

3
5 2du7 1 m, 4m, or 9m 9

2
664

1 0 0 0
0 2 1 1
0 1 4 0
0 1 0 7

3
775

† 2
4

2 0 0
0 4 2
0 2 10

3
5 2du7 90 m or 4m 504

2
664

1 0 0 1
0 2 0 0
0 0 4 2
1 0 2 14

3
775

2
4

1 0 0
0 4 2
0 2 13

3
5 2du5, 2

eu3 2 m or 4m 8

Table 2. Proof of universality of four-dimensional escalators (exceptional cases)

∗We follow the notation of Conway-Sloane [2]: pd (resp. pe) denotes an odd (resp.
even) power of p; if p = 2, uk denotes a number of the form 8n + k (k = 1, 3, 5, 7), and if
p is odd, u+ (resp. u−) denotes a number which is a quadratic residue (resp. non-residue)
modulo p.

†In this exceptional case, the sublattice given here shows only that all even numbers
are represented. However, the original argument of Table 1 (using escalator (6) as sublat-
tice, with m = 315) shows that all odd numbers are represented, so the desired universality
follows. [It turns out there is no sublattice unique in its genus that single-handedly proves
universality in this case!]
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1: 1 1 1 0 0 0 16: 2 3 3 2 0 0 30: 2 4 4 2 0 0 49: 2 3 9 2 2 0 72: 2 5 8 4 0 0

2: 1 1 2 0 0 0 17: 1 2 9 2 0 0 31: 2 3 6 2 2 0 49: 2 4 7 0 0 2 74: 2 4 10 2 2 0

3: 1 1 3 0 0 0 17: 1 3 6 2 0 0 31: 2 4 5 0 2 2 49: 2 5 6 0 2 2 76: 2 4 10 0 2 0

3: 1 2 2 2 0 0 17: 2 3 4 0 2 2 32: 2 4 4 0 0 0 50: 2 4 7 2 2 0 77: 2 5 9 4 2 0

4: 1 1 4 0 0 0 18: 1 2 9 0 0 0 32: 2 4 5 4 0 0 50: 2 5 5 0 0 0 78: 2 4 10 2 0 0

4: 1 2 2 0 0 0 18: 1 3 6 0 0 0 33: 2 3 6 0 2 0 51: 2 3 9 0 2 0 78: 2 5 8 2 0 0

4: 2 2 2 2 2 0 18: 2 2 5 2 0 0 33: 2 4 5 2 0 2 52: 2 3 9 2 0 0 80: 2 4 10 0 0 0

5: 1 1 5 0 0 0 18: 2 3 3 0 0 0 34: 2 3 6 2 0 0 52: 2 5 6 2 0 2 80: 2 4 11 4 0 0

5: 1 2 3 2 0 0 18: 2 3 4 2 0 2 34: 2 4 5 2 2 0 52: 2 5 6 4 0 0 80: 2 5 8 0 0 0

6: 1 1 6 0 0 0 19: 1 2 10 2 0 0 34: 2 4 6 4 0 2 53: 2 5 6 2 2 0 82: 2 4 11 2 2 0

6: 1 2 3 0 0 0 19: 2 3 4 2 2 0 35: 2 4 5 0 0 2 54: 2 3 9 0 0 0 82: 2 5 9 4 0 0

6: 2 2 2 2 0 0 20: 1 2 10 0 0 0 36: 2 3 6 0 0 0 54: 2 4 7 2 0 0 83: 2 5 9 2 2 0

7: 1 1 7 0 0 0 20: 2 2 5 0 0 0 36: 2 4 5 0 2 0 54: 2 5 6 0 0 2 85: 2 5 9 0 2 0

7: 1 2 4 2 0 0 20: 2 2 6 2 2 0 36: 2 4 6 4 2 0 54: 2 5 7 4 2 2 86: 2 4 11 2 0 0

7: 2 2 3 2 0 2 20: 2 4 4 4 2 0 36: 2 5 5 4 2 2 55: 2 3 10 2 2 0 87: 2 5 10 4 2 0

8: 1 2 4 0 0 0 21: 2 3 4 0 2 0 37: 2 5 5 4 2 0 55: 2 5 6 0 2 0 88: 2 4 11 0 0 0

8: 1 3 3 2 0 0 22: 1 2 11 0 0 0 38: 2 4 5 2 0 0 55: 2 5 7 4 0 2 88: 2 4 12 4 0 0

8: 2 2 2 0 0 0 22: 2 2 6 2 0 0 38: 2 4 6 0 2 2 56: 2 4 7 0 0 0 88: 2 5 9 2 0 0

8: 2 2 3 2 2 0 22: 2 3 4 2 0 0 39: 2 3 7 0 2 0 56: 2 4 8 4 0 0 90: 2 4 12 2 2 0

9: 1 2 5 2 0 0 22: 2 3 5 0 2 2 40: 2 3 7 2 0 0 57: 2 3 10 0 2 0 90: 2 5 9 0 0 0

9: 1 3 3 0 0 0 23: 1 2 12 2 0 0 40: 2 4 5 0 0 0 58: 2 3 10 2 0 0 92: 2 4 13 4 2 0

9: 2 2 3 0 0 2 23: 2 3 5 2 0 2 40: 2 4 6 2 0 2 58: 2 4 8 2 2 0 92: 2 5 10 4 0 0

10: 1 2 5 0 0 0 24: 1 2 12 0 0 0 40: 2 4 6 4 0 0 58: 2 5 6 2 0 0 93: 2 5 10 2 2 0

10: 2 2 3 2 0 0 24: 2 2 6 0 0 0 41: 2 4 7 4 0 2 58: 2 5 7 0 2 2 94: 2 4 12 2 0 0

10: 2 2 4 2 0 2 24: 2 2 7 2 2 0 42: 2 3 7 0 0 0 60: 2 3 10 0 0 0 95: 2 5 10 0 2 0

11: 1 2 6 2 0 0 24: 2 3 4 0 0 0 42: 2 4 6 0 0 2 60: 2 4 9 4 2 0 96: 2 4 12 0 0 0

11: 1 3 4 2 0 0 24: 2 4 4 0 2 2 42: 2 4 6 2 2 0 60: 2 5 6 0 0 0 96: 2 4 13 4 0 0

12: 1 2 6 0 0 0 24: 2 4 4 4 0 0 42: 2 5 5 4 0 0 61: 2 5 7 2 0 2 98: 2 4 13 2 2 0

12: 1 3 4 0 0 0 25: 1 2 13 2 0 0 43: 2 3 8 2 2 0 62: 2 4 8 2 0 0 98: 2 5 10 2 0 0

12: 2 2 3 0 0 0 25: 2 3 5 2 2 0 43: 2 5 5 2 0 2 62: 2 5 7 4 0 0 100: 2 4 13 0 2 0

12: 2 2 4 0 0 2 26: 1 2 13 0 0 0 44: 2 4 6 0 2 0 63: 2 5 7 0 0 2 100: 2 4 14 4 2 0

13: 2 2 5 2 0 2 26: 2 2 7 2 0 0 45: 2 4 7 0 2 2 63: 2 5 7 2 2 0 100: 2 5 10 0 0 0

13: 2 3 3 2 2 0 26: 2 4 4 2 2 0 45: 2 5 5 0 2 0 64: 2 4 8 0 0 0 102: 2 4 13 2 0 0

14: 1 2 7 0 0 0 27: 1 2 14 2 0 0 45: 2 5 6 4 2 2 66: 2 4 9 2 2 0 104: 2 4 13 0 0 0

14: 1 3 5 2 0 0 27: 2 3 5 0 2 0 46: 2 3 8 2 0 0 67: 2 5 8 4 2 0 104: 2 4 14 4 0 0

14: 2 2 4 2 0 0 27: 2 4 5 4 0 2 46: 2 4 6 2 0 0 68: 2 4 9 0 2 0 106: 2 4 14 2 2 0

15: 1 2 8 2 0 0 28: 1 2 14 0 0 0 46: 2 5 6 4 0 2 68: 2 4 10 4 2 0 108: 2 4 14 0 2 0

15: 1 3 5 0 0 0 28: 2 2 7 0 0 0 47: 2 4 7 2 0 2 68: 2 5 7 2 0 0 110: 2 4 14 2 0 0

15: 2 2 5 0 0 2 28: 2 3 5 2 0 0 47: 2 5 6 4 2 0 70: 2 4 9 2 0 0 112: 2 4 14 0 0 0

15: 2 3 3 0 2 0 28: 2 4 4 0 2 0 48: 2 3 8 0 0 0 70: 2 5 7 0 0 0

16: 1 2 8 0 0 0 28: 2 4 5 4 2 0 48: 2 4 6 0 0 0 72: 2 4 9 0 0 0

16: 2 2 4 0 0 0 30: 2 3 5 0 0 0 48: 2 5 5 2 0 0 72: 2 4 10 4 0 0

Table 3. Ternary forms‡ L such that [1]⊕ L is an escalator.
(The six entries not appearing in Table 5 have been italicized.)

‡We use the customary shorthand “D: a b c d e f” to represent the three-dimensional

lattice

2
4

a f/2 e/2
f/2 b d/2
e/2 d/2 c

3
5 of determinant D.
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Nonuniversal four-dimensional escalator Unique number not represented




1 0 0 0
0 2 0 1
0 0 3 0
0 1 0 4


 10




1 0 0 0
0 2 1 0
0 1 4 1
0 0 1 5


 10




1 0 0 0
0 2 0 0
0 0 5 1
0 0 1 5


 15




1 0 0 0
0 2 0 0
0 0 5 0
0 0 0 5


 15




1 0 0 0
0 2 0 1
0 0 5 2
0 1 2 8


 15




1 0 0 0
0 2 0 1
0 0 5 1
0 1 1 9


 15

Table 4. Nonuniversal four-dimensional escalator lattices.
(The 1630 five-dimensional escalators are obtained from these.)
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1: 1 1 1 0 0 0 16: 1 2 8 0 0 0 28: 2 3 5 2 0 0 48: 2 3 8 0 0 0 72: 2 4 9 0 0 0

2: 1 1 2 0 0 0 16: 2 2 4 0 0 0 28: 2 4 4 0 2 0 48: 2 4 6 0 0 0 72: 2 4 10 4 0 0

3: 1 1 3 0 0 0 16: 2 3 3 2 0 0 28: 2 4 5 4 2 0 48: 2 5 5 2 0 0 72: 2 5 8 4 0 0

3: 1 2 2 2 0 0 17: 1 2 9 2 0 0 30: 2 3 5 0 0 0 49: 2 3 9 2 2 0 74: 2 4 10 2 2 0

4: 1 1 4 0 0 0 17: 1 3 6 2 0 0 30: 2 4 4 2 0 0 49: 2 4 7 0 0 2 76: 2 4 10 0 2 0

4: 1 2 2 0 0 0 17: 2 3 4 0 2 2 31: 2 3 6 2 2 0 49: 2 5 6 0 2 2 77: 2 5 9 4 2 0

4: 2 2 2 2 2 0 18: 1 2 9 0 0 0 31: 2 4 5 0 2 2 50: 2 4 7 2 2 0 78: 2 4 10 2 0 0

5: 1 1 5 0 0 0 18: 1 3 6 0 0 0 32: 2 4 4 0 0 0 51: 2 3 9 0 2 0 78: 2 5 8 2 0 0

5: 1 2 3 2 0 0 18: 2 2 5 2 0 0 32: 2 4 5 4 0 0 52: 2 3 9 2 0 0 80: 2 4 10 0 0 0

6: 1 1 6 0 0 0 18: 2 3 3 0 0 0 33: 2 3 6 0 2 0 52: 2 5 6 2 0 2 80: 2 4 11 4 0 0

6: 1 2 3 0 0 0 18: 2 3 4 2 0 2 34: 2 3 6 2 0 0 52: 2 5 6 4 0 0 80: 2 5 8 0 0 0

6: 2 2 2 2 0 0 19: 1 2 10 2 0 0 34: 2 4 5 2 2 0 53: 2 5 6 2 2 0 82: 2 4 11 2 2 0

7: 1 1 7 0 0 0 19: 2 3 4 2 2 0 34: 2 4 6 4 0 2 54: 2 3 9 0 0 0 82: 2 5 9 4 0 0

7: 1 2 4 2 0 0 20: 1 2 10 0 0 0 35: 2 4 5 0 0 2 54: 2 4 7 2 0 0 85: 2 5 9 0 2 0

7: 2 2 3 2 0 2 20: 2 2 5 0 0 0 36: 2 3 6 0 0 0 54: 2 5 6 0 0 2 86: 2 4 11 2 0 0

8: 1 2 4 0 0 0 20: 2 2 6 2 2 0 36: 2 4 5 0 2 0 54: 2 5 7 4 2 2 87: 2 5 10 4 2 0

8: 1 3 3 2 0 0 20: 2 3 4 0 0 2 36: 2 4 6 4 2 0 55: 2 3 10 2 2 0 88: 2 4 11 0 0 0

8: 2 2 2 0 0 0 20: 2 4 4 4 2 0 36: 2 5 5 4 2 2 55: 2 5 6 0 2 0 88: 2 4 12 4 0 0

8: 2 2 3 2 2 0 22: 1 2 11 0 0 0 37: 2 5 5 4 2 0 55: 2 5 7 4 0 2 88: 2 5 9 2 0 0

9: 1 2 5 2 0 0 22: 2 2 6 2 0 0 38: 2 4 5 2 0 0 56: 2 4 7 0 0 0 90: 2 4 12 2 2 0

9: 1 3 3 0 0 0 22: 2 3 4 2 0 0 38: 2 4 6 0 2 2 56: 2 4 8 4 0 0 90: 2 5 9 0 0 0

9: 2 2 3 0 0 2 22: 2 3 5 0 2 2 39: 2 3 7 0 2 0 57: 2 3 10 0 2 0 92: 2 4 13 4 2 0

10: 1 2 5 0 0 0 23: 1 2 12 2 0 0 40: 2 3 7 2 0 0 58: 2 3 10 2 0 0 92: 2 5 10 4 0 0

10: 2 2 3 2 0 0 23: 2 3 5 2 0 2 40: 2 4 5 0 0 0 58: 2 4 8 2 2 0 93: 2 5 10 2 2 0

10: 2 2 4 2 0 2 24: 1 2 12 0 0 0 40: 2 4 6 2 0 2 58: 2 5 6 2 0 0 94: 2 4 12 2 0 0

11: 1 2 6 2 0 0 24: 2 2 6 0 0 0 40: 2 4 6 4 0 0 58: 2 5 7 0 2 2 95: 2 5 10 0 2 0

11: 1 3 4 2 0 0 24: 2 2 7 2 2 0 41: 2 4 7 4 0 2 60: 2 3 10 0 0 0 96: 2 4 12 0 0 0

12: 1 2 6 0 0 0 24: 2 3 4 0 0 0 42: 2 3 7 0 0 0 60: 2 4 9 4 2 0 96: 2 4 13 4 0 0

12: 1 3 4 0 0 0 24: 2 4 4 0 2 2 42: 2 4 6 0 0 2 60: 2 5 6 0 0 0 98: 2 4 13 2 2 0

12: 2 2 3 0 0 0 24: 2 4 4 4 0 0 42: 2 4 6 2 2 0 61: 2 5 7 2 0 2 98: 2 5 10 2 0 0

12: 2 2 4 0 0 2 25: 1 2 13 2 0 0 42: 2 5 5 4 0 0 62: 2 4 8 2 0 0 100: 2 4 13 0 2 0

12: 2 3 3 0 2 2 25: 2 3 5 0 0 2 43: 2 3 8 2 2 0 62: 2 5 7 4 0 0 100: 2 4 14 4 2 0

13: 2 2 5 2 0 2 25: 2 3 5 2 2 0 44: 2 4 6 0 2 0 63: 2 5 7 0 0 2 100: 2 5 10 0 0 0

13: 2 3 3 2 2 0 26: 1 2 13 0 0 0 45: 2 4 7 0 2 2 63: 2 5 7 2 2 0 102: 2 4 13 2 0 0

14: 1 2 7 0 0 0 26: 2 2 7 2 0 0 45: 2 5 5 0 2 0 64: 2 4 8 0 0 0 104: 2 4 13 0 0 0

14: 1 3 5 2 0 0 26: 2 4 4 2 2 0 45: 2 5 6 4 2 2 66: 2 4 9 2 2 0 104: 2 4 14 4 0 0

14: 2 2 4 2 0 0 27: 1 2 14 2 0 0 46: 2 3 8 2 0 0 68: 2 4 9 0 2 0 106: 2 4 14 2 2 0

15: 1 2 8 2 0 0 27: 2 3 5 0 2 0 46: 2 4 6 2 0 0 68: 2 4 10 4 2 0 108: 2 4 14 0 2 0

15: 1 3 5 0 0 0 27: 2 4 5 4 0 2 46: 2 5 6 4 0 2 68: 2 5 7 2 0 0 110: 2 4 14 2 0 0

15: 2 2 5 0 0 2 28: 1 2 14 0 0 0 47: 2 4 7 2 0 2 70: 2 4 9 2 0 0 112: 2 4 14 0 0 0

15: 2 3 3 0 2 0 28: 2 2 7 0 0 0 47: 2 5 6 4 2 0 70: 2 5 7 0 0 0

Table 5. Ternary forms L such that [1]⊕ L is universal.
(The three entries not appearing in Table 3 have been italicized.)
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