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Introduction

Number Theory deals with properties of all kinds of numbers; elementary
number theory is the part of the theory concerned mostly (but not exclu-
sively) with the natural numbers N = {1,2,3,...} and the integers Z =
{...,—2,-1,0,1,2,... }.

One of the oldest notions in number theory is that of a prime number,
which is to the number theorist what the atom is to the chemicist (and
just as physicists have learned that atoms aren’t as indivisible as their name
suggests, ordinary primes can be factored by algebraic number theorists).

Primes are natural numbers p > 1 such as 2, 3, 5, 7, 11, ... whose only
divisors are 1 and p. Thus 6 = 2-3 is not prime but 2! —1 is. Two questions
that immediately suggest themselves are:

e How many primes are there?
e How can we check whether a given integer is prime or not?

One answer to the first question was already given by Euclid:
Theorem. (Euclid) There are infinitely many primes.

There are many proofs of this fact,! and the simplest and best known can
already be found in Euclid’s books (we will give his proof below).

Remark. For many results in these lectures, we will give two (or even more)
proofs; the idea behind that is not that more proofs would make the result
more “probable”: in fact, different proofs may give new insights into the
problem, and the more proofs you know, the better your chances are that
one of them generalizes to give a deeper result.

1See e.g. P. Ribenboim’s The Book of Prime Number Records or his Little Book of Big
Primes; the books are better than their titles suggest.



2 Number Theory Franz Lemmermeyer

There is a more precise answer to the first question that was first con-
jectured by Legendre and Gauss and first proved by Hadamard and de la
Vallée-Poussin: let m(z) denote the number of primes below z, that is

n(x) = #{p: p prime, p < z}.

Here is a small table for the function m(z):

x 5 | 10 | 100 | 1000
m(xz)| 3 | 4 | 25 168
L 3.114.3(21.7|144.7

logx

The last line displays the values of the function @, where log x denotes

the logarithm to the basis e. The precise version of the conjecture that

m(r) R

logz

goes by the name of the

Prime Number Theorem. We have m(z) ~ .

Here f(z) ~ g(z) is short for lim, f(z)/g(x) = 1. The proof of the
Prime Number Theorem is quite hard without using complex analysis and
will not be proved here.

Warning. f ~ g does not imply that |f(z) — g(z)| is bounded; it only
implies that this difference is small when compared to f(z) or g(z). As far
as I know it has been proved that |r(z) — = | can become arbitrarily large.

The question on the infinity of primes can also be refined: there are primes
5,13, 17, ... of the form 4n+1 and 3, 7, 11, ... of the form 4n+3. Are there
infinitely many primes in each series? Again the answer is yes, and in fact
the primes are more or less “evenly” distributed among these two classes.
More generally we have

Dirichlet’s Theorem on Primes in Arithmetic Progression. Given
any pair a,b of natural numbers such that a and b do not have a common
prime divisor, there are infinitely many primes of the form an + b.

As for the prime number theorem, the proof of Dirichlet’s theorem uses
complex analysis in an essential way.

We may also ask if there are infinitely many primes of the form n?+1 such
as H, 17, 37, ... ; it is conjectured that the answer is yes, but a proof seems
out of reach. A similar question concerns Mersenne primes: these are primes
of the form M, = 27 — 1. In the pre-computer age, the following values of p
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were known to yield primes: p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107 and
127 (note that 22" —1 = 170141183460469231731687303715884105727!!) At

the time of writing, the largest known prime is the Mersenne prime M, for

p=6,972,593.

The second question also has several answers: of course we can check that
N is prime by trying to divide N by the numbers 2, 3,4, ... . N —1;if N is
not divisible by any of these numbers, then N is prime.

This algorithm can be improved immediately; consider the following pro-
gram:

0. input N; if N =1 print ‘N is a unit’ and terminate;
1. if 2| N print ‘p=2’ and terminate;

2. put q:=3;

3. if g| N print ‘p=g¢’ and terminate;

4. put q:=q+2; if ¢> VN print ‘p= N’ and terminate;

otherwise go to step 3.

First, this is an algorithm because it terminates: you cannot loop back
to step 3 forever because eventually ¢ will become larger than v/N, and the
program terminates with step 4.

Next, this algorithm determines the smallest prime factor of a given num-
ber N (in practice, the condition ¢ > V/N has to replaced by something like
q > VN + 0.1 in order to avoid rounding errors e.g. when N = p?). It
trial divides by 2 and all odd integers < v/N; if N is not divisible by any
of these integers, then N must be prime. In fact, in this case the smallest
prime divisor of N must be > v/N. If N has a proper prime divisor > v/N,
then N/p < v/N shows that it also has a proper prime divisor < v/N, so the
only possible prime factor of N is N itself.

In the worst case (namely when N is prime) this method requires about
VN /2 divisions, which is much better than the N — 1 divisions needed when
dividing by 2, 3,4, ..., N — 1 (for a further (slight) improvement, see the
Exercises). The big question is whether there are even better algorithms; as a
matter of fact there are, but these are based on completely different methods.
We will discuss some of them once we have developed the necessary tools.

It is usually quite surprising to beginners in number theory that it is
possible to show that a number is composite without knowing any of its
factors. The methods that allows us to do this are called primality test:
any number that fails such a test must be composite. As the size of known
Mersenne primes shows, there are some quite sophisticated primality test;
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one that applies to Mersenne numbers is the Lucas-Lehmer test that we will
discuss as an application of our theory of conics.

Most of the known factorization algorithms have been developed in the
last 30 years, mainly because of the appearance of computers. Another rea-
son behind the search for good factorization algorithms is the discovery of
cryptographic applications of number theory: the difficulty of factoring large
integers can be used to make the transmission of information extremely safe.
But real world applications weren’t the main motivation behind number the-
orists’ effort during the last two millenia: T hope that after having attended
this introduction to number theory you will be able to understand why it is
called the Queen of Mathematics.



Chapter 1

Unique Factorization

I have no intention to start from scratch, that is, to develop the basic prop-
erties of natural numbers and integers from, say, the Peano Axioms: instead,
we regard the structures N, Z and Q as known, and we will also make free
use of elementary properties such as the principle of induction (often in the
form that every nonempty set of natural numbers has a smallest element).
After having discussed divisibility and the Euclidean algorithm, we are going
to prove the unique factorization theorem.

1.1 Divisibility

The basic notion on which everything that follows will be based is the notion
of divisibility.

Let a,b € Z be integers; we say that b divides a or that b is a divisor of
a (and write b | a) if there is an integer ¢ € Z such that a = be.

More generally, we can talk about divisibility in any ring R: we say that
b|ain R is there is a ¢ € R such that a = be. Divisibility is boring in rings
F that are fields, because then every nonzero element b divides every other
element for the simple reason that ¢ = a/b € F. Divisors of 1 are called
units. Obviously 1 and —1 are units because 1 -1 =1 and (—1)-(—1) = 1.

We claim that in Z, there aren’t any others. In fact, assume that r € Z is
a unit. Then there is an s € Z such that rs = 1. Assume that r # +1; then
Ir| > 2 since rs = 1 implies r # 0. But |[r| > 2 and rs = 1 imply |s| < 1, and
the only integer s with this property is 0: but then rs = 0, contradiction.

Some of the basic properties of divisibility are collected in the following
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Proposition 1.1. For any integers a,b,c € Z, we have
1.1|a,ala, a|0;
2. ifalbandb]|ec, then a|ec;
3.ifalbandalec, thena| (bt e¢);
4. ifa|b, then (—a) | b, a | (=b) and (—a) | (=b);
5. ifalband b#0 then |a| < |b].

Proof. These are formal consequences of the definition:
l.a=a-1;0=0"a.

2. By assumption there exist integers r, s € Z such that b = ar and ¢ = bs.
Then ¢ = bs = (ar)s = a(rs), hence a | b since rs € Z.

3. We have b = ar and ¢ = bs for some integers r.s € Z; but then
¢ =bs =a(rs), hence a | c.

4. We have b = ar and ¢ = as for integers r,s; then b+ ¢ = a(r + s)
implies that a | (b =+ ¢).

5. We have b = ar for some a € Z; since b # 0, we deduce that r # 0,
hence |r| > 1 and therefore |b| = |ar| > |a].

Note that the very same proofs are valid for general rings! 0

Irreducibles and Primes

The divisors £1 and +n of an integer are called trivial divisors; nontrivial
divisors are also called proper divisors. Nonunits without proper divisors are
called — irreducible. This may surprise you, because you may have expected
that we call them primes. Sticking with the tradition in modern algebra,
however, we reserve the term prime for something else. Luckily, for our ring
Z, primes and irreducibles are the same.

Here comes our definition of primes: a nonunit p € Z is called prime if
the following conclusion holds for all integers a,b € Z: if p | ab, then p | a or

p|b.
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While it is easy to see whether an integer is irreducible or not (simply
factor the thing), showing that a number p is prime requires some effort.
Take the simplest example p = 2: to show that 2 is prime we have to prove
that if 2 | ab, then 2 | @ or 2 | b. This is not too hard: if the claim were false,
then there would be odd numbers a = 2m + 1 and b = 2n + 1 such that ab
is even; but ab = 4mn + 2m + 2n + 1 is clearly odd.

We now state

Proposition 1.2. Primes are irreducible.

Proof. Assume not. Then p = rs with r,s € Z nonunits. In particular,
p | rs. If we can show that p{r and p{ s, then p cannot be prime and we
have won. But we have r | p (and so |r| < |p|), hence p | r would imply
Ip| < |r|, and together this gives |p| = |r|, that is, p = £r and thus s = £1:
this is a contradiction since r and s were assumed to be nonunits. O

The proof we have given for Proposition 1.2 is not "nice” in the following
sense: we have used absolute values, and this is a notion that does not exist
in arbitrary rings. Since we are working with integers anyway, this my not
seem to be much of a nuisance. Nevertheless, we can rewrite the proof in
such a way that it becomes valid in arbitrary rings:

Proof version # 2. Assume that p | r and r | p; then r = pt and p = rs, so
p = pst, hence st = 1, and this shows that r and s are units. O

Note that our effort to make the proof valid for arbitrary rings has made
the proof even simpler!

The other half of the truth is
Proposition 1.3. Irreducible elements are prime.

If primes and irreducibles always coincide, then why did we bother to
introduce two notions at all? The answer is that primes and irreducibles do
not always coincide, although they do in Z. As a matter of fact, this is one
of the instances where generalization for generalizations sake turns out to be
helpful: although we will not make use of divisibility in arbitrary rings, the
examples these rings provide help us to understand that certain truths are
not as obvious as they may seem if one only looks at the rational integers.

Here’s a simple example: take the ring 2Z = {... ,—4,-2,0,2,4,...} of
even integers;' define b | a if there is a ¢ € R such that a = bc. Then 4 =22

T Actually, 27 is not a ring but a rng, namely a ring without identity.
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shows that 2 | 4; on the other hand, 2 does not have a factor at all (it does
not divide itself) because 1 is not an element of Z/2Z. In particular, 2 is an
element without a factorization into irreducibles. Although 2 is irreducible
(it has no factor at all, let alone proper divisors), it is not prime: in fact, 2
divides 4 = 2 - 2 without dividing one of the factors.

Note that the rng 2Z does not have unique factorization: we have 36 =
2-18 =66, but 2, 6 and 18 are all irreducible.

Granted, this is a pathological example of a ring where primes and ir-
reducibles are not the same; rest assured that there are completely natural
rings (provided by algebraic number theory) that share the same defect.

The proof of Proposition 1.3 will be given in the next subsection (it will
turn out to be a special case of Lemma 1.7; it is deeper than its converse for
the following very simple reason: Proposition 1.2 is valid for any ring (we
used only the rules for divisibility in the proof), while Proposition 1.3 is only
true for rings with unique prime factorization.

The proof of Proposition 1.3 is based on the Euclidean algorithm; this is
our next topic.

1.2 The Euclidean Algorithm

Let m,n € Z be integers; a common divisor is any integer d such that d | m
and d | n. We could define the greatest common divisor as the maximal
common divisor, but we prefer the following definition based only on divisi-
bility properties (this allows us to transfer the definition to arbitrary rings):
d is called a greatest common divisor of m and n if d is a common divisor
of m and n with the following property: if e is any common divisor of m
and n, then e | d. If d is a greatest common divisor of m and n, then so is
—d (Exercise!). Nevertheless we agree to write d = ged(m,n) even though
d is not uniquely determined (alternatively, we may normalize the ged by
demanding that d > 0; but this problem is irrelevant for most problems).

Theorem 1.4. In Z, any two inlegers m and n possess a grealest common
divisor d, which is unique up to sign. Moreover, d has a “Bezout represen-
tation”,? that is, there exist integers x,y € Z such that d = mz + ny.

The statement that the greatest common divisor d of two integers m and
n is a Z-linear combination of them is often referred to as Bezout’s Lemma.

2Etienne Bezout: 1730 (Nemours, France) — 1783 (Basses-Loges, France)
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There are two basically different proofs of this result. One is quite simple
and proves the existence of the ged and the Bezout representation, the other
is a bit involved but provides us with an algorithm for computing gcd’s. Both
methods use the following result on division of integers:

Lemma 1.5. Given a,b € Z with b # 0, there exist unique integers q,r € Z
with 0 < r < b such that a = bg + r.

For the proof we introduce the floor function: Given z € R, we let |z|
denote the largest integer < z. Examples: [2.3] =2, |-1.71] = -2, |3| = 3.
For positive reals, the floor function basically cuts off the integer part from
the decimal expansion. In more technical terms, |z] is defined as the unique
integer such that 0 <z — |z| < 1.

Proof. Put ¢ = |§]; by definition, 0 < ¥ — ¢ < 1. Multiplying through by b
gives 0 < a — bg < q. Now put r = a — bgq.

This proves the existence. Now assume that ¢',r" € Z are integers such
that 0 < ¢ < band a = b¢'+ 1. Then 0 =a—a =bg+r — (bg +1') =
blg—¢q)+r—rif g # ¢, then |g— ¢'| > 1, hence

b > |r—17| since r,r’ € [0,b)
= |b(g—¢')| Dby definition of r and r’
> |b] since |¢ — ¢'| > 1.
But |b] > |b] is a contradiction. O

The first proof of the existence of the ged goes like this: Consider the set
D =mZ+nZ ={am+bn:a,be Z}. Clearly D is a nonempty set, and if
¢ € D then we also have —¢ € D. In particular, D contains positive integers.
Let d be the smallest positive integer in D; we claim that d = ged(m,n).
There are two things to show:
Claim 1: d is a common divisor of m and n. By symmetry, it is sufficient
to show that d | m. Write m = rd + s with 0 < s < d; we find d = am + bn,
hence s = rd —m =r(am+bn) —m = (ra—1)m+bn € D. The minimality
of d implies s = 0, hence d | m.
Claim 2: if € is a common divisor of m and n, then e | d. Assume that e | m
and e | n. Since d = am + bn, we conclude that e | d.

The existence of the Bezout representation is a simple consequence of the

fact that d € D.
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The second proof is based on the Euclidean algorithm. Given integers m
and n, there are uniquely determined integers ¢; and ry such that m = ¢;n+r;
and 0 < ry < n. Repeating this process with n and ry, we get n = rygs + 9
with 0 < ry < ry, etc. Sincen > ry > ry > ... > 0, one of the r;, say r,41,
must eventually be 0:

m = qn+r (1.1)
n = qr1+tr
re = q3ry+rs3
Tne2 = Qplp_1+ 7y (14)
n—1 = Gn+1Tn

Example: m = 56, n = 35

56 = 1-35+21
35 = 1-21+14
21 = 1-14+47
14 = 2.7

Note that the last r; that does not vanish (namely r3 = 7) is the ged of
m and n. This is no accident: we claim that r, = gcd(m,n) in general. For
a proof, we have to verify two things:

Claim 1: r, is a common divisor of m and n. Equation (1.5) shows
Tn | Tno1; plugging this into (1.4) we find r, | r,—2, and going back we
eventually find r,, | rq from (1.3), r, | n from (1.2) and finally r, | m from
(1.1). In particular, r,, is a common divisor of m and n.

Claim 2: if e is a common divisor of m and n, then e | r,. This is proved
by reversing the argument above: (1.1) shows that e | ry, (1.2) then gives
e | r2, and finally we find e | r, from (1.5) as claimed.

The Euclidean algorithm does more than just compute the ged: take our
example m = 56 and n = 35; writing the third line as ged(m,n) = 7 =
21 — 1 - 14 and replacing the 14 by 14 = 35 — 1 - 21 coming from the second
line we get ged(m,n) =21—1-(35—1-21) = 2-21—1-35. Now 21 = 56—1-35
gives ged(m,n) = 2-(56—1-35)—1-35 = 2-56—3-35, and we have represented
the ged of 56 and 35 as a Z-linear combination of m and n.
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This works in complete generality: (1.4) says r, = rn_2 — ¢urn—1; the
line before, which r,_y = r,_3 — ¢,_17,_2, allows us to express r, as a Z-
linear combination of r,_s and r,_s3, and going back we eventually find an
expression of r, as a Z-linear combination of a and b.

Finding a Bezout representation by working backwards after having run
through the Euclidean algorithm (note that, on a computer, this means that
you have to save all the intermediate results) is complicated. There is a much
better method called the extended Euclidean algorithm or

Berlekamp’s algorithm. Check that the following algorithm computes the
ged of two integers as well as the Bezout representation.
Given positive integers a and b, this algorithm computes integers d € N

and u,v € Z such that d = ged(a, b) = ax + by:

Set a; ¢+ a, ay+b; v+ 1, 29 0; y; <0, yy 1.
Let ¢ < |ai/asz].
Set az < ay; —qaz; r3 < 1+ qre; Yys < Y1+ qys-
Set ay ¢ az, az ¢ az; Ty & T, T & T3; Y1 & Y2, Y2 Y3
If a; >0 goto 2.
If axq —by; > 0 return (d,z,y) = (a1, 21, —11),
else return (d,z,y) = (a1, —x1,y1).

D Ok WN -

While this algorithm is well suited for computers, for calculations by
hand T suggest applying the usual Euclidean algorithm and then working
backwards.

We note a few useful results concerning divisibility and coprime integers.

Lemma 1.6. If a and b are coprime integers such that a | n and b | n, then
ab | n.

Proof. Write n = ar and n = bs; since ged(a,b) = 1, there exist z,y € Z
such that ax 4+ by = 1. Now bsx = nx = axr = r — byr implies r = byr + bsz,
that is, b | r. But then r = bt gives n = ar = abt, so ab | n. O

Lemma 1.7. If m | ab and gcd(m,a) =1, then m | b.

Proof. By Bezout’s Lemma, we have 1 = ma +ay (this is a number theorist’s
Pavlovian reflex upon seeing ged(m,a) = 1); since ab = mn for some n,
we have mny = aby = (1 — ma)b = b — mab. Thus b = mny + mab =
m(ny + zb). O
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Actually, this last result contains Proposition 1.3 as a special case: we
want to show that irreducibles and primes are the same. In view of our
definitions, what we have to prove is the following:

If p is irreducible and p | ab, then p | a or p | b.
We can formulate this in an equivalent way as follows:
If p is irreducible, p | ab and p 1 a, then p | b.

But since p is irreducible, p { a implies ged(p,a) = 1, because every
common divisor would divide p, and the only divisors of p are +1 and +p.
This completes the proof of Proposition 1.3. By induction, we can now show

Corollary 1.8. If a prime p divides a product ay---a,, then p divides one
of the a;.

Proof. Proposition 1.3 applied to the product a; - (ay- - - a,) shows that p | a;
or p | (az---a,). In the first case we are done, in the second we apply
Proposition 1.3 to as - (as-- - a,); after finitely many steps we have reached
the conclusion that p divides one of the a;. O

Note that, from now on, we may use the terms “prime” and “irreducible”
interchangeably.

1.3 Unique Factorization
Our first result is quite innocent:
Proposition 1.9. Fvery integer n > 1 has a prime factorization.

Proof. We proceed by induction. We call an integer n “nice” if it has a prime
factorization. Clearly n = 2 is nice because 2 is prime. Now assume that
all integers < n are nice; since n > 1, it is either prime (and thus nice)
or it isn’t; but if n is not prime, then n is not irreducible (since primes and
irreducibles are the same), so n has proper divisors, say n = ab with a,b € N.
Since a,b < n, these factors are nice, hence they have prime factorizations,
say a = py---p, and b = g ---qs. But then n = p;---p.q;---qs 1s a prime
factorization of n. O
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Since any factor in the prime factorization of n is a prime factor of n, this
takes care of our second remark on our proof of the infinitude of primes.

We also can attach a prime factorization to negative integers: if n < 0
and —n = p; - -+ p, is a prime factorization of —n > 0, then n = —p; -+ - p, is
a prime factorization of n.

Note that we have talked about “a” prime factorization; as a matter of
fact, the prime factorization of an integer n is essentially unique, but this
needs to be proved.

Again you may think that this is obvious; after all, if, say, 11 divides
an integer n, then there cannot be a prime factorization of n that does not
contain 11 as a factor. Or can there?

Consider the set S = {1,5,9,13,...} of positive integers of the form
4n + 1. Let us call a number p > 1 in § irreducible if its only divisors
in S are 1 and p. Thus 5 and 9 are irreducible, while 25 is not. Here
every integer has a factorization into irreducibles, but it is not unique: for
example, 21 - 33 =977, and 9, 21, 33 and 77 are all irreducible according
to our definition. The reason why unique factorization fails is the existence
of irreducibles that aren’t prime: clearly 9 | 21 - 33 since 21 -33 =9 - 77, but
9 does not divide 21 or 33.

The theorem of unique factorization asserts that every integer has a prime
factorization, and that it is unique up to the order of the factors.

Theorem 1.10. Fvery integer n > 2 has a prime factorization n = py - - - p,
(with possibly repeated factors). This factorization is essentially unique, that
is: if n = py---p, and n = qp---qs are prime factorizations of an integer
n, then r = s, and we can reorder the q; in such a way that p; = q; for
1<j<r

A partial result in the direction of Theorem 1.10 can already be found in

Euclid’s elements; the first explicit statement and proof was given by Gauss®

in 1801.

We already know that prime factorizations exist, so we only have to deal
with uniqueness. This will be proved by induction on min{r,s}, i.e. on
the minimal number of prime factors of n. We may assume without loss of
generality that r < s.

Ifr=0,thenn=1,andn=1= ¢ ---qs implies s = 0.

3Carl-Friedrich Gauss: 1777 (Braunschweig, Germany) — 1855 (Gottingen, Germany)
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Now assume that every integer that is a product of at most r — 1 prime
factors has a unique prime factorization, and considern = py---p, = q1 - - - gs.
Since py is a prime that divides n = ¢y - - - g5, 1t must divide one of the factors,
say p1 | 1 (after rearranging the ¢; if necessary). But ¢; is prime, so its only
positive divisors are 1 and ¢; since p; is a prime, it is a nonunit, and we
conclude that p; = ¢;. Canceling p; shows that py---p. = ¢2---¢qs, and by
induction assumption we have r = s, and p; = ¢; after rearranging the ¢; if
necessary.

Remark. There is a simple reason for doing induction on the minimal
number of prime factors and not simply on the number of prime factors of
n: the fact that the number of prime factors of an integer is well defined is
a consequence of the result we wanted to prove!

1.4 The Infinitude of Primes

Let us now see how Euclid* proved that there are infinitely many primes:
Theorem 1.11 (Euclid). There are infinitely many primes.

Proof of Thm. 1.11. We prove this claim by deriving a contradiction from
the assumption that it is false. Assume therefore that there are only finitely
many primes 2 = py, ..., p,, and consider the integer N =p;---p, +1 > 3.
Since N > p; for 1 < 5 <n, we deduce that N is not a prime. Since N > 1,
it must have a prime factor (here we use Proposition 1.9), say px. But then
pr divides N as well as N — 1; this implies that p; divides the difference
1 =N — (N —1): contradiction. O

Remark. Euclid’s formulation was different from ours: Book IX, Proposi-
tion 20 reads

Prime numbers are more than any assigned multitude of prime
numbers.

In other words: Given any finite list of primes, there exists a prime that is
not on the list. Note that Euclid carefully avoids the notion of infinite sets; in
fact, problems with infinities (recall Zenon’s paradox, for example) have led

4Buclid of Alexandria, ca. 325 — 265 BC, if he lived at all. “Author” of the oldest
textbook in mathematics, the Elements.
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the Greeks to allow only finite quantities in mathematics. For example, lines
in geometry were not infinite but ‘could be prolonged as much as desired’.
Infinite sets were given their proper place in mathematics by Cantor® at the
end of the last century.

Euclid’s idea can be used to give a proof of the following result:
Proposition 1.12. There are infinitely many primes of the form 4n — 1.

Proof. Assume that there are only finitely many such primes py =3, po = 7,

., Pn, and form the number N = 4p; ---p, — 1. As in Euclid’s proof, this
number cannot be prime (since N # p;, and by assumption the p; exhaust
the primes of the form 4n — 1). Thus it must have some prime divisors.
If all of them are of the form 4n 4 1, then N itself would have that form
since (4n + 1)(4m + 1) = 4(dnm + n + m) + 1. But N does not have that
form, so at least one of the prime divisors of N, say p, must have the form
4n —1. Since p | 4p; - - - p, — 1, this prime must be different from the p;: this
contradicts our assumption that there are only finitely many primes of the
form 4n — 1. 0

The same idea does not work for primes of the form 4n + 1, because
numbers of the form 4n + 1 can be made up of primes of the form 4n — 1, as
the example 21 = 3 - 7 shows. We will have to wait until Chapter 3 to see a
proof of the infinitude of primes of the form 4n + 1.

There is another famous proof of the infinitude of primes due to Euler:®
it runs as follows: assume that there are only finitely many primes pq, ...,
pn. Consider the (finite) product

n

P =

1
[
j=1 Py

We can expand each of the factors into a series by plugging in = 1/p; in
the geometric series

— =14zt + 2P+ ...
-2z

SGeorg Cantor, 1845 (St. Petersburg) — 1918 (Halle). We owe him, among others, the
notion of countability: the rationals are a countable set, the reals aren’t,
fLeonhard Euler: 1707 (Basel, Switzerland) — 1783 (St. Petersburg, Russia).
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note that this series converges absolutely for any = with |z| < 1, in particular
for x = 1/p;. This allows us to manipulate the series by rearranging terms;

1 1
Po= (ﬁ)“'(l_ﬁ
P1 Pn
1 1 1 1

= (1+—+—2+...)---<1+—+—2+...).
PPy P DPr

we have

By multiplying out we find that the right hand side is
1 1 1 1 1
I+ —+...+—+ =5+ +...+ =
P1 Pn o P1 P1P2 Pn
1 1
tat 5t S T
Py Pip2 P1p2p3 Py

Clearly the sum is over all fractions = where n runs through the integers of
the form n = pj' - - pi» exactly once. Using the fact that every integer has a
unique representation as a product of primes, we find that every summand
% occurs in this last sum exactly once, in other words: we have
11 = 1
P_1+2+3+..._;n.

But this is the harmonic series, which is well known to be divergent; this
contradiction completes Euler’s proof of the infinitude of primes.

Euler’s proof is clearly more complicated than Euclid’s: it uses manipula-
tion of series as well as unique factorization. Why would anyone find such a
complicated proof attractive? One of the reasons is that Euler’s proof can be
generalized to give Dirichlet’s theorem on primes in arithmetic progressions,
whereas a generalization of Euclid’s proof yields only special cases such as
the infinitude of primes of the form an + 1.

The “Euler factorization” in the proof above can be saved at a little cost:
we know that the series ((s) = > n™* converges for any real s > 1, and then
the method above proves the following curious result:

[T =

p p*

Riemann noticed that ((s) converges for complex numbers s = z + yi € C
with real part Re s = = > 1, and showed that it is possible to extend
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((s) to an analytic function on C \ {1}. His conjecture that every zero of
((s) in the vertical strip 0 < Re s < 1 lies on the line Re s = % is one of
the outstanding conjectures in modern number theory. Note that Hadamard’
and de la Vallée-Poussin® have shown that the prime number theorem follows
from the fact that there are no zeros on the line Re s = 1.

1.5 Applications
In this section, we will apply our results to concrete problems in number

theory.

Mersenne Numbers

Let M, = 2" — 1 denote the Mersenne numbers. They have a lot of nice
properties:

Proposition 1.13. Ifd | n, then My | M,,.
Proof. Write n = dr; then the identity
X 1= (XX XD X4

in the polynomial ring Z[X] is verified by multiplying out. Plugging in X = 2,
we find that My = (27— 1) |2 —1 = M,,. O

Corollary 1.14. If M, is prime, then so is n.

Proof. We prove that if n is composite, then so is M,,. Assume therefore that
n = ab with 1 < a,b,<n. Then M, | M,, by Proposition 1.13, M, > 1 since
a>1,and M, < M, since a < n. O

This explains why p is prime for the Mersenne primes M, listed in the
Introduction. Note that M;; = 211 — 1 = 2047 = 23 - 89 is composite.

"Jacques Salomon Hadamard, 1865 (Versaille) — 1963 (Paris).

8Charles Jean Gustave Nicolas de la Vallée-Poussin, 1866 (Louvain, Belgium) — 1962
(Louvain, Belgium). Tt was once rumored that the first mathematicians to prove the prime
number conjectured would be granted immortality. This legend lost some credibility when
de la Vallée-Poussin died at the age of 95, and was finally laid to rest when Hadamard
died at 97.
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Proposition 1.15. We have ged(M,,, M,,) = Myeq(m,n)-

Proof. Put d = ged(m,n); then m = dr and n = ds. Proposition 1.13 gives
My | M,, and My | M,,, thus M, is a common divisor of M,, and M,. It is
not so clear, however, that M; is the greatest common divisor of M,, and M,,.
One idea is to show that M, /M, and M,,/M; are coprime. This boils down
to showing that or(d=1) y or(d=2) 1 197 11 and 25(4=1) £ 9s(d=2) © = 195 1]
are coprime. Playing around with these numbers ( subtracting multiples of
one from the other etc.) does not seem to lead anywhere. Let’s face it: we're
stuck.

Let us therefore try another method, namely applying the Fuclidean Al-
gorithm to M,, and M,,. Here’s the basic trick:

Ifm=gn+r withge Nand 0 <r <n, then M,, =QM, + M,
with 0 < M, < M, anszQ’"]]\\JJ—Z‘EN

That means: each line in the Euclidean algorithm applied to the pair (m,n)
corresponds to a line in the Euclidean algorithm applied to (M,,, M,,), with
m, n and the r; replaced by M,,, M,, and M,,, and with the ¢; replaced by
suitable integers ();. Thus if the Euclidean algorithm applied to (m,n) yields
ged(m,n) = d, it will give ged(M,,, M,,) = My when applied to (M,,, M,,).

O

GCD’s via Unique Factorization

Now we want to see the Unique Factorization Theorem in action. First we
will introduce a useful formalism for writing down prime factorizations. We
numerate the primes as p;y = 2, p» = 3, p3 = 5, ..., and write the prime
factorization of an integer a in the form

o0

— JoN’ 73

a = P
i=1

where the a; are nonnegative integers, and where — of course — only finitely
many exponents a; are nonzero. This allows us to control the prime factor-
izations of products: if we have

b=]n",
i=1
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then clearly

o0

ab = Hp?i‘f‘bi'

i=1

Lemma 1.16. For integers a,b € N let

a:Hp?i’ b:Hp?i
j=1 i=1

be their prime factorizations, where of course only finitely many a; and b; are

#0. Then b | a if and only if a; > b; for all i.

Proof. Assume that a; > b; for all 2. Then

o
b
e=[[n™
i=1

is an integer, and we clearly have a = be. The converse is just as clear. [

The fact that every integer has a unique prime factorization allows us to
give a formula for the ged of integers m,n € N: write

n=[]r, m=]]r"
7=1 7=1
We claim that d = ged(m,n), where

d= Hp,fli, d; = min(a;, b;).

i=1

By now we know that there are two things to prove:
Claim 1: d is a common divisor of m and n. This is clear since, by Lemma
1.16, d; < a; for each 1.
Claim 2: if e is a common divisor of m and n, then e | d. To see this, write
e = H;; pi'; by Lemma 1.16, e | a implies that e; < a;, while e | b implies
that e; < b;. Thus e; < min(a;,b;) = d;.

Note that this gives a method for computing the ged of two integers; un-
fortunately, this method is not very useful for large integers because finding
their prime factorization is extremely difficult (if we proceed by trial division,
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then we have to perform up to v/N/2 divisions, while the Euclidean algo-
rithm takes only about ¢-log N divisions for some constant ¢. These crude
estimates can be made much more precise; this activity is called “studying
the complexity of an algorithm”. The complexity also measures “how fast”
algorithms run independent of any hardware.

1.6 Diophantine Equations

Our second application of the unique factorization theorem concerns Pytha-
gorean? triples: these are integers z,y,z € N such that z? 4+ y* = 2z?. The
most famous of these triples is of course (3,4,5). It is quite easy to give
formulas for producing such triples: for example, take = 2mn, y = m? —n?
and z = m? + n%. It is less straightforward to verify that there are no other
solutions.

Assume that (z,y,z) is a Pythagorean triple. If d divides two of these,

it divides the third, and then (z/d,y/d, z/d) is another Pythagorean triple.
We may therefore assume that z, y and z are pairwise coprime; such triples
are called primitive. In particular, exactly one of them is even.
Claim 1. The even integer must be one of x or y. In fact, if z is even, then
x and y are odd. Writing + = 2X + 1, y = 2Y + 1 and 2z = 27, we find
4X? 44X +4Y?2 +4Y 4+ 2 = 47?: but the left hand side is not divisible by
4: contradiction.

Exchanging = and y if necessary we may assume that = is even. Now

we transfer the additive problem z* + y* = 2? into a multiplicative one (if
we are to use unique factorization, we need products, not sums) by writing
vt =2 —y? = (2 —y)(z +y)
Claim 2. gcd(z —y,z +y) = 2. In fact, put d = ged(z — y,z 4+ y). Then
d divides z — y and z + y, hence their sum 2z and their difference 2y. Now
ged(2y,22) = 2ged(y,z) = 2, so d | 2; on the other hand, 2 | d since z — y
and z + y are even since z and y are odd. Thus d = 2 as claimed.

This is the point where Unique Factorization comes in:

Proposition 1.17. Let a,b € N be coprime integers such that ab is a square.
Then a and b are squares.

Proof. Write down the prime factorizations of a and b as
r _ b b
a:p?lp?’ b_qll...qs.
®Pythagoras of Samos (ca. 569 — 475 BC.).
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Now a and b are coprime, so the set of p; and the set of g; are disjoint, and
we conclude that the prime factorization of ab is given by

a ar b bs
ab=pi" - prgy g

Since ab is a square, all the exponents in the prime factorization of ab must
be even. This implies that the a; and the b; are even, therefore a and b are
squares. ]

Corollary 1.18. Let a,b € N be integers with ged(a,b) = d such that ab is
a square. Then a/d and b/d are squares.

Proof. Apply the proposition to the pair a/d and b/d. O

Applying the corollary to the case at hand (and observing that z—y € N,
since z+y > 0 and (z —y)(z+y) = 2? > 0) we find that there exist m,n € N
such that 2 —y = 2n? and z + y = 2m?. Adding and subtracting these
equations gives z = m*+n? and y = m? —n?, and from 2? = (z —y)(z+y) =
m?*n? and x € N we deduce that z = 2mn.

Note that we must have ged(m,n) = 1: in fact, any common divisor of m
and n would divide z, y and z contradicting our assumption that our triple
be primitive. We have shown:

Theorem 1.19. [f (z,y,z) is a primitive Pythagorean triple with x even,
then there exist coprime integers m,n € N such that x = 2mn, y = m* — n?
and z = m? + n?.

Note that if y is even, then the general solution is given by z = m? — n?,
y = 2mn and z = m? + n?. Moreover, if we drop the condition that the
triples be primitive then the theorem continues to hold if we also drop the

condition that the integers m,n be relatively prime.

Fermat’s Last Theorem for n =4

The solution of z?+4y* = 2% is the godfather of the proof that the diophantine
equation

X' pyt=12" (1.6)
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has only trivial solutions, namely those with X = 0 or ¥ = 0. As a matter
of fact, it is a lot easier to prove more, namely that

X4yt =72 (1.7)

has only trivial solutions (this ¢s more: if X* + Y* cannot be a square, it
cannot be a fourth power). The proof is quite involved and uses a technique
that Fermat!® called infinite descent. It is related to the following proof of
the irrationality of /2:

Proposition 1.20. The number V2 is irrational.

Proof. Assume not; then there are integers a,b € N such that v/2 = 7
Squaring and clearing denominators gives 20> = a*. Thus 2 | ¢?, and by
Proposition 1.3 2 | a (since 2 is prime). This means that a = 2¢, and
canceling 2 gives b*> = 2¢2. By the same argument, b = 2d for some d € N,
and we get 2d%> = ¢?, that is, /2 = <.

We have shown: if v/2 = 7 for a,b € N, then we also have V2 = < with
¢ < a and d < b (these inequalities follow from a = 2¢ and b = 2d). But

this cannot be, because nothing prevents us from repeating this argument

and getting arbitrarily long series of integers ¢ > ¢ > e > ... > 0 and
b>d>f>...>Osuchthatﬂz%z%z?:...: but natural
numbers cannot become smaller and smaller, and this contradiction proves
the theorem. O

We have rewritten the classical'! proof of the irrationality of /2 in such
a way that the idea of infinite descent becomes visible: if we want to prove
that a certain diophantine equation is impossible in N, it is sufficient to show
that for every solution in natural numbers there is another solution that
is “smaller”, which eventually leads to a contradiction because there is no
natural number smaller than 1.

Fermat used this idea to give a proof of

Theorem 1.21. The Fermat equation (1.7) for the exponent 4 does not have
any solution with XY, 7 € N.

10Pierre de Fermat ca. 1607 (Beaumont-de-Lomagne, France) — 1665 (Castres, France).
¥ep: it was known to the Greeks and went like this: write 7 in lowest terms; then

proceed as above and show that a = 2¢ and b = 2d: this contradicts our choice of a and b.
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Proof. The following proof is due to Euler; there is no doubt, however, that
Fermat must have possessed something similar, since he gave a detailed de-
scription of his method of infinite descent in his letters.

Assume that XY, 7 € N satisfy (1.7); we may (and will) assume that
these integers are pairwise coprime (otherwise we can cancel common divi-
sors). Now we vaguely follow our solution of the Pythagorean equation: 7
must be odd (if Z were even, then X and Y would have to be odd, and we
get a contradiction as in the proof of Theorem 1.19).

Thus we may assume that X is odd and Y is even, and write this equation
in the form Y* = (7 — X*)(Z + X?); since any common divisor d of Z — X?
and Z + X? divides their sum and their difference, we easily get that d = 2.
Thus R = 1(Z — X?) and S = 1(Z + X?) are coprime, and RS = {y*. Since
R and S are not both even, either R is odd (and then R and 45 are coprime),
or S is odd (and then 4R and S are coprime). In the first case, R-4S5 = y* is
a fourth power, hence 2R = 7 — X* = 2a® and 45 = 2(7Z + X?) = (2b)*, that
is Z + X? = 8b* for integers a,b € N; in the second case, 4R-S = y*, and then
7 —X?%=8a*and Z + X? = 2b*. The first possibility leads to 46* —a* = X?,
which is impossible modulo 4 (the equation gives —a* = X* mod 4 with «
and X odd; but squares of odd numbers are = 1 mod 4, so the congruence
is —1 = 1 mod 4: contradiction). Thus we are in the second case and get
bt — 4a* = X2

Now we repeat the trick and write 4a* = (b* — X)(b* + X). Since X and
b are odd, we find ged(b* — X, 0% + X) =2 and b* — X = 2r*, b* + X = 2s*.
Adding the equations yields b* = r*4s4, that is, we have found a new solution
(b,r, s) to our equation Z? = X*4Y*; since 0 < b < X < Z, this means that
to every solution (X,Y,7) in natural numbers there exists another solution
with a smaller Z. This is impossible. O

The idea we used to solve the diophantine problems are above was turning
additive into multiplicative problems and then using unique factorization.
In the cases we have considered, this was quite easy. It also works e.g.
for the diophantine equation z* + 2y* = z?, because we can write 2y* =
22 —2* = (2 —2?)(2 + 2?). But what about e.g. 22* — y* = 22?7 One possible
approach is the introduction of algebraic numbers: we can factor the left
hand side over the ring Z[v2] as (V222 — 4?)(v/22% + y?). In this specific
example, however, Lagrange found a very clever trick to avoid irrationalities:
he observed that 4z* = 2y* 4+ 222 = (y* + 2)* + (y* — 2)?, which implies
(y? — 2)* = (22% — y* — 2)(22% + y* + 2). Nice, huh?
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Notes

Let us quote a few propositions from Euclid’s elements. It is not easy to give a
faithful translation (whatever that means): Euclid’s language was geometric
even when dealing with arithmetic notions such as divisibility and primes.
In particular, “measure” means “divide” in our language.

Euclid’s Elements, Book VII:

Proposition 32 Any number is either prime or is measured by
some prime number.

This result tells us that any integer is prime or is divisible by a prime: in
other words: it is the prototype of the existence of a prime factorization.

Euclid’s Elements, Book 1X:

Proposition 14 If a number is the least thal is measured by
prime numbers, then it is not measured by any other prime num-
ber except those originally measuring it.

Translated into our language, this would read

If a number is the smallest common multiple of a set of primes,
then it is not divisible by any other primes.

Or, more formally: if n = p; - - - p, with the p; distinct primes, then n is not
divisible by any prime different from the p;. Note that in his proof, Euclid
deals only with three factors due to his lack of a proper language.

This is a weak form of the unique factorization theorem; it does not deal
with repeated prime factors, and it does not exclude that, say, p?q = pg? for
primes p # ¢g. It may be argued, however, that Euclid knew about unique
factorization but could not express (or prove) it using the inappropriate ge-
ometric language he was using.

The first explicit formulation and proof of the theorem on unique fac-
torization of integers was given by Gauss (1801) in his famous book “Dis-
quisitiones Arithmeticae” (Arithmetical Investigations), of which there are
translations into German, French, English, Spanish and Russian.
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Finally, here’s a proof for the irrationality of \/n distilled from one Paula
gave in her homework: we claim that y/n is irrational for any integer n that
is not the square of an integer.

In fact, if n is not a square of an integer, then we can find an integer a

such that a? < n < (a + 1)?. Assume that /n = § with ¢ > 0 minimal.

Then p® = ng?®, hence p(p — aq) = p* — apq = ng* — apq = q(nq — ap), so

p _ ng—ap
q P —aq

But a < § < a+ 1 1implies 0 < p—aqg < g: this contradicts the minimality of
the denominator q.

Summary

You should be able to

e prove the infinitude of primes with Euclid’s proof, and give the main ideas
of Euler’s proof;

e compute ged’s and Bezout elements using the Euclidean algorithm.

You also should know that

e the fact that irreducibles are prime, which is the basis for the proof of the
Unique Factorization Theorem, follows from the existence of the Fuclidean
Algorithm;

e if gcd(a,b) =1, a | n and b | n, then ab | n;

e if m | ab and ged(m,a) = 1, then m | b; and

e if gcd(a,b) =1 for a,b € N and if ab is a square, then so are a and b.
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Chapter 2

Congruences

Congruences are a very clever notation invented by Gauss (and published in
1801 in his "Disquisitiones Arithmeticae”, or ” Arithmetical Investigations”)*
to denote the residue of a number a upon division by another number m.
More precisely, we write a = b mod m if m | (a — b).

Examples. We have 13 =3 mod 5, 14 = 0 mod 7, and 16 = 13 mod 3.

Our rules for divisibility can now be transferred painlessly to congruences:
first we observe that congruence between integers is an equivalence relation,
that is: For integers a,b,c,d € Z and m € Z \ {0} we have
e a = a mod m;
¢ a =bmod m = b =amodm;

e a = bmod m and b = ¢ mod m = a = ¢ mod m.

J

~—

The proofs are straightforward. In fact, = @ mod m means m | (a —a

and since every integer m # 0 divides 0, this is obvious. Similarly, a
b mod m is equivalent to m | (a — b); but this implies m | (b — a), hence
b = a mod m.

We also have
¢ a = bmod m = a = bmod n for every n | m;
e ad =bmodmand ¢ = dmodm =— a+c = b+ dmodm and ac =
bd mod m;

¢ a = bmod m = ac = be mod m for any ¢ € Z.

1The publication of this masterpiece was delayed for various reasons, one of them being
the fact that Gauss wasn’t very good in Latin. For modern readers, this is quite fortunate
because it makes Gauss’s Latin works easy to read.

27
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Note, however, that canceling factors in congruences is dangerous: we
have 2 = 8 mod 6, but not 1 =4 mod 6. Here’s what we’re allowed to do:

m

Proposition 2.1. If ac = be mod m, then a = b mod pron

Proof. We have m | (ac — bc) = ¢(a — b). Write d = ged(m,¢), m = dm/,
¢ = dc, and note that ged(m’,¢’) = 1. From dm’ | d¢'(a — b) we deduce
immediately that m’ | ¢/(a—b); since ged(m’, ¢’) = 1, we even have m’ | (a—b)
by Lemma 1.7, i.e. @ = b mod —7"—. U
ged(m,c)

Example. What are the last two digits of 9?7 In order to answer this
question, we observe that the last two digits (in base 10) of an integer N are
the same as the residue of N modulo 100. Our task is therefore to compute
9?9 mod 100. Here’s how I would do that: 9% = (9%)% = 7293 = 29%° =
29 - 29%2 mod 100. The second factor 29%? can be computed by repeated
squaring:

292 = 841 = 41 mod 100,
29 = 412 = 1681 = 81 mod 100,
298 = 812 = 6561 = 61 mod 100,
2916 = 612 = 3721 = 21 mod 100,
2932 = 212 = 441 = 41 mod 100,

so 979 = 29.29% =29 .41 = 1189 = 89 mod 100, hence the last two digits of
999 are 89.

In general, b° mod m is of course not computed by repeatedly multiplying
b to itself (which would take e — 1 multiplications and reductions modulo m)
but by repeated squaring and multiplication. Here’s an example how to do
it by hand: if you have to compute, say, a”", write 77 = 64 +8 + 4 + 1; then
a”” = a%aBa'a', and these powers of a are computed by repeated squaring.
For computers, the following algorithm is well suited: it computes the
binary expansion of the exponent e and the power of b mod m as we go
along:
0. Set t+1; a+b; d+ e;
1 if d=0 return ‘¢ mod m’ and terminate.
2. If d is odd, set t(—ta—mL%J;
3

Set a ¢+ a? —m|L|, d« |2] and goto 1.

This algorithm terminates because d > 0 is reduced by a factor of at least
2 in each round. We have to check that the result ¢ is indeed the correct
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answer. First observe that ¢ <— ta —m/|%2] is nothing but ¢ < ta mod m,
that is: ¢ is multiplied by a and reduced modulo m. Similarly, the first part
of step 3 replaces a by a® mod m.

We will now look at the values of ¢, a and d after the algorithm has
completed ¢ cycles. To this end we write e in the binary system as e¢ =
eo + €12 + exd + ... + €,2". At the start of the algorithm (: = 0) we have
t=1=0"modm, a=>b="0" and d = e. After the first cycle (i = 1), we
havet = b if e is odd and ¢t = 1 otherwise, that is: we have ¢t = b°°. Moreover,
we have a = b% and d = L%j —e1+e2+ ... +e,27 .

We now claim that, after : cycles, we have

! = beo+e12+...+ei—12i_17 a = b?i7 d = e; + ei+12 N en2n—i.
Assume that this holds for some ¢; then cycle 141 replaces ¢ by ta® = b2 =
beo+612+...+eg21 mod m, a by a? = sz+1’ and d by L%J = €41 + ei+22 + ...+
enQn—i—l.

Thus after n cycles, we will have e = 0, and ¢ = b° mod m as desired.

The one thing that makes congruences really useful is the fact that we can
define a ring structure on the set of residue classes. Since this is fundamental,
let us do this in detail.

Fix an integer m > 1. We have already noted that the congruence relation
modulo m is an equivalence relation. The set of integers congruent to a given
integer a is called the residue class of @ modulo m and will be denoted by
[a]; for m = 3, for example, we have

0] = {...,-6,-3,0,3,6,...},

] = {...,-5,-2,1,4,7,... },

2] = {..,—4,-1,2,5,8,...},

B = {..,-3,0,3,6,9,...} =[0].
etc. Note that [0] = [3] = [6] = ... (in fact, [0] = [a] for any a € [0]),
and similarly [1] = [4] = .... In general, we have [a] = [d¢'] il and only if

a = a’ mod m, that is, if and only if m | (a — a').

In general, there are exactly m different residue classes modulo m, namely
[0], [1], ..., [m — 1]. First, they are pairwise distinct, since [a] = [b] for
0 < a,b < m implies b € [a], hence @ = b mod m or m | (b — a): but since
|b — a| < m, this can only happen if @ = b. Next, there are no other residue
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classes: given any class [a], we write a = mqg + r with 0 < r < m, and then
[a] = [r] is one of the classes listed above. The set {0,1,2,... ,m—1} is often
called a complete set of representatives modulo m for this reason. Sometimes
we write r + mZ instead of [r].

These residue classes [0], [1], ..., [m—1] modulo m will form the elements
of our ring Z/mZ. We have to define an addition and a multiplication and
then verify the ring axioms.

e Addition &: Given two classes [a] and [b], we put [a] & [b] = [a +b]. We
have to check that this is well defined: after all, we have e.g. [a] = [a + m],
so if our addition makes sense then [a] & [b] and [a 4+ m] & [b] should be equal.

More precisely we have to do the following: assume that [a] = [a] and
[b] = [b']; then we have to show that [a + b] = [a¢’ 4 b]. But this is easy: we
have a — a’ € mZ, say a — a’ = mA, and similarly b — & = mB. But then
(a+b)— (a'"+0b)=m(A+ B) € mZ, hence [a + b] = [a' + V'].

The neutral element is the residue class [0] = mZ, and the inverse element
of [a] is [—a], or, if you prefer, [m — a]. In fact, we have [a] & [0] = [a + 0] =
[a] and [a] & [—a] = [a + (—a)] = [0]. The law of associativity and the
commutativity are transferred easily from the corresponding properties of
integers: since e.g. (a+b)4c¢ = a+(b+c), we have a fortiori ([a] B [b]) & [c] =
[a] @ (8] @ [¢])-

e Multiplication @: of course we put [a] @ [b] = [ab]. The verification that
this is well defined is left as an exercise. The neutral element is the class [1].

e Distributive Law: Again, ([a] & [b]) ® [c] = [a] ® [¢] & [b] © [¢] follows

from the corresponding properties of integers.

Theorem 2.2. The residue classes [0], [1], ..., [m — 1] modulo m form a
ring Z/mZ with respect to addition & and multiplication ©.

Computing with residue classes is easy: here are the addition and multi-
plication table for the ring Z /3Z:

+1(0 1 2 01 2
010 1 2 00 0 O
111 2 0 110 1 2
212 0 1 210 2 1

Now that we have introduced the rings that we will study for some time
to come, we simplify the notation by writing + and - instead of & and
®. Moreover, we will drop our references to classes and deal only with
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the integers representing them; in order to make clear that we are dealing
with residue classes, we write = instead of = and add a “mod m” at the
end. What this means in practice is that we identify Z/mZ with the set of
integers {0,1,...,m — 1}.

Computing residue classes often occurs in everyday life: the main example
is the 7clock arithmetic”: you add the hours on the clock by taking residues
modulo 12 (or modulo 24, if you replace x pm by x+12).

A less trivial example are the ISBN (international standard book num-
bers) codes: the book "The Queen of Mathematics” by J. Goldman has the
ISBN 1-56881-006-7; The first digit encodes the country in which the pub-
lishing company resides: 0 is for the USA, 1 for the UK, and 3 for Germany.
The next string of digits give information about the publishing company; for
example, 0-387 is for Springer Verlag New York, 3-540 for Springer Verlag
Heidelberg. The third set of strings distinguishes the different books pub-
lished by each company; the book ”Measure Theory” by J.L. 3Doob has two
[SBNs: 0-387-94055-3 and 3-540-94055-3.

Thus we can explain every digit in an [SBN except the last one. This last
digit carries no information: its purpose is to check whether any errors have
been made in copying the ISBN.

Here’s how it works: assume that the digits of an ISBN are nyny...ng (if
the code has only eight digits, put ng = 0); compute the sum N = ny +2n,+
et 929 = 2?21 in;; the residue class N mod 11 is one of {0,1,... ,10}, and
if we write X for the residue class 10 mod 11, this i s the last digit of the
ISBN number.

Example. Goldman’s book has the ISBN 1-56881-006-7; in fact, we find
1-142-54+3-64+4-845-84+6-14+7-04+8-049-6=7mod 11.

The ISBN code is capable of detecting single errors: assume that the
correct ISBN number (without the last digit) is nyn, ... ng, and that someone
copying that number made a single error. Let my...mg be the incorrect
number. Since there is only one error, we must have n; = m; for all indices
J=0,1,...9 except one, say j. The correct check digit is njg = > in; mod

11; if we form N = im; mod 11, then N — nyg = > i(m; — n;) = j(m; —
n;) mod 11. Since m; # n; and 11 { 7, this difference does not vanish,
indicating that some error must have occurred.

Now that we have the residue class rings Z/mZ, we arrest the usual
suspects: can we determine the unit group (Z/mZ)*? Recall that a unit
is an element that divides 1; in our case this means that a residue class
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a mod m is a unit if there is a residue class b mod m with ab =1 mod m (in
other words: the units are the elements having an inverse modulo m). Let
us do an example: put m = 15 and compute the units by brute force.

x

o
)
w
b
ot
(@]

718191011 ]12]13 |14
bl — 18| —|4|—|—|13]|2|—| — 11| =] 7|14

The units modulo 15 are exactly those residue classes [a]i5 for which a
and 15 are coprime: ged(a, 15) = 1. This holds in general:

Theorem 2.3. We have (Z/mZ)* = {a mod m : ged(a,m) = 1}.

Proof. Tt is now that the Bezout representation begins to show its full power.
If gcd(a,m) = 1, then there exist integers z,y € Z such that az + my = 1.
Reducing this equation modulo m gives ax = 1 mod m, in other words: the
residue class a mod m is a unit! Not only that: the extended Euclidean
algorithm gives us a method to compute the inverse elements.

To prove the converse, assume that ¢ mod m is a unit. Then ac = 1 mod
m, so ac = km + 1 for some k € Z. But then ac — km = 1 shows that
ged(a,m) = 1. O

If m = p is a prime, the unit groups are particularly simple: we have
ged(a,p) = 1 if and only if p { a, hence (Z/pZ)* = {1,2,...,p — 1} =
Z/pZ\ {0}. But if every element # 0 of a ring has an inverse, then that ring
is a field, and we have proved

Corollary 2.4. If p is a prime, then the residue class ring Z [pZ is a field.

Important Remark. Assume that we are given an integer m and an ele-
ment a coprime to m; how do we compute the inverse of @ mod m? We start
by applying the Euclidean algorithm to m and a, and then compute a Bezout
representation ax + bm = 1. If we read that equation modulo m, then bm
vanishes, and we get ax = 1 mod m, in other words: z is the inverse of a
modulo m.
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2.1 Fermat’s Little Theorem

Let n be an odd integer and consider the factorization of the Mersenne?
numbers 2"7! — 1:

n| 271 —1 n |
3 3 13 3-5-7-13
5 3-5 15 3-43-127
7 32.7 17 3-5-17-257
9| 3-5-17 19 3:-7-19-73
1113-11-31 2113-5-11-31-41

The fact that 3 divides these integers is not very surprising: If n is odd,
then n — 1 is even, and 2"~ ! is a power of 4. But 4 = 1 mod 3, so 27! =
1 mod 3, hence 27! —1 = 0 mod 3. Note, however, that n | 2°~' — 1 in this
table if and only if n is prime. Could this be true? Unfortunately, it isn’t,
but you have to extend the table considerably before you can observe that
341 | 2*49 — 1 although 341 = 11 - 31: in fact we have

2170 1 = 3-11-31-43691-131071 - 9520972806333758431
- 26831423036065352611

2170 4 1 = 52.41-137-953 - 1021 - 4421 - 26317 - 550801 - 23650061
- 7226904352843746841

Well, at least the other direction is true in general; it is a special case of

Theorem 2.5 (Fermat’s Little Theorem). If p is a prime and a an in-
teger not divisible by p, then a?~' = 1 mod p.

Proof. The following proof is due to Leibniz® and probably the oldest proof
known for Fermat’s Little Theorem. It proves the equivalent (!) statement
a? = a mod p for all @ € Z via induction on a. The claim is clearly trivial
for @ = 1; assume it has been proved for some a; then

(a—l—l)p:ap—i—(f)ap_l—l—...%—(pﬁl)a—}—l.

ZMarin Mersenne, 1588 (Oize, France) — 1648 (Paris).
3Gottfried Wilhelm von Leibniz, 1646 (Leipzig) — 1716 (Hannover).
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By the induction assumption, ¢ = a mod p. Next we know that (z) =

ﬁik)!; since the numerator is divisible by p while the denominator is not
divisible by p unless k = 0 or k = p, we conclude that p | (i) for 0 < k£ < p.
Thus

(a+1)P=d’+1=a+1mod p,

and the induction step is established. O

Assume that we are given an integer m and an integer a coprime to m.
The smallest exponent n > 0 such that a” = 1 mod m is called the order of
a mod m; we write n = ord,,(a). Note that we always have ord,,(1) = 1.
Here’s a table for the orders of elements in (Z/7Z)*:

amod7|1[12(3|4]|5]|6
ord7(a) |1[3|6]3|6]2

If m = pis prime, then Fermat’s Little Theorem gives us a?~* = 1 mod p,
i.e., the order of a mod p is at most p — 1. In general, the order of a is not
p—1; it is, however, always a divisor of p—1 (as the table above suggested):

Proposition 2.6. Given a prime p and an integer a coprime lo p, let n
denote the order of a modulo p. If m is any integer such that a™ =1 mod p,
then n | m. In particular, n divides p — 1.

Proof. Write d = ged(n,m) and d = nz 4+ my; then a? = a"**™ =1 mod p
since a” = a™ = 1 mod p. The minimality of n implies that n < d, but then
d | n shows that we must have d = n, hence n | m. O

Here comes a pretty application to prime divisors of Mersenne and Fermat
numbers.

Corollary 2.7. If p is an odd prime and if q | M,, then ¢ =1 mod 2p.

Proof. 1t suffices to prove this for prime values of ¢ (why?). So assume that
g | 2 — 1; then 2 = 1 mod q. By Proposition 2.6, the order of 2 mod p
divides p, and since p is prime, we find that p = ord,(a).

On the other hand, we also have 27! = 1 mod p by Fermat’s little theo-
rem, so Proposition 2.6 gives p | (¢ — 1), and this proves the claim because
we clearly have ¢ = 1 mod 2. O
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Fermat numbers are integers F, = 22" + 1 (thus Fy = 5, F, = 17,
F3 =257, Fy = 65537, ... ), and Fermat conjectured (and once even seemed
to claim he had a proof) that these integers are all primes. These integers
became much more interesting when Gauss succeeded in proving that a reg-
ular p-gon, p an odd prime, can be constructed with ruler and compass if p is
a Fermat prime. Gauss also stated that he had proved the converse, namely
that if a regular p-gon can be constructed by ruler and compass, then p is
a Fermat prime, but the first (almost) complete proof was given by Pi érre

Wantzel.
Corollary 2.8. If q divides F),, then ¢ = 1 mod 2"*!,

Proof. 1t is sufficient to prove this for prime divisors ¢. Assume that ¢ | F),;
then 22" + 1 = 1 mod ¢, hence 22" = —1 mod ¢ and 22" = 1 mod q. We
claim that actually 2"*!' = ord,(2): in fact, Proposition 2.6 says that the
order divides 2"*!, hence is a power of 2. But 2"*! is clearly the smallest
power of 2 that does it.

On the other hand, 27! = 1 mod g by Fermat’s Little Theorem, and
Proposition 2.6 gives 2"t | (¢ — 1), which proves the claim. O

In particular, the possible prime divisors of Fy = 4294967297 are of the
form g = 64m + 1. After a few trial divisions one finds F5 = 641 - 6700417.
This is how Euler disproved Fermat’s conjecture. Today we know the prime
factorization of F), for all n < 11, we know that F), is composite for 5 <
n < 30 (and several larger values up to n = 382447), and we don’t know any
factors for n = 14, 20,22 and 24. See
http://vamri.xray.ufl.edu/proths/fermat.html
for more.

Euler-Fermat

The following proof of Fermat’s Little Theorem is slightly more complicated
than the one we have given before but has the advantage of being valid for
any finite abelian group:

Second Proof of Theorem 2.5. We claim that if r runs though the residue
classes 1,2,... ,p — 1 mod p, then so does ra. Clearly, none of the ra is
divisible by p, since p t a by assumption and p { r since 1 < r < p. Since

iPidrre Wantzel, 1814 (Paris) — 1848 (Paris).
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there are p— 1 numbers ra and p— 1 nonzero residue classes modulo p, all we
need to show is that the residue classes ra mod p are different. But assume
that ra = sa mod p for 1 < r < s < p; a and p are coprime, we nay cancel
a by Proposition 2.1, and we find r = s mod p. Since 1 <r < s < p, this is
impossible, hence the ra are different modulo p.

This means that a,2a, ... ,(p—1)a are congruent to 1,2,... ,p—1 in some
order. But then the products over all these elements must be congruent to
each other:

a-2a---(p—1a=1-2---(p—1) mod p.

The left hand side equals a-2a---(p—1)a =a?~'-1-2---(p—1), and since
we may cancel the common factor 1-2---(p — 1), again by Proposition 2.1,
our claim follows. O

As a matter of fact, Fermat’s little theorem holds for any group G of finite
order n:

Theorem 2.9 (Lagrange’s Theorem). If G is a finite abelian group of
order n, then a” =1 for any a € G.

Proof. The proof is basically the same: write G = {1 = g1,92,... , g, }; then
G = {919,929, ... ,9.9} because ¢g;g = g;¢g implies g; = g; (just multiply by
the inverse of g: in groups, every element has an inverse). Thus H?ﬂ g; =
H?ﬂ 9;9=49" H?Zl gj, (in the last equation we have used that G is abelian:
observe that e.g. g19929 = g*g1g2 since we may pull the ¢’s up to the front)
and canceling [[ g; (i.e. multiplying by its inverse) we get ¢" = 1. O

Corollary 2.10. We have a?~! = 1 mod p for any prime p and any integer
a not divisible by p.

Proof. Apply Lagrange’s Theorem to the group G = (Z/pZ)*. Since #G =
p— 1, we get [a]* = [1] for every element [a] € (Z/pZ)*. O

Before we apply Lagrange’s Theorem to the group (Z/mZ)*, we shall
introduce a notation for the number of elements in (Z/mZ)*: we write
d(m) = #(Z[/mZ)*; ¢ is called Euler’s phi function (or totient, especially in
older books).

Corollary 2.11 (Theorem of Euler-Fermat). We have o™ = 1 mod
m for any a € (Z/mZ)*, that is whenever ged(a,m) = 1.
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Without a formula for computing ¢(m) this result would be pretty useless.
We can compute ¢(m) for small values of m by brute force. Since ¢(m)
counts the invertible residue classes modulo m (in other words: the number
of a with 1 < a < m and ged(a, m) = 1), this is no big deal for small values of
m. For example, ¢(6) = 2 since exactly two integers satisfy these conditions,
namely ¢ = 1 and a = 5; in other words: (Z/6Z)* = {[1],[5]}. Here are

some more values:

m 1[2[3]4[5]6]7[8[9[10]11
om) [1[1|2]2]4[2[6[4]6] 4 10

Observe that ¢(m) is even for m > 3 and that ¢(m) = m — 1 if and only
if m is prime.

We will derive a formula for ¢(m) by combining two results: one gives
¢(m) for prime powers, the other shows that ¢ is multiplicative for coprime
values.

Proposition 2.12. We have ¢(p*) = (p — 1)p*~! for all k > 1.

As usual, we give two proofs. The first simply counts the number of
elements in Z/p*7Z that are nonunits. Since nonunits here are exactly the
elements divisible by primes, we see that ¢(p¥) is the number of all integers
0 < n < p* minus those that are divisible by p. But these are exactly the
numbers pb for 0 < b < p*~1, so ¢(p*) = p* — pF=1 = (p — 1)pF~1.

The other result we will need is

Proposition 2.13. If m and n are coprime, then ¢(mn) = ¢(m)d(n).

Proof. We will show that there exists a bijection between the prime residue
classes modulo mn and the pairs of prime residue classes modulo m and n.
More precisely: the map

Y (Z)/mnZ) — (Z/mZ)* & (Z/nZ)* : a + mnZ — (a + mZ,a+ nZ)

is bijective. Since there are exactly ¢(m)p(n) such pairs, the claim will follow.

Let us first prove that ¢ is onto: given integers r, s such that ged(r,m) =
ged(s,n) = 1, we have to find an integer a such that ¢ = r mod m and
a = smodn. Of course we have to use gcd(m,n) = 1 somehow, and in
general this is best done by using a Bezout representation. Thus let z,y be
integers with 1 = xm + yn. We claim that a = ryn 4+ sxm does it: in fact,
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a = ryn + sxm = ryn = 1 mod m since yn = 1 mod m from the Bezout
representation, and similarly a = ryn + sem = sxm = s mod n. Moreover,
a € (Z/mnZ)* since ged(a, mn) | ged(a, m) ged(a,n) = 1.

It remains to show that ¢ is injective. Assume that there are residue
classes @ mod mn and b mod mn such that ¢ = b mod m and ¢ = b mod n.
By Lemma 1.6, this implies that @ = b mod mn and proves the injectivity of

&. 0

These formulas allow the fast computation of ¢(m) if the prime factor-
ization of m is known: for example, ¢(200) = ¢(8 - 25) = ¢(8)p(25) because
ged(8,25) = 1; moreover ¢(8) = 4 and ¢(25) = 20 because of Proposition
2.12.

In the general case, the last two results imply

Corollary 2.14. For integers n with prime factorization n = pj' --- pi, we

have
r—1

¢(n) = [Ii—1)p "

=1

Proof. Proposition 2.13 implies that
¢(n) = o(pi') - d(p)7),

while Proposition 2.12 then does the rest. O

2.2 Euler’s ¢ revisited and primitive roots

Before we go on we have to prove that the group (Z/pZ)* is cyclic, that
is: there is an integer g such that each residue class [a] in (Z/pZ)* can be
written uniquely in the form @ = ¢* mod p for some 0 < k < p—1. Any such
integer g is called a primitive root modulo p. An integer g is a primitive root
modulo p if and only if ord,(g) = p — 1, because then and only then do the
powers of g generate p — 1 different residue classes.

Example: 2 and 3 are primitive roots modulo 5.

More generally, an integer g is called a primitive root modulo m if the
powers of g generate all residue classes in (Z/mZ)*. Since there are exactly
¢(m) such residue classes, ¢ is a primitive root modulo m if and only if ¢ has
order ¢(m) modulo m.
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Primitive roots do not always exist: there are no primitive roots modulo
8 or modulo 15. In this Chapter we shall prove that there are primitive roots
modulo odd prime powers.

Example: 2 is a primitive root modulo 9, but 4 is not. In fact, the powers
of 2mod9are2°=1,2'=2,22=4,2°=8,2"=7, and 2° =5 mod 9 (of
course, 2° = 1 mod 9 by Euler-Fermat). On the other hand, 4° = 1, 4! = 4,
4* =7, and 4> = 1 mod 9, so the powers of 4 only generate 3 different classes
modulo 9.

The fact that (Z/pZ)* is cyclic is a special case of a far more general
result on finite fields: these are fields with finitely many elements. So far we
have only learned about finite fields with p elements, namely Z/pZ, but we
shall see in Chapter 4 that there are others.

Theorem 2.15. The multiplicative group F'* of any finite field is cyclic.

Since Z/pZ is a finite field, this proves the existence of primitive roots
modulo p.
Let us collect a couple of results:

Lemma 2.16. Let I' be a field and [ € F[X] a polynomial with coefficients
in F'. Then f has at most deg f roots.

Proof. We prove this by induction. If deg f = 0, then f(X) = a is a nonzero
constant function, hence f has no zero, and 0 = deg f.

Now assume that the result is true for all ¢ € F[X] with degree deg g < n,
and suppose deg f = n 4+ 1. If f has no zero, the claim is trivially true, so
assume that f(z) = 0 for some x € F. Then f(X) = (X — 2)g(X) + a for
some g € F[X] and a constant a € F' by the Euclidean division algorithm.
Putting X = x shows that 0 = f(z) = a, hence f(X) = (X — 2)g(X), and
clearly deg g = deg f — 1 = n. By induction assumption, ¢ has at most n
roots; since f(X) = (X —z)g(X), we see that f has at most n+ 1 roots. [

For an element a of a finite group G, its order is the smallest positive
integer r such that " = 1.

Lemma 2.17. If G is an abelian group, and if a,b € G are elements of order
m and n respectively such that ged(m,n) =1, then ab has order mn.
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Proof. Clearly (ab)™" = a™"b™" = (a™)"(b™)" = 1, so ab has order dividing
mn (note that we have used commutativity here). For the converse, we
first show that " has order m: to this end, write 1 = mx + ny; then
a™ = a'™™® = @, and a has order m. Thus a” has order > m, and on
the other hand (a”™)™ = 1 shows it has order < m. This proves the claim.
Similarly, b™ has order n.

Now (ab)™ = b™, hence ab has order divisible by n, and similarly (ab)” =
a™ shows that ab has order divisible by m, so ab has order divisible by mn
since m and n are coprime. 0

Proof of Theorem 2.15. Let p be a prime divisor of the order n of F'*. Then
there is an element a € F such that a™? # 1. For if not, then every a € F
is a root of the polynomial f(X) = X™? —1; in particular, f has degree n/p
and n roots. But polynomials f over fields can have at most deg f roots:
contradiction.

Now let p” be the exact power of a prime p that divides n = #F*; then
we claim that the element # = /7" has order p". In fact, 2*" = a” = 1 by
Lagrange’s Theorem, so the order of x divides p”. If the order were smaller,
then we would have 27"~ = 1; but 2*"' = a"/? # 1 by choice of a.

Now write n = pi' --- p;’. By the above, we can construct an element x;
of order p* for every 1 < i < {. But then z;---z; has order n by Lemma
2.17 (use induction). O

We now claim
Proposition 2.18. If p is an odd prime, then (Z/p*Z)* ~Z/(p—1)p*"'Z.

In particular, there exist primitive roots modulo p* (p odd) because the
group Z/(p—1)p*='Z is cyclic. For a proof we need the following congruence:

Lemma 2.19. [fp is an odd prime and a an integer not divisible by p, then
(1+ ap)f”k_1 =1+ ap® mod p*+. (2.1)
In particular, ord k(1 + ap) = p*=" for all k > 1.

Proof. The claim is trivial for & = 1 because (1 + ap)po = 1 4 ap mod p2.
Assume that (2.1) holds for some k; then (1 + czp)pk_1 =1+ ap® + pFt'c for
some integer ¢, hence (1 + ap)pk =(1+ ap® + pk"'lc)p =(1+ apk)p + (71?)(1 +
ap® )P ipFe+ . = (1+aph)P =1+ (?)apk = 1+ ap"*t' mod p**t2. This proves
(2.1).
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The congruence (2.1) implies (1 —I—ap)pk_1 = 1 mod p*, hence ord (1 +ap)
divides p*~1. In fact we must have equality: if not, then (1+ap)” = 1 mod p*
for some proper divisor r of p"~'. But (14 ap)? 7 =1+4ap" " mod p* shows
that (1 + ap)pk_2 Z 1 mod p*, hence ord,«(1 + ap) = p*~'. O

Another useful observation is

Lemma 2.20. [f g is a primitive root modulo some odd prime p, then g or
g+ p is a primilive root modulo p* for every k > 1.

Proof. In fact, assume that g is a primitiveroot modulo p, i.e. ord,(g) = p—1.
If ¢! = 1 mod p?, then (g + p)P~' = ¢g*~! + (pil)gp”p +...=14+(p—
1)pgP=2 = 1 — pg?~? mod p*. If we replace g by ¢g + p in this case, we may
(and will) assume that g?~* # 1 mod p*.

Since g?~! = 1 mod p, we can write ¢g?~! = 1 + ap for some integer a, and
our assumption implies that p { a. By (2.1), ord,x(¢"?~") = ord, (1 + ap) =
p*~!. Thus the smallest » > 0 such that (¢*~")" = 1 mod p* is r = p*~!,
This in turn implies that the smallest = > 0 such that ¢" = 1 mod p* is
r=(p—1)p*7L. Since (p — 1)p*~! = ¢(p*), we see that g is a primitive root
modulo p*. O

Now we are ready for the

Proof of Prop. 2.18. Let g be a primitive root modulo p*, and define a map
b:Z)(p—1)p* 'L — (Z/p"Z)* by ¢(a+ (p—1)p*'Z) = g" mod p*. This
is a homomorphism since ¢((a +b) + (p— 1)p*~1Z)) = ¢*** = g?¢g® mod p* =
bla+ (p— )P Z)o(b+ (p— 1)ph12)

Next, ker¢ consists of all residue classes a + (p — 1)p*"'Z such that
g* = 1 mod p*. Since g is a primitive root, the integers a with ¢* = 1 mod p*
are exactly those divisible by ¢(p*), hence ker¢p = 0 4 (p — 1)p*~'Z, and ¢
is injective. Since injective maps between finite sets of the same cardinality
are bijective, this proves the proposition. O

Observe that Z/(p— 1)p* ' Z ~Z/(p—1)Z & Z /p*~'Z by Corollary A .4.

In particular, there exist primitive roots modulo p* (this is any element
of (Z/p*Z)* that generates this group). Also note that the result does not
hold for powers of 2:

Proposition 2.21. We have (Z/2*7)* ~ Z/2Z & Z/2*~*Z for every integer
k> 2.
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Proof. We define a map [ : Z/2Z & Z/2**Z — (Z/2*Z)* by putting
f((a +2Z,b+ 2¥2Z) = (—1)?5" 4+ 2¥Z. This is clearly a homomorphism
(why?). If we can show that ker f = 0, then f must be bijective since an
injection be tween finite sets is always a bijection.

Now ker f = {(a + 2Z,b+ 2¥72Z) : (—=1)*5* = 1 mod 2*}. Since k > 2,
we must have in particular 1 = (—1)*5* = (—1)? mod 4, and this implies

a € 27. Thus
ker f = {(0+2Z,b+ 2572Z) : 5* = 1 mod 2¥}.

We claim that 5° = 1 mod 2* if and only if b € 282Z.

For a proof, we will use the congruence 52" = 1 4+ 272 mod 2"+3. This
congruence is true if r = 0. Assume that it holds for some r € Z. Then
52 =14 2"t2 4 27*3¢ for some ¢ € Z, hence 57 — 1 19 edot2rt? £ 2%+
2(1 4 27+2)27 3¢ = 1 4 273 mod 2714,

Back to our claim. Assume that b € 272Z. Then b = 2*2¢, so 5* =
2"y = 1 mod 2.

Conversely, assume that 5° = 1 mod 2*. There are integers r and ¢ such
that b = 2"¢ with ¢ odd. Then 5° = (52T)C = (142%)° =142t mod 2713,
and this shows that the minimal b with 5> = 1 mod 2% is b = & — 2. By
Proposition 2.6, all b satisfying the last congruence are multiples of 2%72.

(5

This proves our proposition. 0

Proposition 2.22. If m and n are coprime integers, then (Z/mnZ)* ~

(Z/mZ)* & (Z[nZ)*.

Proof. We have to find a map sending a residue class modulo mn to two
residue classes modulo m and n. As a matter of fact, a gopod memory is all
we need because we have found one in our first proof:

Y (Z)mnZ) — (Z)mZ)* & (Z/nZ)" : a + mnZ +— (a + mZ,a+ nZ)

All that’s left to do is check that it works.

First, ¢ is a homomorphism. This is so obvious that it is hard to write
down: ¢(ab+mnZ) = (ab+mZ,ab+nZ) = (a+mZ,a+nZ)-(b+mZ,b+nZ)
by definition of the direct sum; the last product is ¢(a + mZ)- (b + nZ),
and we are done.

Since we have already shown (in our first proof) that ¢ is bijective, the
proof is complete. O
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Odds and Ends

Theorem 2.23 (Wilson’s Theorem). For any p > 3, we have (p —1)! =
—1 mod p if and only if p is a prime.

Proof. The idea is to look at pairs of the elements of (Z/pZ)*. In fact,
for every a € (Z/pZ)* there is an element a=™' € (Z/pZ)* such that «a -
a”! = 1modp. If @ and a=! were different residue classes for every a,

then (Z/pZ)* would be the union of 7’2;1 such pairs, and we would have

(p— 1)! = 1 mod p. There are two exceptions, however: the congruence
a = a~! mod p is equivalent to a*> = 1 mod p, and this congruence has two
solutions, namely « = 1 mod p and ¢ = —1 mod p (here we use that Z/pZ is
a field).

Thus (Z/pZ)*\{—1,+1} is the union of pairs {a,a™"} with a # ™' mod
p, hence the product over all elements of (Z/pZ)* \ {—1,+1} is congruent
to 1 mod p. We can get (p — 1)! by multiplying this product with the two
missing classes 1 mod p and —1 mod p, and this gives the result.

We still have to prove the converse: assume that (n —1)! = —1 mod n; if
p is a prime divisor of n, this implies (n — 1)! = —1 mod p. But p < n also
implies that p occurs as a factor of (p — 1)! on the left hand side, hence we
would have 0 = (n—1)! mod p. But then 0 = —1 mod p, a contradiction. O

Note that Wilson’s theorem provides us with a primality test; unfortu-
nately the only known way to compute (n — 1)! is via n — 2 multiplications,
so it takes even longer than trial division!

Proof # 2. Consider the polynomial f(X) = X?~! —[1] € (Z/pZ)[X]; since
the residue classes [1], [2], ..., [p— 1] modulo p are roots (by Fermat’s Little
Theorem) and since deg f = p— 1, these are all the roots of f, hence f(X) =
[e](X —[1])(X —=[2])--- (X — [p—1]) for some constant ¢. Since the leading
coefficient of f is 1, we have ¢ = 1. Multiplying out we find that the constant
term of (X — [I)(X — [2) (X — [p—1]) s (~ 1)~ [(p— 1)1, = (p— ). On
the other hand, the constant term of f is [—1], which proves the theorem. [

Proof # 3. The classes [1], [2], ..., [p— 1] can be written (in some order) as
[6°], [d'], - - -, [¢P?], where g is a primitive root modulo p. Thus (p —1)! =
1-2- (p=1) = g% -+ g?~2 = gP=D=2)/2 mod p. But ¢»=1/2 = —1 mod p,
so(p—1)=(-1)P"? = —1 mod p.

The fact that = := ¢*=1/2 = —1 mod p can be proved as follows: squaring
yields z? = g=' = 1 mod p, and this shows p | (2 — 1) = (z — 1)(x + 1).
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Since p is prime, we have p | (z — 1) or p | (z 4+ 1), i.e., z = 1 mod p or
¢ = —1 mod p. The first possibility z = ¢®=9/2 = 1 mod p cannot occur
because ¢ is a primitive root modulo p. Thus the second possibility must
hold, and this concludes the third proof of Wilson’s theorem. U

2.3 RSA

Cryptography deals with methods that allow us to transmit information
safely, that is, in such a way that eavesdroppers have no chance of read-
ing it. Simple methods for encrypting messages were known and widely used
in military circles for several millenia; basically all of these codes are easy to
break with computers.

An example of such a classical code is Caesar’s cipher: permute the letters
of the alphabet by sending X +— A Y —— B, Z —— C, A —— D etc; the
text "ET TU, BRUTE” would be encrypted as "BQ QR, YORQB”. For
longer texts, analyzing the frequency of letters (for given languages) makes
breaking this and similar codes a breeze if you are equipped with a computer.

Another common feature of these ancient methods of encrypting mes-
sages is the following: anyone who knows the key, that is, the method with
which messages are encrypted, can easily break the code by inverting the
encryption. In 1976, Diffie and Hellman suggested the existence of public
key cryptography: these are methods for encrypting messages that do not
allow you to read encrypted messages even if you know the key. The most
famous of all public key cryptosystems is called RSA after its discoverers
Ramir, Shamir and Adleman (1978).

Here’s the simple idea: assume that Bob wants to receive secure messages;
he selects two (large) primes p and ¢ and forms their product n = pg. Bob
also chooses an integer £ < n coprime to (p — 1)(¢ — 1). The integers n
and I are made public and constitute the key, so everybody can encrypt
messages. For decrypting messages, however, one needs to know the prime
factors p and ¢, and if p and ¢ are large enough (say about 150 digits each)
then known factorization methods cannot factor n in any reasonable amount
of time (say 100 years).

How does the encryption work? It is a simple matter to transform any text
into a sequence of numbers, for example by using a — 01, b6 — 02, ... , with
a couple of extra numbers for blanks, commas, etc. We may therefore assume
that our message is a sequence of integers T' < n (if the text is longer, break
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it up into smaller pieces). Alice encrypts each integer T as C' = T mod n
and sends the sequence of C’s to Bob (by email, say). Now Bob can decrypt
the message as follows: since he knows p and ¢, he can form the product
m = (p—1)(¢ — 1) and run the Euclidean algorithm on the pair (F,m) to
find an integer D such that DE = 1 mod m. Now he takes the message
C and computes CP” mod n. The result is CP = (TF)P = TPF mod n,
but since DE = 1 mod m = ¢(n), the theorem of Euler-Fermat shows that
CP =T mod n, and Bob has got the original text that Alice sent him.

Now assume that Celia is eavesdropping. Of course she knows the pair
(n, E') (which is public anyway), and she also knows the message C' that Alice
sent to Bob. That does not suffice for decrypting the message, however, since
one seems to need an in verse D of £ mod (p — 1)(¢ — 1) to do that; it is
likely that one needs to know the factors of n in order to compute D.

Baby Example. The following choice of n = 1073 with p = 29 and ¢ = 37
is not realistic because this number can be factored easily; its only purpose
is to illustrate the method.

So assume that Bob picks the key (n, E) = (1073,25). Alice wants to send
the message "miss piggy” to Bob. She starts by transforming the message
into a string of integers as follows:

m 1 s s p 1 g g y
T{13 9 19 19 27 16 9 7 7 25

Next she encrypts this sequence by computing C' = 7% mod n for each

of these T': starting with 13%° = 671 mod 1073, she finds

T 13 9 19 19 27 16 9 7 725
C 671 312 901 901 656 1011 312 922 922 546

Alice sends this string of C’s to Bob. Knowing the prime factorization of
n, Bob is able to compute the inverse of 25 mod (p — 1)(¢g — 1) as follows: he
multiplies p — 1 = 28 and ¢ — 1 = 36 to get (p — 1)(¢ — 1) = 28 - 36 = 1008.
Then he applies the extended Euclidean algorithm to (25,1008) and finds
1 =25-121 — 1008 - 3, and this shows that D = 121.

Now Bob takes the string of C’s he got from Alice and decrypts them:
starting with 671'?! = 13 mod n he can get back the string of T’s, and hence
the original message.

Remark. There is a big problem with this baby example: if we encrypt
the message letter for letter, then equal letters will have equal code, and the
cryptosystem can be broken (if the message is long enough) by analyzing
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the frequency with which each letter occurs (say in English). This problem
vanishes into thin air when we use (realistic) key sizes of about 10%%° digits:
there we encrypt the message in blocks of about 100 letters, and since the
chance that any two blocks of 100 letters inside a message coincide is practi-
cally 0, an attack based on the frequency of letters will not be successful for
keys of this size.

RSA can also be applied to the signature problem. Assume that Alice
receives an email from someone claiming to be Bob. How can Alice verify
that this is true? Here’s the simple trick in a nutshell: both Bob and Alice
choose public keys, say (na, F4) for Alice and (ng, Fg) for Bob. Moreover,
Alice knows D4 with DaFE4s = 1 mod ¢(ny4), while Bob knows Dg with
DpFEp =1 mod ¢(ng). Now Bob encrypts his message as above, but instead
of sending the T’s to Alice, he computes /' = 7”5 mod ng and sends the
U’s. In order to decrypt the message, Alice computes first 7' = U mod ng
and then decrypts the T’s as in the original version of RSA using her Dy4. If
this works, then Alice can be sure that the message came from Bob because
in order to encrypt the message this way, the sender has to know Dg.

2.4 Primality Tests

Fermat’s Little Theorem says that if p is a prime and a an integer not divisible
by p, then a?~! = 1 mod p. This can be turned into a primality test:
1. Pick some random integer 0 < a < n;
2. Check whether d:=gcd(a,n) =1;
if not, print ‘‘d is a factor of n’’ and terminate;
3. Check whether a?~! =1 mod p;
if not, print ‘‘n is composite’’.
Any integer n surviving this test is called a pseudoprime to basis a; as
the example a = 2, n = 341 shows, there exist composite pseudoprimes.
The primality test given above can be turned into an algorithm that
proves n to be a prime if it is one; here’s the idea: we know that if n is
prime, then (Z/nZ)* is cyclic, generated by a primitive root g. We know
that p — 1 is the smallest positive exponent k of ¢ such that ¢ = 1 mod p.
In particular, ¢®?="/? 2 1 mod p for every prime divisor g of p — 1. Now we
claim

Theorem 2.24. [fn and a are integers such that
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1. @' =1 modn and
2. a1 £ 1 mod n for every prime divisor q of p — 1,
then n is a prime, and a is a primitive root modulo n.

Proof. Let r be the order of @ mod n. Then r divides n — 1 by Proposition
2.6. We claim that r = n— 1. If not, then n — 1 = rs with s > 1, hence there
is a prime factor ¢ | s, i.e., s = gt and n — 1 = rqt. Then a*~V/7 = ¢t =
(a")" = 1" = 1 mod n contradicting 2, so we conclude that r = n — 1.

Since a”~' = 1 mod n, we must have gcd(a,n) = 1 (if we had ¢ | @ and
q|n,theng|a=q|a"'and q|n = q|a"' —1 (from 1.), and this
implies ¢ | 1: contradiction). Thus the powers of @ mod n generate n — 1
different residue classes modulo n, all of them coprime to n. Thus every
nonzero residue class mod n has an inverse, hence n is prime (and a is a
primitive root mod p): this is because if n = de is a nontrivial factorization,
then the residue class d mod n is nonzero but does not have an inverse. [

Here’s a baby-example: take n = 127; then n —1 = 126 = 2-3?.7. Let us
start with @ = 2 (why not?). We first check that 2'2¢ = 1 mod 127. Next we
have to make sure that 2'26/¢ % 1 mod 127 for ¢ = 2,3 and 7. But already
for ¢ = 2 we find 2% = 1 mod 127, and our algorithm fails.

Let’s see if we are more successful with a = 3; again we find 3'%¢ =
1 mod 127; now

3% =  —1 mod 127,
32 = —20 mod 127,
3% = 18 mod 127,

so 127 is indeed prime.

Thus it seems that with a few additional computations we can turn Fer-
mat’s little theorem into an algorithm that allows us to prove that a given
integer is prime (or not). The problem, however, is this: in step 2, we need
the complete factorization of n — 1. Sometimes this is not a big problem,
especially for numbers of the form n = 2¥m + 1 with small m, but for general
integers this is indeed the bottleneck.

There are, however, improvements to this simple test: first, it can be
shown that it suffices to know the factorization of a large part of n — 1: the
part of n — 1 that we can factor has to be > y/n.
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The primality test given above works well if the prime factorization of
N —1 is known. This is the case e.g. for Fermat numbers N = F}, = 22" 11,
where N — 1 is a power of 2. We find:

Proposition 2.25. A Fermat number F, is prime if and only if 3(Fr=1/2 =
—1 mod F,,.

Proof. The proof of the "only if” part will be deferred until we know about
quadratic residues. Assume therefore that 3" »=1/2 = —1 mod F,; then The-
orem 2.24 is satisfied with a = 3. O

2.5 Pollard’s p — 1-factorization Method

Pollard is definitely the world champion in inventing new methods for fac-
toring integers. One of his earliest contributions were the p — 1-method (ca.
1974), his p-method followed shortly after, and his latest invention is the
number field sieve (which is based on ideas from algebraic number theory).

The idea behind Pollard’s p—1-method is incredibly simple. Assume that
we are given an integer N that we want to factor. Fix an integer @ > 1 and
check that ged(a, N) =1 (should d = ged(a, N) be not trivial, then we have
already found a factor d and continue with N replaced by N/d).

Let p be a factor of N; by Fermat’s Little Theorem we know that a?~! =
1 mod p, hence D := ged(a?~" — 1, N) has the properties p | D and D | N.
Thus D is a nontrivial factor of N unless D = N (which should not happen
too often).

The procedure above is not much of a factorization algorithm as long
as we have to know the prime factor p beforehand. The prime p occurs
at two places in the method above: first, as the modulus when computing
a?~! mod p. But this problem is easily taken care of because we may simply
compute a?~! mod N. It is more difficult to get rid of the p in the exponent:
the fundamental observation is that we can replace the exponent p—1 above
by any multiple, and D still will be divisible by p (note though that the
chance that D = N has become slightly larger). Does this help us? Not
always; assume, however, that p — 1 is the product of small primes (say of
primes below a bound B that in practice can be taken to be B = 10° or
B = 10°, depending on the computing power of your hardware). Then it is
not too hard to come up with good candidates for multiples of p — 1: we
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might simply pick & = B!, or, in a similar vein,

4 .

k= Hp?i, where pi* < B < p*t! (2.2)

If we (p— 1) | k, then ¢* = 1 mod p, hence p | D = ged(a* — 1, N).
Thus the following algorithm has a good chance of finding those factors
p of N for which p — 1 has only small prime factors:

1. Pick a > 1 and check that ged(a, N) =1
2. Choose a bound B, say B =10*, 10°, 10°, ...
3. Pick k as in (2.2) and compute D = gcd(ak -1,N).

Note that the computation of a* can be done modulo N; if p | N and
(p—1) | k, then a* = 1 mod p, hence p | D.

If D =1, we may increase k; if D = N, we can reduce k& and repeat the
computation.

Among the record factors found by the p—1-method is the 37-digit factor
p = 6902861817667290192729108442204980121 of 7177 — 1 with p — 1 =
2%.3%.5-7-11-13-401-409-3167 - 83243 - 83983 - 800221 - 2197387 discovered
by Dubner. A list of record factors can be found at
http://www.users.globalnet.co.uk/~aads/Pminusl.html

Here’s a baby example: take N = 1769, a = 2 and B = 6. Then we
compute k = 2?3 -5 and we find 2°° = 306 mod 1769, gcd(305,1769) = 61
and N = 29 .61. Note that 61 — 1 = 2?-3 .5, so the factor 61 was found,
while 29 — 1 = 2% - 7 explains why 29 wasn’t (although 29 < 61).

Pollard’s p — 1-algorithm was the father of Lenstra’s ECM (elliptic curve
method) algorithm. While Pollard’s method is based on the group (Z/pZ)*
of order p — 1, Lenstra’s ECM is based on the group F(Z/pZ) defined by an
elliptic curve, an object defined by equations of the form y? = 23 + ax + b.
The order E(Z/pZ) satisfies p+1 —2,/p < # E(Z/pZ) < p + 1+ 2,/p, and
by varying the elliptic curve we may eventually find a curve for which the
group order is "smooth”, that is, divisible only by small primes. Lenstra’s
ECM can find factors of up to 50 digits whereas Pollards method has not yet
found any factors with more than 40 digits.

Another large class of factorization algorithms is based on an algorithm
invented by Fermat: the idea is to write an integer n as a difference of
squares. If n = 22 —y? then n = (x — y)(z +y), and unless this is the trivial
factorization n = 1 - n, we have found a factor.
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Another baby example: take n = 1073; then /n = 32.756..., so we
start by trying to write n = 33% — y2. Since 33% — 1073 = 16, we find
n =332 —42 = (33 —4)(33 +4) = 29 - 37. If the first attempt would have
been unsuccessful, we would have tried n = 34% — y2, etc.

In modern algorithms (continued fractions, quadratic sieve, number field
sieve) the equation N = z? — y? is replaced by a congruence z? = y* mod N:
if we have such a thing, then ged(z — y, N) has a good chance of being a
nontrivial factor of N. The first algorithm above constructed such pairs (z, y)
by computing the continued fraction expansion of \/n (which we have not
discussed), the number field sieve produces such pairs by factoring certain

elements in algebraic number fields.

Notes

In this Chapter, we have introduced congruences. Even the concept of con-
gruence alone has applications, for example to ISBN’s and similar (simple)
“error detecting codes”.

Apart from the fundamental notion of a congruence, we introduced

e the order of an element g in a (multiplicative) group GG as the smallest
n > 1 such that ¢” = 1.

o the order of a finite group G: the numbers of elements of G.

In the special case G = (Z/pZ)*, we proved in Proposition 2.6 that the order
of any a € GG divides the order p — 1 of the group. This is true in general
(the proof goes through as well): in finite abelian groups, the order of any
element divides the order of the group.

Among the main results proved in this Chapter are

o Fermat’s Little theorem: a?~!' = 1 mod p for primes p and integers
a not divisible by p. Fermat’s little theorem was used to prove that
prime divisors of Fermat and Mersenne numbers have a special form,
for devising a primality algorithm in Section 2.4, as well as Pollard’s
p — 1-method for factorization in Section 2.5.

e The Theorem of Euler-Fermat saying that a®™) = 1 mod m if ged(a, m) =
1. This contains Fermat’s Little Theorem as a special case (take m = p)



II. Congruences 51

and is the basis for RSA-cryptography. Note that the Theorem of Euler-
Fermat is just a special case of Lagrange’s Theorem that ¢” = 1 in any
(multiplicatively written) finite abelian group with n elements.

e Multiplicative groups of finite fields are cyclic. This was used to prove
that primitive roots exist modulo p, and from there we used induction
to prove the same thing for odd prime powers.

As for the methods of proof, we used two different approaches: a combina-
torial one based on counting, and the more abstract approach using algebra.

elementary abstract
a?'=1modpifpta Lagrange’s Theorem
o(p)=p—1 (Z/pZ)* ~7[(p—1)Z
é(p") = (p— 1)p*" podd: (Z/p*Z)* ~Z/(p—1)p""'Z
ged(a,b) =1: ¢(ab) = ¢(a)p(b) | (Z/abZ)* ~ (Z[aZ)* x (Z/bZ)*

The results on the right hand side are much stronger than those on the
left hand side; for example, (Z/p*Z)* ~ Z/(p — 1)p*~'Z for odd primes p
also implies that there exist primitive roots modulo p*.

The isomorphisms on the right hand side also allow us to improve on the
theorem of Euler-Fermat:

e For G = (Z/8Z)*, Euler-Fermat says a* = 1 mod 8 for every a €
(Z/8Z)* because ¢(8) = 4. On the other hand, (Z/8Z)* = Z[2Z %
Z /27 implies the stronger claim that a*> = 1 mod 8.

e For G = (Z/247)%, we have ¢(24) = 8, hence a® = 1 mod 24 by uler-
Fermat. On the other hand, (Z/24Z)* ~ (Z /8Z)* x (Z |3Z)* ~ Z |27 x
Z /27 x 7 /27 implies that a* = 1 mod 24 whenever ged(a,24) = 1.

Thus the abstract approach is much more powerful than the elementary one.
Of course, abstract algebra is perceived as being difficult by beginners; but
difficult mathematics is not mastered by avoiding it.
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Chapter 3

Quadratic Reciprocity

Quadratic Reciprocity belongs to the highlights of every introduction to num-
ber theory. Conjectured by Euler and partially proved by Legendre in the
late 18th century, the first complete proof was published 1801 in Gauss’s Dis-
quisitiones Arithmeticae (actually he gave two proofs there, followed later by
six others).

3.1 Quadratic Residues

Let I be a field; it is an apparently simple question to ask for a characteriza-
tion of the squares in F, that is, the set of elements @ € F' such that a = b?
for some b € F. This question is trivial for /' = C because every complex
number is a square (you may deduce this from the fundamental theorem of
algebra by looking at the polynomial z? — a, but it is instructive to give a
direct proof, that is: given a complex number r 4 si, find its square roots).
The answer is also easy for F' = R: a real number x is a square if and only
ifz>0.

Knowledge about squares is important for solving quadratic equations:
2% + ax + b = 0 has solutions in the reals if and only if the discriminant
a? — 4b of the polynomial is a square. The same thing is true for finite
fields Z/pZ for odd p (the case p = 2 is different because the formula for
solving quadratic equations has a 2 in the denominator, and 2 = 0 in Z/2Z):
consider e.g. 42z —1 = 0 over Z/pZ. The well known fomula gives the two
solutions %(—2 4+ 8) = —1 4 /2, so there are exactly two solutions if 2 is
a square in Q(,/p ), and none otherwise. Example: for p =7, 2 = 3? mod 7,

53
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so the formula gives the two solutions —1 £3 = 2, —4 mod 7, and in fact
22-2.2-1=(-4)*+2-(—4)—1=0mod 7.

Quadratic reciprocity helps us deciding whether certain elements are
squares in F, = Z/pZ or not. We will call the squares in F, (or, more exactly,
the integers whose residue classes in F, are squares) quadratic residues mod-
ulo p, the nonsquares quadratic nonresidues. Let us make some experiments;
since 0 is always a square, we restrict ourselves to F.

prime squares nonsquares
3 1 2
5 1,4 2,3
7 1,2,4 3,5,6
11 1,3,4,5,9| 2,6,7.8,10
13(1,3,4,9,10,12 | 2,5,6,7,8, 11

There are hardly any regularities to discover. One may notice that the
sums of the squares in F, are divisible by p for p > 3 (can you prove that?),
but we want to get a grip on the elements, not on sums (what about prod-
ucts?) of them.

Clearly 1 is always a square; but even the question when 2 is a quadratic
residue seems hard to answer. An easier case to figure out is the residue
class of —1, which is a square exactly for p = 5 and 13, and a nonsquare for
p =3,7 and 11. Based on this observation, we might conjecture that

The integer —1 is a quadratic residue modulo an odd prime p if
and only if p = 1 mod 4.

As a matter of fact, this is quite easy to prove; we will do that using a
characterization of quadratic residues due to Euler:

Proposition 3.1 (Euler’s Criterion). If a € Z is not divisible by p, then
a is a quadratic residue or nonresidue modulo p according as aP~1/? = 41
or a?~1/2 = —1 mod p.

Proof. This is easy: assume that ¢ = 22 mod p; then aP~V/2 = g1 =
1 mod p by Fermat’s Little Theorem.
Conversely, assume that ¢ 1/2 = 41 mod p and let ¢ be a primitive

root modulo p. Then a = ¢" mod p for some 0 < r < p — 1; if r were odd,
then a(P=1/2 = (g»=1/2)" = (—1)" = —1 mod p, hence r must be even, say
r = 2s. But then a = (¢*)? mod p is a quadratic residue. O
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At this point it is appropriate to introduce the Legendre symbol. Given
a prime p and an integer a € Z with p{ a, we put
(a> IR a?=V/2 = 41 mod p,
p/ | =1, ifa® V2= _1mod p.
By Euler’s criterion, we have (%) = 41 if a is a quadratic residue modulo
p, and (%) = —1 if a is a quadratic nonresidue. Observe that we have

alr=1/2 = (%) mod p whenever a is not divisible by p. If we put (%) =0

whenever p | a, the congruence a{?~/2 = (2) mod p holds for all integers a.
Euler’s criterion has a couple of applications. While it can be proved

directly from the definition that the product of two quadratic residues is

again a quadratic residue, it is not as easy to show that the product of two

nonresidues mod p is a quadratic residue:

Corollary 3.2. The Legendre symbol (5) induces a homomorphism (Z | pZ)*

— (ZJAZ)* ~ ZJ2Z; in other words: we have (%)(%) = (%) for all a,b €

(Z/pZ)*.

Proof. Homework. O

Corollary 3.3. The integer —1 is a quadratic residue modulo an odd prime
p if and only if p =1 mod 4. In other words: (_71) = (=112,

Proof. By Euler’s criterion, —1 is a quadratic residue modulo p if and only if
(—=1)»=1/2 = 41 (modulo p, but since p is odd, this implies equality). This
in turn holds if and only if the exponent ;92;1 is even, that is, if and only if
p =1 mod 4. U

That’s not much, but better than nothing. As a matter of fact, this
simple result allows us to prove that there are infinitely many primes of the
form 4n — 1. We first formulate a little

Lemma 3.4. If p > 0 is an odd prime divisor of an integer of the form
n? 41, then p=1 mod 4.

Proof. From p | n* + 1 we deduce that n*> = —1 mod p. Thus —1 is a
quadratic residue modulo p, hence p = 1 mod 4. O

Corollary 3.5. There are infinitely many primes of the form 4n + 1.
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Proof. Assume there are only finitely many primes of the form 4n + 1, say
p1=5,pa, ..., po. Then N =4p}.--p? +1is of the form 4n + 1 and greater
than all the primes p; of this form, hence N must be composite. Now N
is odd, hence so is any prime divisor p of N, and since any such p is of the
form 4n + 1 by Corollary 3.3, we conclude that p = p; for some index k. But
then pp | N and pp | N —1 = 4p? ---p?, and we get the contradiction that
el (N = (N—1)=1. .

Now let us study the behaviour of the prime 2:

P 357 11 ]13]17]19]23]29]31
/p) | —1=1|+1 =11+ =141 |-1]+1
V2 | = | = | 43| = | = |+6| — |£5| — | +8

Thus 2 is a quadratic residue modulo 7, 17, 23, and 31; among the primes
in this table, these are exactly the primes of the form p = +1 mod 8. Thus
we conjecture:

Proposition 3.6. The prime 2 is a quadratic residue modulo an odd prime
p if and only if p = £1 mod 8. In other words: we have (%) = (—1)(p2_1)/8.

The fact that the second claim is equivalent to the first is easy to check:
Basically, the proof boils down to the following table:

a mod § 113517
é(aZ—l)mon O(1(11]0

Great. Now how would one prove such a conjecture? Fuler’s criterion does
not really seem to help, because we have no idea how to evaluate 2% mod P.

There is a simple proof that 2 is a quadratic residue modulo primes p =
8k + 1: let ¢ be a primitive root modulo p and put s = ¢* + g*. Then
s = g% + g7?* 4 2 mod p; but ¢g** + g7%* = ¢7*(¢** + 1) = 0 mod 4 since
¢* = —1 mod p. Thus s? = 2 mod p.

There’s actually a classical idea behind this trick: look at the eighth roots
of unity in the complex numbers, say ¢ = €2™/8. Then V2 = ( 4+ (~': in
fact, ((+ (') =i+ i7"+ 2 =2 since 1/i = —i, and moreover { + (™' > 1
on the real line (sketch!). Our proof above was merely a translation of this
computation from C to Z/pZ.
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It is possible to do something similar (even for the general reciprocity
law) by constructing ,/p out of roots of unity; this requires some algebra,
however, and we will choose a different proof with an elementary flavor.

For computing (—3/p), the algebra involved is simple enough. We claim

Proposition 3.7. For primes p > 3, we have

(—3) +1 if p=1mod 3,

p/ |-1 ifp=2mod3.

Proof. Before we go into details, here’s the idea: if p = 3n + 1, let g be a
primitive root mod p, put p = ¢g", and show that (p? — p)* = —3 mod p.

Conversely, if 2 = —3 mod p, put p = (=1 + z)/2 mod 3 and show that
p has order 3; since the order of p divides p — 1 by Proposition 2.6, we must
have p = 1 mod 3.

Now let’s do it properly. Assume first that p = 3n + 1. We want to
construct a square root of —3 mod p. To this end, pick a primitive root
gmod p and put p = ¢"” mod p. Then p*> = 1 mod p by Fermat’s Little
Theorem, and p # 1 mod p since g is a primitive root. Thus 0 = p* — 1 =
(p—1)(p*+p+1) mod p, and since p{ (p—1), we conclude that p*+p+1 =
0 mod p. But then (p> —p)2 =p*—2p° +p*=p—2+p*=1+p+p* -3 =
—3 mod p, and we have shown that —3 is a square modulo p.

Now assume conversely that 22 = —3 mod p. We put p = %(—1 + ) mod

1 2 —

, , : , 1
p, where 7 mod p denotes the inverse of 2 mod p, and find that p* = (1 —

2¢+12%) = L(—1—=2) mod p since 2> = —3 mod p. But then p* = L(1—2?) =
1 mod p, so the order of p mod p divides 3. We claim that the order is 3;
if not, the order would have to be 1, and this implies p = 1 mod p; but
p|(p—1) = 3(—3+z) impliesz = 3 mod p, hence 2> = 9 mod p contradicting
x? = —3 mod p whenever p # 3. O

3.2 Gauss’s Lemma

The main ingredient of the elementary proofs of the quadratic reciprocity law
is a lemma that Gauss invented for his third proof. Recall how we proved
Fermat’s Little Theorem: we took a complete set of prime residue classes
{1,2,...,p— 1}, multiplied everything by a, and pulled out the factor a?='.
For quadratic reciprocity, Euler’s criterion suggests that we would like to
pull out a factor a~1/2, That’s what made Gauss introduce a halfsystem
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modulo p: this is any set A = {ay,...,a,} of representatives for residue
classes modulo p = 2m + 1 with the following properties:
a) the a; are distinct modulo p, that is: if ¢; = a; mod p, then i = j;
b) every integer is either congruent modulo p to a; or to —a; for some 1 <
i < L

In other words: a halfsystem A is any set of integers such AU —A is a
complete set of prime residue classes modulo p. A typical halfsystem modulo
pis the set A ={1,2,... ,pQ;l}.

Now consider the prime p = 13, choose A = {1,2,3,4,5,6}, and look at
a = 2. Proceeding as in the proof of Fermat’s Little Theorem, we multiply
everything in sight by 2 and find

2. +2 mod 13,
+4 mod 13,
+6 mod 13,
—5 mod 13,
—3 mod 13,

—1 mod 13.

(3.1)

DO DN DN DN DD
SO W N —
11 T T [ 11

Thus three products still lie in A, while three others lie in —A. Thus there
is an odd number of sign changes, and 2 is a quadratic nonresidue.

What about a = 3?7 Here we find

3-1 = 43 mod 13,
3:-2 = 46 mod 13,
3-3 = —4mod 13,
3-4 = —1mod13, (3.2)
3:-5 = +42mod 13,
3-6 = 4+5mod 13.

Here the number of sign changes is even (there are two), and 3 is a quadratic
residue modulo 13.

Gauss realized that this is not an accident: in fact, if you multiply the
congruences (3.1), you get

2°.6! = (—1)% - 6! mod 13,

and since ged(6!,13) = 1, canceling gives 2° = —1 mod 13, so by Euler’s
criterion we see that 2 must be a quadratic nonresidue modulo 13. Similarly,
(3.2) gives 3° = (—=1)? = 1 mod 13, so 3 is a quadratic residue modulo 13.
We can do this in complete generality:
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Lemma 3.8 (Gauss’s Lemma). Lel p = 2n 4+ 1 be an odd prime, pick a
half system A = {ay,...,a,}, and lel a be an integer notl divisible by p.
Wrile

a;a = (—1)S(i)at(i) mod p (3.3)

for every a; € A, where s(1) € {0,1} and t(2) € {1,2,... ,n}. Then

a" = (—1)50) mod p.

=1

Thus a i1s a quadratic residue or nonresidue modulo p according as the
number of sign changes is even or odd. The proof is quite simple:

Proof. Observe that the ay; in (3.3) run through A if the a; do, that is:
the a;;) are just the a; in a different order. In fact, if we had a;a =
(—1)5(i)at(i) mod p for i # k and ara = (—l)s(k)at(k) mod p with a,;) =
ayry, then dividing the first congruence by the second gives at(i)/at(k) =
(—1)5(i)_5(k) mod p, that is, we have ay;) = Za;) mod p for some choice of
sign. But this is impossible since 1 < a3y, agr) < %.

Now we apply the usual trick: if two sets of integers coincide, then
the product over all elements must be the same. In our case, this means
that [], a;a = [T, (—1)*Day;) mod p. The left hand side equals (aja) -
(aza)---(aza) = a™ ][, a;, whereas the right hand side is H?:l(—l)s(i) .
II7, awiy. But I, awiy = [\, a; by the preceding paragraph. Thus we
have a" [[, a; = [[,(—=1)*D [[, @, and since the product over the a; is
coprime to p, it may be canceled; this proves the claim. O

Let’s apply this to give a proof for our conjecture that (%) = (—1)(p2_1)/8.
We have to count the number of sign changes when we multiply the "half

system” A ={1,2,..., %} by 2. Assume first that p = 4k+1, i.e. % = 2k.
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Then
1 = 2modp,
-2 = 4 mod p,
2-k = 2k modp,
2-(k+1) = 2k+2=-2k+1mod p,
2-(k+2) = —2k—1modp,
2-2k = —1modp.

Thus there are no sign changes for the first & congruences, and there are sign
changes for the last k& congruences. This implies by Gauss’s Lemma that
(2) = (-1

Now it remains to check that k& is even if and only if 7)27_1 is, i.e., that

= % mod 2. But this follows directly from % =ip-1(p+1) =
-Ak(4k +2) = k(2k + 1).

Now assume that p = 4k — 1; then there are no sign changes whenever
1 <a <k—1, and there are exactly k sign changes for k < a < 2k, so again

we have (%) = (—1)*. But now 7)27_1 =1i(p—1)(p+1) = (2k — 1)k shows

that k = 7’27_1 mod 2, and we have proved

ool=

Proposition 3.9. The prime 2 is a quadratic residue of the odd prime p if
and only if p = 8k £ 1; in other words: (%) = (—1)(p2_1)/8.

As a corollary, consider the Mersenne numbers M,, where ¢ is odd and
p=2q+1is prime. If ¢ = 3 mod 4, then p = 7 mod 8, hence (2/p) = 1. By
Euler’s criterion, this means that 27 = 2(=1/2 = 1 mod p, and this in turn
shows that p | M,.

Corollary 3.10. If p = 2¢g+ 1 = 7 mod 8 is prime, then p | M,, the q-th
Mersenne number.

In particular, 23 | My; and 83 | My;. Thus some Mersenne numbers can
be seen to be composite without applying the Lucas-Lehmer test. There are
similar (but more complicated) rules for p | M, when p = 4¢q + 1; in this
case, we have to study 2(7=9/4 mod p, which leads us to quartic reciprocity.
There is a quartic reciprocity law, but this cannot be formulated in Z: Gauss
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realized in 1832' one has to enlarge Z to the ring Z[i] = {a + bi : a,b €
Z,i* = —1} to do that.

3.3 The Quadratic Reciprocity Law

Here it comes:

Theorem 3.11. For distinct odd primes p and q, we have

B - o

Moreover, we have the first and the second supplementary law:

-1 p=1 2 p2-1
()0 ()ens

What Theorem 3.11 says is that p is a square modulo ¢ if and only if ¢
is a square modulo p, except in the case where both p and ¢ are = 3 mod 4,
when p is a square modulo ¢ if and only if ¢ is a nonsquare modulo p. This
is a very surprising result, because at first sight the worlds Z/pZ and Z/qZ
seem totally different, and there is no apparent reason why they should be
related at all. A preliminary version of the reciprocity law was discovered
already around 1742 by FEuler in his research on prime divisors of numbers
of the form a™ + b" (like Mersenne or Fermat numbers), and Euler’s final
version was published 1785 (two years after his death). It was rediscovered by
Legendre in 1788, who gave an incomplete proof. When Gauss rediscovered
it at the age of 18, it took even him a whole year to find a proof (April
8, 1796); he found a simpler proof ten weeks later, but this proof used the
theory of binary quadratic forms. The proof using Gauss’s Lemma was his
third published proof, and he gave eight different proofs altogether.

The following proof is particularly elegant and due to Eisenstein. It uses
a variant of Gauss’s Lemma. The idea is to extract the essential information
form congruences like (3.1), namely the number of sign changes. Eisenstein
noticed that the sine function is well suited for this job: given a congruence
a = bmod m, we see that a = b + mr for some integer r, and applying

sin 3n—” to this equation we get sin 2%% = sin 2#(% + r) = sin 2%%. In other

TActually, around 1816; he was a bit slow in publishing results, if he published them
at all.
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words, Z-periodic functions like the sine function are able to turn congruences
a = bmod m into equalities sin 2r = = sin 27‘[‘%.
In the special case (3.1), we get

2-1

SiHQTFT = —|—sin27rﬁ,
inor> 2 = fsin2
sin 27 = sin 7r13,
5 2-3 4 sin?
sin 27 3 = sin2m .5,
: 2-4 :
sin2r—— = —sin21r—,
13
2.
sin27r—5 = —sin2r—,
13
. 2-6 .
sin27r—— = —sin2r—.
13 13

where we have used the fact that the sine is an odd function, i.e., that
sin(—z) = —sinz. Multiplying gives

6
(_1)3 _ H sin 27 22 13 .

P sin 27rﬁ

In this way, we can express (—1)", where r is the number of sign changes, as
a product of values of the sine function.
Here’s the general version:

Lemma 3.12. Let p = 2n + 1 be an odd prime, and let f : Q — C be a
function with the following properties:

i) f(=2) = —f(2) forall z € Q\ Z;
ii) f(r) = f(r+z) for any z € Z;
iii) f(2) #0 for all integers a not divisible by p.
Then

q

(4) - M7

where A= {1,2,... 21},
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Proof. Assume that_we have a;q = (—1)5(i)at(i) mod p for a;, ay; € A. Then
flaiq/p) = F((=1)"Dayq/p) by ii), and f((=1)"Dayy/p) = (=1)*D f(axs)/p)
by i), so f(a:q/p) = (—1)5(")f(at(i)/p). As a; runs through A, so does ay(;) by

the proof of Gauss’s Lemma, so forming the product over all a; € A gives

[/ (%) =TI () = ()T = ()T ()

p =1

If you observe that (%) = (%)_1 since (%) = =£1, then this is exactly what was
claimed. 0

Two functions satisfying these properties are
o (o) = (-1
o f(z)=sin2mx.

The proof we shall give uses the sine function.

Proposition 3.13. Let A= {a € Z|1 < a < 22} be a half-system modulo
an odd prime p; then

sin( ¥ qga
(g) =1] % (3.4)
p) L
We now claim that, for any odd integer ¢, we have

sin gz

= P(sinz), (3.5)

sin z
where P is a polynomial with integral coefficients and leading coefficient
(—4)a=1/2,

This is done by induction; as a matter of fact, in order to be able to
do induction we must prove a similar formula for the cosine simultaneously.
For the induction step, we will need the addition formulas for trigonometric
functions, so let us derive these first.

By Euler’s formula, we know that

't . .
e = cost +1sint

for real numbers ¢ € R. This implies that

eilath) — cos(a + 3) + isin(a + ).
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On the other hand, the functional equation of the exponential function gives

ellath)  —  giogif _ (cos a 4 isin a)(cos 3 + i sin 3)

= [cosacos 3 —sin asin 8] + i[cos a sin 3 + cos B sin a]

Comparing the real and the imaginary parts of the two expressions for e(*+#)
immediately gives

sinfl + ) = sinacosf+ sin B cos a

cos(a +3) = cosacosF —sinasin 3

Back to our claims on sin gz. By the addition formulas, we know that
sin2z = 2sinzcosz, cos2z = cos®z —sin’z =1 — 2sin? 2.
This in turn implies

sin3z = sin(z + 2z) = sin z cos 2z 4 sin 2z cos z
= sinz(l — 2 sin? z) + 2 sin z cos® z
= sinz(l — 2 sin’ z) 4 2sin z(1 — sin? z)

= sinz(3 — 4 sin? z).

A similar calculation for cos 3z gives

cos3z = cos(z+ 2z) = coszcos 2z — sin zsin 2z
= cosz(l — 2 sin? z) — 2sin? 2 cos z

= cosz(l — 4 sin® z).
Now we claim

Lemma 3.14. For all odd integers q > 1, there exist polynomials P,Q €
Z[X] of degree g — 1 and with leading coefficient (—4)=Y/2 such that

sin gz cos qz

= P(sinz), = Q(sinz).

sin z Cos 2
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Proof. For ¢ = 1, the claims are trivial, for ¢ = 3 we have just proved them.
So assume the assertions are correct for some odd integer ¢q. Then

sin(qg+2)z = singqz cos2z + sin 2z cos ¢z
sin z P(sin 2)[1 — 2sin® z] + 2sin z cos® zQ(sin 2)

= sinz {P(sin z)(1 — 2 sin? z)+2(1 — sin? z)Q(sin z)}

This implies that % is a polynomial in sin z of degree 2 greater than

deg P = deg Q, and with leading coefficient (—4)7=1/2[—2 —2] = (—4)a+1)/2,

This proves our claims. O

Now the zeros of f(z) = sin219z are given by :I:Q%, where 3 runs through

sin 27z
sin2mqz
sin27z

the integers not divisible by ¢. If we substitute X = sin 27z, then
P(X)is a polynomial of degree ¢—1 in X; clearly P has zeros x = sin 27T(:|:§)
with (3 as above, but these will not all be different. In fact, since sin27z is
Z-periodic, we see that only the values :I:g with 1 < 3 < % give rise to
different zeros; but since we have just found g — 1 = deg P zeros, there can’t
be any others.

Now we use

Proposition 3.15. Let f and g be monic (leading coefficient = 1) polyno-
mials of degree n with coefficients in some field F. If f and g have n different
zeros in common, then they are equal.

Proof. Clearly f — g is a polynomial of degree < n (because the term z”
cancels), and the common zeros of f and g are zeros of f —g. But over fields,
nonzero polynomials can have at most as many roots as the degree indicates,
so [ — g can have no n distinct roots unless it is the zero polynomial, i.e.,
unless f = g. O

Now P(X) is a polynomial with leading coefficient (—4)@=1/2  of degree
q — 1, and with roots +sin 27T§, where 1 < 3 < %, and so is

q—1)/2

(
J(X) = (—4)lm1re ﬁl_IZI <X2 — sin’ 27r§>.
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Thus P(X) = f(X) by Proposition 3.15. Plugging X = sin 27z back in we
get

in 2 1
S emgs (—4)92_ H (sin2 27z — sin? 27Té>. (3.6)
q

sin 2wz
BEB

Now we can reap the harvest of our work: let A and B denote half-systems
mod p and g, respectively. We put z = % and find

q SiHQﬂ-(%) a=1 . 9 .2 8
2 = —_ = —4)2 sin” 272 — sin“ 27w =
<p> ag sin 2(2) g( ) ﬁgg< P q) .

p st H H (sm 2"r — sin? 27r§>.

€A BEB

Exchanging p and ¢ on the right hand side of (3.7) gives rise to a factor
(—1)*7 %= ; hence (%) = (—l)quT<§), which is the quadratic reciprocity
law.

Let me explain parts of the proof by going through the example ¢ = 3.
We have seen that % = P(X), where X = sinz and P(X) = 3 — 4X2%
In order to find the zeros of P(X), which is hard if the degree ¢ — 1 of P is
larger than 2, we look at the zeros of the left hand side. Here it is clear that
+ % are zeros. On the other hand, SS‘:;SZZ = P(sinz) for P(X) with X = sin z,
Where P(X) is a polynomial of degree 2 with leading coefficient —4. Since the
left hand side vanishes for 2 = £%, so does the right hand side. Therefore,
P(X) has zeros x = sin(+%) = +sin %. Since these zeros are different, since
P(X) can have at most two zeros, and since it has leading coefficient —4, we
conclude that P(X) = —4(X —sin % )(X —|— sin T )

In fact, P(X) =3 — 4X? = —4(X )(X + 1\/_) Comparing both
sides shows that sin Z = 1\/_

Some Applications

We have already seen that 2 is a quadratic residue modulo an odd prime p if
and only if p = £1 mod 8. Can we find a similar rule for 37 As a matter of
fact, we can; since the corresponding result for —3 is even simpler, let’s start
with that one:

Corollary 3.16. The integer —3 is a quadratic residue modulo primes p # 3
if and only if p =1 mod 3.
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For example, —3 = 4 = 22 mod 7 and —3 = 6? mod 13, but —3 = 2 mod 5
is a quadratic nonresidue modulo 5.

Proof. By the quadratic reciprocity law, we have

(_73) _ <f71><%):(_1)<p—1>/2(§>(_1)<3—1><p—1)/4

(p)_ +1 if p=1mod 3,
3/ =1 ifp=2mod3.

This proves our claim. O

Now consider the integers S, = 2?¢ + 1 for odd numbers ¢. Since 2q =
2 mod 4 and 2* =1 mod 5, we find Sy =224+ 1=0mod 5.

Now S, = A,B,, where A, = 29 — 2(a+1)/2 1 1 and B, =21+ 2(a+1)/2 4 1,
If g =8k +1, then B, = 98k+1 4 9dk+l 4 | =9 4 94 ] = 0 mod 5, hence
5| B, in that case, while A, =2 —-2+1 = 1modb5. If ¢ =8k + 3, then
A, = 28k+3 9442 1 ) =8 441 =0 mod 5, and proceeding this way we
find

Corollary 3.17. With S, = A,B, as above, we have 5 | B, if and only if
g=+1mod8, and 5| A, otherwise.

Finally, consider Fibonacci numbers. Binet’s formula says that

1 n_ o3
F’ﬂ:ﬁ(a /8)7

where a = %(1 —|-\/5) and 3 = %(1 —\/5)

Let p # 5 be a prime; we want to compute F, mod p. Using the binomial
expansion we find

(1+\/5)p:1+<f>\/5+<§)-5+...+<p51>\/5p‘1+\/5p,

hence

(1+\/5)p—(1—\/5)p:2\/5{<f>+5<§>+...+5p2;1<§>}.
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Dividing through by 27, we see that

e (o)

Now 2°~! = 1 mod p by Fermat’s Little Theorem, moreover (119) = ...
( ?_) = 0 mod p, hence

p—2,

Fp = 5(p_1)/2 = <§

p> mod p.

Now we do a similar computation for F,;;. As above, we find

owsire- a2 (1 s ()

It is immediate from Pascal’s triangle that p | (p'};l) forall 2 < k <p-—1;
moreover, (pi'l) = (p?) = p+1=1mod p. Dividing through by 2°*! gives

0 if p=41mod5,

Fp+1E%<1—I—5(p_1)/2) = %<1+<%>)E{1 if p = £+2 mod 5.

Since F,_y = F,41 — F,, we have proved

Corollary 3.18. For primes p # 5, we have p | F,_1 if p = +1 mod 5, and
p| For1 if p=+2mod 5. More exactly, the following congruences hold:

p Fya 1 Fon
+1mod5 | 0modp| 1modp|1modp
+2mod 5 |1 modp|—1modp|0modp

Second Proof of Quadratic Reciprocity

The original version of Gauss’s Lemma is different from the version we gave
above. Consider an odd prime p = 2m + 1 and take the half-system A =
{1,2,...,m}. For finding (:%), we multiplied every element of A by a and
reduced the product modulo p such that the remainder has minimal absolute
value, i.e., to an element in A up to sign. Now we choose the residues from
the elements 1,2,... ,p — 1. If there are exactly r negative remainders in
the original versions, then there are exactly r remainders in the interval

[m + 1,2m]. In other words:
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Lemma 3.19 (Gauss’s Lemma). Lel p = 2m + 1 be an odd prime, a an
integer not divisible by p, and A = {1,2,... ,m} a half-system modulo p.
Wrile

a-1=pg+r, 1<r<p-—1, (3.8)
for 1 <i <m. Then (%) = (—1)", where r is the number of residues r; that

are > %.

Now let’s look at a -1 = pg; + r;; we clearly have pg; = a1 — r; with
0 < a; < p, hence ¢; = \_%j If we sum up all the n equations in (3.8), we
therefore get

r;.

@
7
I
=3
|'M§

|
_|_
ingE

What can we say about the r;7 We know that exactly r of them are from the
interval [m + 1,2m], hence are equal to p — a; for some a;, while the other
m — r residues are elements from the half system A. Thus r; =14 a; mod 2
for r of the equations, and r; = a¢; mod 2 for the other n —r equations. This
impliesry +...+r, =r+a; +...a, mod 2, and we get

LﬂJ Epzm: L%J :azmi—zm:n = r mod 2
i=1 i=1 i=1

e

3

m

k3

assuming that @ is odd. Using Gauss’s Lemma, we deduce

Proposition 3.20. For odd integers a and odd primes p = 2m+1 with p{ a

(E) = (=1)", wherer = zm: L%J

p iz

we have

In particular, if ¢ = 2n + 1 is a prime different from p, then we have

(g) = (=1)", wherer = Zz:? L%J’

p
) - e

The quadratic reciprocity theorem therefore boils down to the statement that
i{q_@'J +ng_¢J _p=l a=l s
— Lp T2 2 '

=1 =1 q
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But this follows immediately from Eisenstein’s observation that

m

EESH

=1

is the number of lattice points inside the rectangle R with corners (1,1) and
(555

bl
’ In anct, consider the line L through the origin and (p, ¢), that is, with the
equation y = ]%:z:. There is no lattice point (a point with integral coordinates)
on L between = 0 and z = p: in fact, if (r, s) were such a point, then s = f—)r,
that is, 2 = % with 0 < r < p. But the fraction £ is in its lowest terms since p
and g are different primes. The number of lattice points inside the rectangle
R with z-coordinate x = ¢ are (1,1), (1,2), ..., (4, L%J) This means that

5

is the number of lattice points inside R below L. By the same reasoning (as
can be seen by switching the z- and y-axis),

S

=1 q

m
1=

1

is the number of lattice points inside R and above the line L.

3.4 The Jacobi Symbol

The reciprocity law for the Legendre symbol is an amazing piece of insight; for
computing Legendre symbols, it is less suited. The reason is simple: before
we can invert a symbol (n/p), we have to find the prime factorization of n.
Here’s an example: suppose you want to compute (39/59); then 39 = 3 - 13,
so (39/59) = (3/59)(13/59) = —(59/3)(59/13) bye the quadratic reciprocity
law, hence (39/59) = —(2/3)(7/13) = (7/13) by the second supplementary
law, so (39/59) = (13/7) = (—=1/7) = —1.

Now we know that finding the prime factorization of an integer n isn’t
much fun if n is big. Fortunately, there’s a better way: the reciprocity law for
the Jacobi symbol. The trick is simple: invert the Legendre symbols as if the
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composites that occur were primes. In our example, (39/59) = —(59/39) =
—(20/39) = —(5/39) = —(39/5) = —1.

Why does this work? Well, for a start we have do define what a sym-
bol like (59/39) should mean. This is easy: assume that n is an odd pos-
itive integer with prime factorization = p;---p,; then we put (m/n) :=
(m/p1)---(m/p,), where the symbols on the right hand side are Legendre
symbols; (m/n) is called the Jacobi symbol. Now we claim

Theorem 3.21 (Reciprocity Law for Jacobi Symbols). Ifm andn are
coprime positive odd integers, then

BE) - co

Moreover, we have the supplementary laws

5 - e () - o

Thus the quadratic reciprocity law holds for Jacobi symbols! There

are two possible approaches to a proof: either we redo our proof of the
reciprocity law for the Legendre symbols (the only problem is generalizing
Gauss’s Lemma to composite values of m), or we reduce the reciprocity law
for Jacobi symbols to the reciprocity law for Legendre symbols. We will do
the latter here.

Proof. Let us start with the first supplementary law. Write n = py---p,;

then —1\ /-1 AN )+t
()= G G =

Thus it remains to show that

n—1_ p—1 P — 1
5 = 3 + ...+

This is done by induction. We start with the observation that (a—1)(b—1) =
0 mod 4 for odd integers a,b, hence ab—1 = (a — 1) + (b — 1) mod 4, and
dividing by 2 gives

mod 2. (3.9)

ab—1 a—1 b—1
= + mod 2.
2 2 2

Now use induction.
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Now let us treat the reciprocity law similarly. Write m = p;---p, and
n=q - qs; then

() () =TI () (2) =TT

and our claim will follow if we can prove that

r S

m—1n—1 _ pi—1lg;—1
e Ll gy el

i=1 j7=1

But this follows by multiplying the two congruences you get by applying (3.9)
to m and n.

Finally, consider the second supplementary law. Similar to the above,
everything boils down to showing

n?—1 _pP—1 p?—1
= NI
8 8

mod 2.

Now clearly 16 | (

2—1)(b* — 1) (as a matter of fact, even this product is
even divisible by 64), hence

(ab)> —1=a*>—1+b>—1mod 16.

Now induction does the rest. O



Chapter 4

Conics

4.1 Rational Points on Conics

Conic sections (or conics for short) have been studied since antiquity:

Appolonius' even wrote what we could call a textbook on conics consisting

of eight volumes. Much later, Copernicus? discovered that the orbits of
planets are ellipses, and later Newton realized that the possible paths of an
object in our solar system are exactly the conics: ellipses, parabolas and
hyperbolas.

These objects can be described by equations: az?+4 by? = r? with a,b > 0
describes an ellipse (the special case ¢ = b = 1 gives a circle with radius
r), while the case a > 0,b < 0 leads to hyperbolas. Finally, equations like
y = ax® + bz + ¢ describe parabolas as long as a # 0.

In this chapter we study conics not over the reals (this would be geometry)
but over residue class rings. The unit circle over Z/5Z, for example, is the
set of points (z,y) with z,y € Z/5Z such that z? + y* = 1 mod 5, namely
{(0,£1),(£1,0)}. If we plot this set, the result doesn’t look at all like the
circles we know, so we have to be careful when using geometric intuition for
studying objects like these.

! Appolonius, ca. 262 BC in Perga (Greek Ionia, now Turkey) —ca. 190 BC (Alexandria,

Egypt).
Nicolaus Copernicus, 1473 (Torun, Poland) — 1543 (Frombork, Poland).
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Pythagorean Triples Revisited

Recall that a Pythagorean Triple consists of three nonzero integers (a, b, ¢)
with a? + b* = ¢?; a triple is called primitive if these integers are coprime.
Dividing through by ¢? and putting x = a/c, y = b/c we see that primitive
Pythagorean triples correspond to rational points on the unit circle z? +y* =
1, that is, to elements of the set

C(Q) ={(z,y): 2,y € Q, 4y = 1}.

There are numerous methods for finding all rational points on the unit circle:
in his lectures on number theory,? Kronecker gave two methods? for deriving
the formulas for Pythagorean triples: we have already seen the arithmetic
proof using the Unique Factorization Theorem of the integers, and now we
will present an analytic proof based on the parametrization of C by trigono-
metric function.

It uses the fact that x = cos a, y = sin « is a parametrization of

CR)={(z,y): z,y € R, 2* +y* = 1}

2

by trigonometric functions. Using the identities cos? a — sin® @ = cos 2 and

cos?a +sina =1 we get

COSQ%—SIHZ% 1 —m?
T = cosa = o — e = >
cos? 2 +sin” 5 14+m

. 2sin § cos 5 2m
y = sina = T — = >
cos? 3 +sin” & 14+ m

where we have put m = tan 5. If we choose m to be a rational number, we
get rational points on C. Conversely, if  and y are rational and y # 0, then

m = 1;—1’ is rational, too. Thus this parametrization gives us all rational

points # (—1,0) on C.

One of the best known derivations of the formulas for Pythagorean triples
is the parametrization of rational points on C via the technique of sweeping
lines: pick any rational point on C, say P = (—1,0), and consider the lines [

3. Kronecker, Vorlesungen tber Zahlentheorie, (K. Hensel, ed.), reprint Springer-

Verlag 1978
*T. Ono, Variations on a theme of Euler, Plenum Press, New York, 1994 even gives
five different methods.
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1/2

Figure 4.1: Unit Circle and Line with slope 1/2

through P with rational slope m; the line [ is given by y = m(x + 1), and it
intersects C in the second point P,, = (;Z; , 1_2:’7;2 ). Conversely, any rational
point @ # (—1,0) defines a line PQ with rational slope, hence m — P, is
a bijection between the set @ of rational numbers and the set C(Q) \ { P} of
rational points on C different from P.

As far as the algebra behind this derivation is concerned, one might say
that this technique was known already to Diophantus. Since analytic ge-
ometry had not been invented then, he could not possibly have realized the
geometric interpretation of his technique: this was left for Newton to do,
who, however, chose not to publish this valuable piece of insight, leaving it
to be rediscovered by several mathematicians during the second half of the
19" century.

The Unit Circle over Arbitrary Rings

The definition of C(Q) can be generalized to arbitrary rings R (all our rings
are commutative and have a unit element 1): we put

C(R)={(z,y):z,y € R, 2* +y* =1}

If R is a finite ring, then C(R) is also finite, and it is a natural problem to
determine its cardinality. Let us consider this problem for the rings R =
Z /nZ. One possible line of attack consists in adapting the method of finding
all points on C(Q) that we discussed in Section 4.1. When working over
Z [nZ,however, there are a number of problems to overcome: the line through
P = (—1,0) with slope m € Z/nZ intersects C(Z/nZ) in the second point
P, = (%, li%) unless ged(m? + 1,n) # 1. Conversely, if Q = (z,y) is
any point # P on C(Z/nZ), then @ = P, for some m = *5 € Z/nZ unless
ged(z + 1,n) # 1.
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Thus let us assume for the sake of simplicity that p is prime; since
C(Z/[2Z)={(1,0),(0,1)} we may assume that p is odd. If p = 3 mod 4, then
ged(m?41,p) # 1 for all m, hence each m € Z/pZ gives a point on C(Z/nZ).
We now claim that two different m give two different points. In fact, as-
sume that P, = P,; equating the z-coordinates, multiplying through by
(1—n?)(1—m?) and simplifying we find n? = m? mod p, i.e. m = £n mod p;
plugging this into the equation 117:12 = 1_2;;2 mod p gives m = n mod p. The
points (z,y) € C(F,) that we don’t get are exactly those with (x4 1,p) # 1,
that is, with = —1 mod p; since this implies (z,y) = (—1,0), we have a
bijection between Z/pZ and C(F,)\ {(—1,0)}: in particular, #C(F,) = p+1.

If p = 1 mod 4, on the other hand, then m? +1 = 0 mod p has exactly
two solutions, which implies as before that #C(F,) = p — 1. We have shown

Proposition 4.1. For odd primes p, there are p — (_71) points on C(Z/pZ).

A similar analysis for composite m is more complicated: you might try
your hands at the simplest case where m = pq is the product of two different
primes. If you count correctly, your answer will be #C(Z /pqZ) = #C(Z/pZ)-
#C(Z/qZ). This in turn suggests that there may be an algebraic explanation,
and in fact there is: see Corollary 4.5.

Proposition 4.1 implies the second supplementary law of quadratic reci-
procity: in fact, the solutions of the congruence z? + y? = 1 mod p come in
octuples (+z,+y), (+y,+z), except for the quadruple (0,+1), (+1,0) and
the quadruple (£r, £r) with 2r? = 1 mod p which exists if and only if 2 is a
quadratic residue modulo p, i.e. iff (2/p) = 1. This shows that

4mod8 if (2)=—1,
#C(Z/pZ) = {0 mod 8 if Egiz—l-l.

Comparing this with the explicit formula in Proposition 4.1 implies imme-
diately that (%) = 41 if p = 1 mod 8 and (%) = —1if p = £3 mod 8.

Actually, the whole quadratic reciprocity law can be proved in a similar way.

4.2 The Group Law on Circles

The unit circle C(R) in the Euclidean plane is described as the set of points
(z,y) € R x R satisfying the equation 2% + y* = 1. We have seen in Section
4.1 that C(R) can be parametrized by trigonometric functions: the map

AR — C(R): a— (cos2ma,sin 21a)



1V. Conics 77

Figure 4.2: Unit Circle with Angle determined by two points

“covers” the unit circle, and it does so infinitely often since A(a 4 n) = AM(«)
for any integer n € Z. In fact, A induces a bijection p: R/Z — C(R).

Now observe that the object R/Z on the left hand side carries the struc-
ture of an additive abelian group: the sum of ay+Z and ay+7Z is (a1 +a2)—|—Z.
Using the bijection y, we can make C(R) into an abelian group as follows: to
add two points P; and P, on the circle, find their inverse images a; = ,u_l(Pl)
and ag = p~'(P,), and put P, + P, = p(ay + az). This is of course not
very exciting: each point P defines an angle L NOP, where O = (0,0) and
N =(1,0), and adding points on the circle amounts to adding their angles.

Nevertheless, let us compute the addition law explicitly: for 7 = 1, 2 write
P; = (z;,y;) and find o; € R (defined modulo Z) with z; = cos27a; and
y; = sin 2ma;. The addition formulas give

cos2m(aq + ) = cos2may cos2may — sin 2may sin 2w ag,
sin2m(aq + az) = cos2may sin 2may + cos 2may sin 2way,
hence
(z1,91) + (22, y2) = (z122 — Y1Y2, T1Y2 + T2y1). (4.1)

The miracle here is that these formulas are polynomials in the coordinates
x;,y;. What this means is that, given any commutative ring R with 1, we
can define

C(R)={(z,y) ERx R:2*+y* =1}

as the set of “R-rational points” on C and make C(R) into a group via (4.1). It
can be easily checked that the neutral element of C(R) is (1,0) (as expected,
since (1,0) = (0 4+ Z) is the neutral element in the case R = R). Similarly,
—(z,y) = (z,—y) since (z,y) + (z,—y) = (1,0). Finally, the associativity
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follows by a brute force calculation: one has to show that [(z1,y1)+ (22, y2)]+
(z3,y3) = (21,11) + [(x2,92) + (23,y3)], and in fact both sides are equal to
(z,y) with © = z12923 — T1Y2y3 — T2y1ys — T3y1y2 and y = 2122ys + T123Yy2 +
xax3y1 — Y1Y2y3. Another method is to notice that associativity for R = R
implies a polynomial identity in Z[z1, ... ,ys] which then is a fortiori correct
in any commutative ring with 1.

Theorem 4.2. Let R be a ring with identity 1. Then the formula (4.1)
defines a group law on C(R) = {(z,y) € R? : 2* + y* = 1}. The neutral
element is (1,0), and —(x,y) = (z,—y).

Thus the unit circle C is a machine that eats rings with 1 and spits out
groups; machines such as C are quite common in mathematics: another well
known example is GL,,, which turns a ring with 1 into the group of invertible
n X n-matrices with entries in R.

4.3 Factoring Integers with the Unit Circle

Suppose that we are given an integer N that we want to factor into primes.
Assume moreover that we know a nontrivial point P on C(Z/NZ) (nontrivial
in the sense that its order isn’t too small; in particular, the points P =
(£1,0),(0,+1) won’t do); for integers N = n* + 3, for example, we have the
point P = (n,2).

Assume for a moment that we already know a prime factor p | N; let us
see what happens when we compute kP = (z,y) for k = p — (_71) Since
the group order k is a multiple of the order of P on C(Z/pZ), we see that
z = 1 mod p and y = 0 mod p. Thus, unless accidentally N | y, we can
recover a nontrivial factor of N from the coordinates of kP by computing
ged(y, N) or ged(z — 1, N)

Now we get a factorization algorithm if we only notice that we can replace
k by some multiple. If &k = p— (_71) is composed of small prime factors, then
it is easy to write down such a multiple M of k without knowing p: choose
a bound B (say B = 10*,10%,10° ... ) and form the product M = ] p*»),
where p?) is the largest power of p smaller than B.

Here’s a description of the algorithm for factoring integers N = n? + 3:

1. Pick a bound B; put m =0, p,, =1, P,, = (n,2).
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2. Let p,,41 be the smallest prime > p,,; if p,e1 > B, terminate. Other-
wise choose e € N maximal with pf < B.

3. Compute P11 = (z,y) := p, Pn; if (y, N) = 1, replace m by m+1 and
goto step 2; if (y, N) = N, repeat the algorithm with a smaller bound
B (or redo the computation of pf, P,, but check whether (y, N) # 1
after each step); otherwise put out (y, V) as a factor.

The computation of p”P is of course not done by adding P sufficiently
often to itself but by the method of duplication and addition (squaring and
multiplying in the multiplicative language). Here’s a simple example: take
N =562+ 3 =3139, P, = (56,2) and B = 10. Our first prime is p = 2, and
2% = 8 is the smallest power < 10; we get 2P = (—7,224), 4P = (97,3) and
P, =8P = (—17,582), and since (582, N) = 1 we continue with p = 3. Here
we have to compute P, = 9P, and this is done by doubling P; three times
and adding Pi: 2P, = (577,—-954), 4P, = (389,873), 8P, = (1297,1170),
9P = (1520,438), and now gecd(438, N) = 73, hence N = 73 - 43. Note that
we cannot expect to find the second factor 43 with this method and B = 10
since 43 +1 =4 -11 has a prime factor larger than B. We did find 73 on the
other hand since 73 — 1 = 233? is a product of prime powers < B. In fact,
P has order 9 on C(Z/73Z), so we would have found it by simply computing
9P. Check this!

The main problem when working with the group law on the unit circle
is finding a nontrivial Z/NZ-rational point on it; this problem is overcome
by replacing the unit circle with a conic of the form az? + y? = 1, choosing
integers x,y at random and then taking a = (1—y?)/2* mod N. But in order
to do so we need a group law on conics: this will be discussed below. The
only implementation of this method that T am aware of is due to Zhang.”

The Structure of C(Z/nZ)

What do the groups C(R) look like? Let us start with rings R = Z/nZ; com-
puting C(Z /nZ) for odd n < 15 yields the results presented in the following
table:

For every m > 3, the point (0,1) generates a cyclic subgroup of order 4
(this is “obvious”: add the angles; observe that 2(0,1) = (—1,0) = (1,0) in

SM. Zhang, Factoring integers with conics, J. Sichuan Univ., Nat. Sci. Ed. 33, No.4
(1996), 356-359.
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n || C(Z [nZ) structure

5 70,1, (1,0) Z2Z

3 (0,4+1), (+1,0) 7./47,

51 (0,4+1), (+1,0) 7./47,

71 (0, 41), (£1,0), (£2, +2) Z./87

9 |l (0,41), (£1,0), (+1,+3), (+3, +1) Z.)12Z

11 ]| (0,41), (+1,0), (+£3, +5), (+£5, +3) Z.)12Z

13 ]| (0,41), (+1,0), (+2, +6), (+6,+2) Z.)12Z

15 || (0,41), (0, +4), (+1,0), (£4,0), (£5, +6), (+6, +5) | Z/4Z & Z /4Z

Z|2Z), hence C(Z|9Z) ~ Z [12Z follows from the fact that #C(Z/9Z) = 12.
The fact that C(Z/15Z) ~ C(Z/3Z) & C(Z/5Z) suggests the following result

which, once conjectured, is immediately verified:

Proposition 4.3. Lel R and S be rings with 1, and let ¢ : R — S be a ring
homomorphism. Then ¢ induces a group homomorphism ¢c : C(R) — C(S)
defined by (z,y) — (¢(x), d(y)), and if ¢ is an isomorphism then so is ¢c.

Recall that a ring homomorphism ¢ : R — S is called injective if
¢~1(0) = {0}. Since ¢ is a ring homomorphism, we have 1 = ¢(1); if ¢(a) = 1,
then 0 = ¢(a) — ¢(1) = ¢(a — 1), so if ¢ is injective, then ¢~(1) = {1}.

Now we claim

Lemma 4.4. If ¢ : R — S is an injective ring homomorphism, then so is

e : C(R) — C(S).

Proof. Assume that ¢(P) = (1,0) for P = (z,y); then ¢(x) = 1 and ¢(y) = 0,
hence = 1 and y = 0 by what we said above. U

Warning. Observe that ¢ need not be surjective even if ¢ is: the homomor-
phism C(Z) — C(Z/nZ) induced by the ring homomorphism Z — Z /nZ
is not surjective in general since C(Z) only has four elements!

Since Z /mnZ ~ Z|mZ & Z [nZ for coprime integers m,n € N, we get

Corollary 4.5. If m and n are coprime, then C(Z/mnZ) ~ C(Z/mZ) &
C(ZInZ).
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This reduces the problem of determining the structure of C(Z/mZ) to
the case of prime powers m = p”. For odd p and n > 1, one finds without
too much difficulties that C(Z/p"Z) has cardinality p"~'#C(Z/pZ); showing
that C(Z/p"Z) is cyclic demands more care. The case p = 2 is particularly
interesting (or nasty, depending on your point of view).

4.4 Finite Fields

Recall that a field is a commutative ring in which every nonzero element has
an inverse. A field with only finitely many elements is called a finite field.
The only finite fields we have seen so far are the fields Z /pZ for primes p. In
this section, we will meet a few more.

A basic method for constructing fields is the following:

Proposition 4.6. If K is a field of characteristic # 2 and if x € K is
a nonsquare, then L. = {a 4+ b\/z : a,b € K} is a field with respect to
addition (a + b\/x) + (¢ + dy/x) = (a + ¢) + (b + d)\/x and multiplication
(a 4+ by/z) - (c+ dy/z) = (ac+ bdx) + (ac+ bd)\/z. This field is denoted by
L=K(\/x).

Proof. (L,+) is clearly an additive group with neutral element 0 = 0+ 0/z.
Moreover, L\ {0} is a multiplicative group: given any a 4 b\/z # 0, we claim
that its inverse is given by ¢+ dy/z with ¢ = ﬁ and d = —ﬁ. In order
for these expressions to make sense, we have to show that a* — 2b* # 0. So
assume that a? — zb* = 0; if b = 0, then a* = 0 and hence a = 0 (since K is a
ﬁeld) contradiction, since then a + by/x = 0. Thus b # 0, hence z = (a/b)?
is a square in K contradlctlng our assumption. Finally, we have to check
that the given element really is the desired inverse: (a 4 by/x) 52 b;/b; =

Proving that the other field axioms hold is easy. D

Now assume that K = Z/pZ; if x € K is a quadratic nonresidue, then the
proposition above tells us that L = K(y/z) is a field. Since L has exactly p?
elements, L is a finite field with p? elements; in the mathematical literature,
finite fields with ¢ elements are denoted by F,.

How many fields with p? elements are there? At first sight, we have
constructed p2;1 such fields above, since this is the number of quadratic non-
residues modulo p. It turns out, however, that these fields are isomorphic: if
x and y are quadratic nonresidues, then y = 2% for some nonzero z € Z/pZ;
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but then the element a + b\/g € K(\/@) is nothing but a 4 bz\/x € K(y/z).
As a matter of fact, it can be shown that for every prime power ¢ = p” there
exists exactly one finite field with ¢ elements.

The Structure of C(F,)

Determining the structure of C(F,), where F, is a finite field with ¢ = p”
elements, is much less difficult than the corresponding problem for rings
Z[p"Z. The table for C(Z/pZ) suggests C(F,) ~ Z/(p F 1)Z for primes
p = £1 mod 4. The proof is not difficult and works for arbitrary fields of
characteristic # 2.

Suppose first that K contains a square root 7 of —1. Then we consider
the map

Y :C(K) — K*:(z,y) — z + 1y.

It is easy to check that ¢ is a group homomorphism: ¥ (Py) - (P) = (z1 +
wy1)(ze + 1y2) = 122 — y1y2 + 1(21y2 + 22y1) = V(P + P,). The kernel of
¢ consists of points (z,y) € C(K) with z + 4y = 1. Since 1 = z* + y* =
(z + 1y)(z — 1y), we have  — iy = 1. But then 2 = 1 and y = 0, hence
(z,y) = (1,0) is the neutral element of the circle, and ¥ is injective. In order
to show that % is surjective, we have to show that every r € K* can be
written in the form r = z + 4y with z? + y? = 1. But this is easy: since 2 has
an inverse in K, we only need to put z = 2(r + 1) and y = = (r — 1).

Next we consider the case where [ = K (i) is a quadratic extension of K.
Then ¢ : (x,y) — x +1y defines a homomorphism C(K') — L*. The proof
of injectivity given above continues to hold, and the image of ¢ is clearly

equal to the subgroup
Gu|-1]:={z+tiyc L*: 2> +y* =1}
of L*. We have proved:

Proposition 4.7. If K is a field of characteristic # 2, then

. G, if1 € K,
CH) = {Gm[—l] ifi ¢ K.

Here we have put G,, = K*. In the special case K = R we have G,,[—1] =
S1, the group of complex numbers with absolute value 1. In fact, this is how
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one would discover the isomorphism of Proposition 4.7: one works over the
complex numbers, where C(R) — S! is an isomorphism, and observes that
this map makes sense over arbitrary fields if only ¢ = /—1 can be given a
meaning.

Now consider the special case K = F, of a finite field with ¢ ¢ K: since
L* — K* : 2z + 1y — 2% + y?* is the norm map, and since norm maps
between finite fields are surjective, we see that #G,,[—1] = #L*/#K* =
g?-1

L— = g+ 1. This proves

g—1

Corollary 4.8. If K =F, is a finite field of characteristic # 2, then

CK) ~ Z/(g—1)Z if g=1mod 4;
| Z/(g+1)Z if g =3 mod 4.

Indeed, if 1 € K, then ¢ = #K* = 0 mod 4; conversely, if 4 | #K*, then
there exists an element of order 4, since the multiplicative group of finite
fields is cyclic. Therefore ¢ € K if and only if g = #K = 1 mod 4.

4.5 The Group Law on Conics

The unit circle is a special case of a conic, and here we will show that it is
possible to define a group law on any irreducible® conic C. The most naive
way to achieve this is to pick a point P € C(K) and use the parametrization
of C(K'), that is, the bijection between K and C(K)\{P}, to turn C(K)\{P}
into a group (or even a field).

Such a “group law” was first studied by von Staudt” in his influential
books Geometrie der Lage (Nuremberg 1847) and Beitrdge zur Geomelrie
der Lage (Nuremberg 1856-60). His work is almost illegible for most of
today’s readers (it is for me; even Klein,® who knew infinitely more about
geometry than I do, confessed that “For me, Staudt’s presentation has always
been completely inaccessible”).

6A conic f(X,Y) = 0 is said to be defined over K if f(X,Y) € K[X,Y]; it is called
irreducible if it cannot be written as a product of two lines over the algebraic closure of
K. For example, the conic X% —Y? = 0 defined over Q is obviously reducible, but so is
X?24+Y?2=0since X?+Y?=(X+Yi)(X -Yi).

"Karl Georg Christian von Staudt (1798-1867), professor at the universities of Nurem-
berg and Erlangen.

8p. 133 in F. Klein, Vorlesungen tiber die Entwicklung der Mathematik im 19. Jahrhun-
dert, Chelsea 1967; (orig. Berlin 1926; new ed. Springer-Verlag 1979).



84 Number Theory Franz Lemmermeyer

Figure 4.3: Group Law on Unit Circle

Juel ? arrived at the correct definition of a group law on conics (he stated
it only for circles and hyperbolas, though; Prasolov & Solovyev!? give the
general case) defined over a field K: the idea is to choose an arbitrary point
N (the addition law will be defined over the field you get by adjoining to
K the coordinates of N; note that there are conics defined over Q without
rational points such as the one described by z? + y* = 3) as your neutral
element; in order to add two points P and ) on the conic C, draw a parallel
to P through N. This line will intersect C in a second point R; now put
P+ @Q = R. If C is the unit circle, this coincides with the addition law given
above if we pick N = (1,0).

For subfields K of R, we can prove geometrically that the above construc-
tion defines an abelian group law on the unit circle which coincides with the
one discussed before. In fact, put C = A+ B and let () denote the point of
intersection of the lines BA and ON (if these lines are parallel, the proof is
clear). Then we have

LONC = L0QB = 7 —[3— LOBA, (4.2)
B—a+2{BA = m, (4.3)

where the last equation follows from LOBA = £LOAB. Multiply (4.2) by 2

9 Ueber die Parameterbestimmung von Punkten auf Curven zweiter und dritter Ord-
nung. FEine geometrische Finleitung in die Theorie der logarithmischen und elliptischen
Funktionen, Math. Ann. 47, 72-104; in particular, p. 101.

10Viktor Prasolov & Yuri Solovyev, Elliptic Functions and Elliptic Integrals, AMS 1997
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Figure 4.4: Pascal’s Theorem

and subtract (4.3): this gives 2{ONC =7 — a — 3, hence LCON = a + 3
as desired.

If the field K is not a subfield of R, the identity of the two definitions
has to be proved computationally; another possibility is to derive it using
some algebraic geometry: see e.g. Fulton'' or Shafarevich.'? If K is not a
field but only a ring, it may seem that our definition of the group law may
not even make sense: intersecting a line through a point P € K x K with
a conic defined over K leads to a quadratic equation, and in rings quadratic
equations may have more than two roots (consider z* = 1 in Z/8Z, for
example). Nevertheless, since our quadratic equation comes equipped with a
solution in K (corresponding to the point P), it is an easy exercise to show
that there is exactly one other root (counted with multiplicity), hence the
addition law works even for rings.

Before we can talk about a group law on general conics, we have to check
that our addition is associative, that is, that A+(B+C) = (A+ B)+C. Put
P =A+4 B and Q = B+ C; then associativity is equivalent to the following
geometric statement: if A, B, C, P, ) and N are points on the conic such
that AB || NP and BC || @QN, then AQ || C'P. This is not obvious, at least
to those of us who are not familiar anymore with classical geometry beyond
the theorems of Pythagoras and Thales. In fact, the statement above is a
special case of the formerly famous Pascal’s Theorem:

Opposite sides of a hexagon inscribed in a conic intersect on a
straight line.

U'W. Fulton, Algebraic curves. An introduction to algebraic geometry, New York-
Amsterdam, 1969; reprint Addison-Wesley 1989
121 R. Shafarevich, Basic algebraic geometry, vol. 1, Springer-Verlag 1994
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Let us now derive the addition formulas for the group on C : y? —ax? =1
(observe that the associativity follows from the addition formulas, although
by a tedious calculation):

Proposition 4.9. Consider the conic C : y* —ax® =1 over a ring R, where
a € R is nonzero, and the point N = (0,1) on C(R). Then the group law on
C with neutral element N is given by (r,s)+ (t,u) = (ru+st,rt + asu,); the
inverse of (r,s) is (r,—s).

Proof. For adding the points P = (r,s) and @ = (¢,u), we have to draw a
parallel to the line PQ through N and compute its second point of inter-
section with C. The line through PQ has slope m = 2=, hence the parallel

)
through N 1 s given by the equation y — 1 = mz. Intersecting this line with
C leads to m?z? 4+ 2max — ax® = 0; since z = 0 gives the point N, we may
divide by z to find = = azTnz and y =mx + 1= %

We now claim that (z,y) = (ru + st,su + art). To this end, we first

%; the denominator can be transformed into

(ar? — s*) + (at* — u?) — 2art + 2su = —2(1 4+ art — su), hence
(r—1t)(s—1) B (r—1)(s—1t)(ru+ st)

observe that z =

1+ art —su (1—|—art—su)(ru—|—5t)'

Now (r —t)(s —u) = (rs + tu) — (ru + st) and (1 + art — su)(ru + st) =
(ru+st) +rs(at?* —u®)+tu(ar* —t*) = (ru+st)—(rs+tu), hence x = ru+ st
as claimed.

The formula for y now follows easily from

s —u
y = mz+1 = t(ru—l—st)—l—l

(r—t)su+t(s*—1)—r(u?—1)
r—1
(r —t)su + art(r — 1)

= = su+4art,
r—t

and this concludes the proof. O

Let us now determine the structure of C(Z/pZ), the group of Z/pZ-
rational points on C. First we leave it as an exercise to prove

Proposition 4.10. Consider C : y*> — ax® = 1, and let p be an odd prime
not dividing a; then # C(Z/pZ) = p — (%)
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The proof is the same as the one we gave for the unit circle. Now we
claim

Theorem 4.11. Consider C : y? — ax? = 1, and let p be an odd prime not
dividing a; then

C(ZpT) ~ Z/(p—1)Z ff(p) = +1,

Z/(p+1)Z if (5)=—1
Proof. We already know that the C(Z/pZ) have the correct order: all that
remains i1s to show that these groups are cyclic. Since the multiplicative
group of a finite field is cyclic, and since subgroups of cyclic groups are again
cyclic, it is sufficient to show that C(Z/pZ) is a subgroup of the multiplicative
group of a finite field.

To this end, we distinguish two cases:

i) (%) = +1: then a = b* mod p for some b € Z, and ¢(r,s) = s + rb
defines a map ¢ : C(Z/pZ) — (Z/pZ)*. We can easily check that
¢ is a homomorphism: on one hand, we have (r,s) + (t,u) = (ru +
st,su + art), on the other hand (r,s) - ¥ (t,u) = (s + rb)(u + tb) =
su+ art + (ru + st)b.
Now we claim that ¢ is injective; in fact, ker consists of all points
(r,s) € C(Z/pZ) with ¢(r,s) = s 4+ rb = 1 mod p. Since (r,s) has to
satisfy s* — ar? = 1 mod p, we find s —rb = (s* — ar?)/(s + rb) =
s —rb = 1 mod p, hence 2s = (s + rb) + (s — rb) = 2 mod p. This
implies s = 1 mod p, thus r = 0 mod p, and finally kery) = (1,0).

i) (%) = —1: then L = Z/pZ(b), where b = \/a, is a finite field with p?
elements. If we define the homomorphism ¢ : C(Z/pZ) — L* exactly
as in 1), then the proof above shows that ¢ is injective, a nd again we

have realized C(Z /pZ) as a subgroup of the multiplicative group of a
finite field.

O

The Lucas-Lehmer Test

The largest primes known today are Mersenne primes, that is, primes of the
form M, = 27 — 1 for prime values p. The reason for this is the existence of
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a very fast primality test for Mersenne numbers, namely the Lucas-Lehmer
test. Given a number M, it states that M, is prime if and only if S,_; =
0 mod p, where the sequence 5, is defined recursively by Sy = 4 and S, 41 =
52 _9.

Example. Take p = 5; then M5 = 2° —1 = 31, and we find Sy = 4, S; = 14,
Sz =194 =8 mod M, and S5 = 62 = 0 mod M,,. Therefore, M5 is prime by

the Lucas-Lehmer test.

Recall that the reason why a simple primality test for Fermat numbers
N exists is that N — 1 is a power of 2. In the case of Mersenne primes /N,
we know that N + 1 is a power of 2, and the idea behind a primality test for
M, is replacing the group (Z/pZ)* ~ Z/(p — 1)Z used for Fermat numbers
by a group of order p + 1. From what we know about conics, we might try
C : y*—axz* = 1 for some integer a such that (%) = —1 for Mersenne numbers
g = M, =2 —1. A possible choice is a = 3, since ¢ = M, = 3 mod 4 for
p > 3 and M, =1 mod 3 for odd p imply that ¢ = M, = 7 mod 12, and we
have (3) = —() = =1 for such gq.

Thus we consider the curve C : 22 — 3y* = 1; a nontrivial rational (even
integral) point on C is P = (2,1). The primality test analogous to the one
for Fermat numbers is the following:

Proposition 4.12. Let C : y? — ax®* = 1 be a conic, and assume thal ¢ =
7 mod 8 is an integer such that (%) = —1. Then q is prime if and only if
there exists a point P € C(Z/qZ) such thal

i) (g+1)P = (0,1);
i % P #(0,1) for any prime r dividing (g + 1).

Proof. Assume that %P = (0,—1) in C(Z/qZ); then we claim that ¢ is
prime. In fact, let p be any prime divisor of ¢q. Then %P = (0,—1) in
C(Z/pZ); but p is prime, so either (p+1)P = (0,1) or (p —1)P = (0,1).

On the other hand, condition i) implies that the order of P divides ¢+ 1,
while ii) implies that the order of P cannot be smaller. Thus g 4+ 1 divides
any integer m with mP = (0,1), in particular it divides p—1 or p+ 1. Since
p | ¢, this is only possible if p = ¢, hence ¢ is prime.

For the converse, assume that ¢ is prime and let P be a point generating
C(Z/qZ). Then (g+1)P = (0,1) since C(Z/qZ) has q+1 elements If(%) =—1,
and moreover q‘:—l P # (0,1) for any prime r dividing (¢ + 1) since P is a
generator. U
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In the special case of Mersenne numbers ¢ = 27 — 1 (note that ¢ =
7 mod 12 for p > 3), we have % = 27~ Picking ¢C : y?* — 32% = 1 and
P = (1,2) we have to show that P generates C(Z/qZ) if q is prime. This is
done as follows: since g+ 1 is a power of 2, so is the order of P. Thus if P does
not generate C(Z/qZ), then P = 2@ for some point @ = (r,s) € C(Z/qZ).
We find s? — 3r? = 1 as well as s? + 3r? = 2 from P = 2@ and the addition
law; thus 2s* = 3, contradicting the fact that (2/q) = +1 and (3/q) = —1
for primes ¢ = 7 mod 12.

Thus in order to compute q;’—l P = (0,—1), we only have to double the
point P repeatedly. Here are the first few terms: P = (1,2), 2P = (4,7), and
4P = (56,97). If we double the second coordinates of these points, we get
the sequence 4, 14, 194 that we know from the Lucas-Lehmer test described
above. This is no coincidence:

Lemma 4.13. Consider C : y*> — 32> = 1 and the point P = (1,2) on C.
Define a sequence S,, by So = 4 and S,41 = S* —2 forn > 0. Then %ST is
the second coordinate of 2" P.

Proof. This is of course done by induction: we have 2°P = P = (1,2) and
2 = %SO. Assume that 2"P = (T, %ST) for some integer T'. Then 2"+ P =
(STT,iSf + 37?%). But since 2"P is on C, we have iSf — 37?% = 1, hence

37? = 152 — 1, and the second coordinate of 2"+'P is 152 4 157 — 1 =

4r

1(5? — 2) = 15,41. This proves the lemma. O

o~

Now the condition 2°~' P = (0, —1) in Z/qZimplies that 5,1 = —1 mod
q, thus S,_1 = —2 mod ¢ and hence ¢ | S,_2. Conversely, if g | S,—2, then
the first coordinate of 2°~'P must be —1, hence 2°~'P = (—1,0). Thus
the primality test of Proposition 4.12 is nothing but the Lucas-Lehmer test,
expressed in a slightly different language.
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Appendix A

Algebraic Preliminaries

In this appendix we introduce some algebra.

A.1 Groups and Rings

Groups

A group consists of two things: a set A of elements and a composition *
that maps two elements a,b € A to a third element a « b € A such that the
following properties are satisfied:

(G1) Existence of neutral element: there is an e € A such that exa = axe = a

for all a € A;

(G2) Existence of inverse: for every a € A, there is an element b € A such
that a xb=b*a = e;

(G3) Associativity: (a*b)*c=a* (bxc).

All our groups will be abelian (commutative): they have to satisfy the addi-
tional property that a * b = bx a for all a,b € A.
Examples:

e Z is a group with respect to addition (we will say that (Z,+) is a
group);

e (Z,-)is not a group (2 has no inverse);

91
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e (N,+) and (Np, +) are not groups (1 has no inverse);
o (Z/mZ,+) is a group with m elements;
e (Z/mZ)*,-) is a group with ¢(m) elements.

There is a simple way to make new groups out of old ones: given two
groups (G, #) and (H,0), we can define the direct sum (G & H,-) as the set
of elements (g,h) € G x H with composition (g,h) - (¢',h') = (g* g, h o h').
The group axioms are readily checked. The direct sum of two groups is often
called the direct product, and then we write G x H.

Rings

A ring (R, +,-) consists of a set R on which there are two (different) ways
of composing elements (more exactly: two maps + : R x R — R and

-t R x R — R). We say that R is a ring if

(R1) (R,+) is an abelian group;

(R2) multiplication is associative;

(R3) distributivity: a(b+ ¢) = ab+ ac for all a,b,c € R.

In addition, all our rings will have a unit element that we will denote by 1
(so la = a for all @ € R), and they will be commutative (so ab = ba for all

a,b e R.
o (Z,+,-)is aring, (N,+,-) is not;

e the polynomials Z[z] with coefficients in Z form a ring (more generally:
if R is a ring, then so is R[X], the ring of polynomials with coefficients
in R).

o (Z/mZ,+,-)is a ring;

o the set of n x n-matrices form a ring with respect to coordinate-wise
addition and usual multiplication;

o the set of continuous functions R — R form a ring;

o the set of converging series in R form a ring.
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Elements a,b in a ring R are called zero divisors if a # 0, b # 0 and
ab = 0. In the ring Z/pqZ, where p and ¢ are primes, the residue classes [p]
and [¢] are nonzero, but their product [pg] = [0] is: therefore, [p] and [¢] are
zero divisors.

A ring having no zero divisors (such as Z) is called a domain.

Given any ring R, we can define its unit group R* by
R*={r € R:rs=1 for some s € R}.

The unit group is in fact a group: if u,v € R* are units, then ur = vs =1
for suitable r,s € R, and then (uv)(rs) = 1: but this proves that uv is a
unit. Therefore multiplication is a composition on R*.

Next R* contains an identity element because 1 € R* (well, 1 -1 =1, so
1 is a unit), and if u € R*, then there exists a unit v such that wv =1 (this
follows directly from the definition of a unit).

The unit group of Z is rather boring: Z* = {—1,+1}. More interesting
examples are provided by the unit groups (Z/mZ)* of the rings of residue
classes modulo m.

Actually, Z is not only a ring but a domain: it does not contain zero
divisors, 1.e., ab = 0 implies a = 0 or b = 0. The residue class rings that we
will discuss in the next chapters in general do have zero divisors.

Fields

A commutative ring is called a field if every nonzero element has a multi-
plicative inverse. For example, Q, R and Z/pZ are fields, but Z/pqZ (say,
for primes p, ¢) is not since the class [p] does not have an inverse.

If R is any ring, then so is the set R[X] of polynomials with coefficients
in R. If F'is a field, then the ring F[X] has a “Euclidean Algorithm”. In
fact, given any nonzero polynomials A, B € F[X], there are polynomials
@, R € F[X] such that A = BQ + R and deg R < deg B.

Using the Euclidean Algorithm, we can define and compute greatest com-
mon divisors in the ring F[X], define primes and irreducibles, show that
they’re the same, and eventually prove unique factorization in F[X]. In the
special case where F' is the finite field Z /pZ, we could even prove a reciprocity
law ...
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A.2 Homomorphisms

Here’s the definition: a map f : G — H from a group (G, *) to another
group (H,o) is called a homomorphism if it respects the group structure,
that is, if f(g*g') = f(g)o f(¢') for all g,¢' € G (in other words: if it doesn’t
maftter whether you compose first and then map, or whether you first map
and then compose).

As for the motivation, consider the group of mappings of the Euclidean
plane to itself consisting of the identity map I and the reflection R at the
y-axis, and where composition is given by composition of maps. The multi-
plication table for this group is

* | [ | R
I T |R
RIR| T

Now we observe that this resembles the multiplication table of Z/2Z: in fact,
if we write [0] for I and [1] for R, then the multiplication table above becomes
the addition table for Z/27Z:

+ [ [0] ] [1]
[0] | [0] | [1]
(1] [1] ] [0]

The map f sending [ —— [0] and R —— [1] is an isomorphism: it is
bijective, and it respects the group law: for example f(I) = f(R * R) =
F(R) + F(R) = [1]+ 1] = o]

Consider the three groups Z/4Z, (Z/5Z)* and (Z/8Z)* (you have de-
termined their multiplication table in the Exercises). It is easy to see that
the third group differs considerably from the first two: the equation z? = 1
has exactly two solutions in the first two groups (namely = = [1]4,[3]4 and
x = [1]s,[4]5 respectively). There are, however, four solutions in the third:
in fact, every residue class [a]s € (Z/8Z)* satisfies [a]3 = [1]s.

The first two groups, on the other hand, do have the ”same structure”
in the following sense: if we rename the elements in the multiplication table
of Z [47Z, then we get the multiplication table of (Z/5Z)*. In other words:
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Table A.1:
for |0 1 2 3
write |1 2 4 3

the only difference between the two groups is the name of the elements; their
structure is the same.

Let’s do this explicitly. Here are the two multiplication tables for Z /4Z
and (Z/5Z)*:

+10 1 2 3 -1 2 3 4
0(0 1 2 3 111 2 3 4
111 2 3 0 212 41 3
212 3 01 313 1 4 2
313 01 2 414 3 2 1

We now relabel the elements of Z /47 in such a way that the multiplication
table of Z/4Z becomes the same as the one for (Z/5Z)*. Here’s how it’s
done: We do not have much freedom in choosing where to send the elements
of Z/AZ: 1f we send 1 to 2, and if the multiplication tables should coincide,
then we must send 2 =1+ 1 to 2-2 = 3. We easily check that sending 1 to
2 determines the whole table.

The new multiplication table for Z/4Z now looks like this:

| | D] —| 4
Ol | DO =) =
=] Ol | | N
DO = COf |
| DO GOl WO

Comparing it with the multiplication table for (Z/5Z)* we can now check
that the two are indeed the same.

This whole process of showing that Z/4Z and (Z/5Z)* have the same
"structure” is quite complicated: luckily, most of the complications vanish if
we proceed more abstractly. Table A.1 defines a map ¢ : Z/4Z — (Z/5Z)*,;
we have constructed ¢ in such a way that ¢(a + b) = ¢(a)p(b) for any a,b €
Z/AZ, and it is exactly this property that is responsible for the equality
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between the multiplication tables of Z/4Z (with the elements renamed as
1,2,4,3) and (Z/5Z)*.

In fact, assume we have two groups (G, *) and (H,0). Let a and b be two
elements of i, and put @ = f(a) and b = f(b). The product a * b € G gets
renamed to f(a *b); the multiplication tables will coincide after renaming if

and only if f(a *b) is the product of f(a) and f(b) in H, that is, if and only
it f(ab) = f(a)o [(b):

Q|

* a o

Now consider any two groups (G, *) and (H,0). A map ¢ : G — H with
d(g*xg') = d(g)op(g’) is called a group homomorphism. It is called injective
(one-to-one) if ¢(g) = ¢(¢') implies g = ¢, and it is called surjective (onto)
if for every h € H there is a ¢ € (G such that h = ¢(g). Homomorphisms
G — H that are injective and bijective are called isomorpisms, and the
groups (G and H isomorphic (we write GG ~ H). Isomorphic groups have the
same multiplication table (possibly after relabeling the elements).

[somorphisms f : (G, *) — (H, o) have some nice properties:

e [somorphisms map neutral elements to neutral elements. In fact, let
O and Oy denote the neutral elements of G and H, respectively. Then
f(0g) = f(0g + 0c) = f(0g) + f(0g), and subtracting f(0g) gives
O = f(0c).

e [somorphisms map elements of order n to elements of order n. In fact.
let n denote the order of an element g € G and put A = f(g). Then
nh = nf(g) = f(ng) = f(0g) = 0y, so the order of h divides n.
Conversely, if mh = 0g, then 0y = mf(g) = f(mg), and since f is an
isomorphism, this implies that mg = 0g. But then m > n, and this
proves that m = n.

The map G — H sending every g € (G to ey is always a homomorphism;
it is called the trivial homomorphism. Nontrivial homomorphisms do not
always exist: for example, the only homomorphism [ : Z/mZ — Z is the
trivial homomorphism. For let f([1]) = a for some a € Z; then ma =
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— f(m]) = ([0]) = 0, hence a = 0. But then f([r]) = rf([1]) =
An important result that we will use repeatedly is the following

Lemma A.1. If f: A — B is an injective map between finile sets of the
same cardinality, then [ is bijective.

Proof. Since f is injective, f(a) = f(a') implies that a = @, in other words:
f maps different elements of A to different elements of B. Let f(A) be the
set of all f(a) with a € A. Then # f(A) = #A by injectivity, and #A = #B
by assumption, so #B = #f(A). But this plainly shows that every element
of B occurs in the image of f. O

In the case at hand, we can define ¢ simply by putting ¢([als) = [2°]5,
where [a],, denotes the residue class of @ modulo n (since I need a map going
from an additive to a multiplicative group, I am “forced” to map [a]4 to
[¢°]5 for some g; choosing ¢ = 1 or ¢ = —1 would give maps that are not
bijective, so we end up with the choices ¢ = 2 or ¢ = 3). This map is well
defined because Fermat’s little theorem shows that [2?]5 = [2°74]5. Next it is
a homomorphism since ¢([a + bl4) = [2°T°]5 = [27]5]2"]5 = ¢(a)@(b). Finally,
table A.1 implies that ¢ is bijective.

For homomorphisms, checking injectivity is simplified by the following

Lemma A.2. A homomorphism f: G — H between two additively written
groups is injective if and only if f(g) = 0 implies a = 0.

Proof. If f is injective, then f(g) = 0 implies @ = 0. Conversely, assume that
f(g) = 0 implies a = 0, and assume that there are elements ¢, ¢’ € G such
that f(g) = f(¢'). Then 0= f(g) — f(¢') = f(9 — ¢'), hence g — ¢’ = 0, and
this implies ¢ = ¢’. This f is injective. O

The set of all ¢ € G such that f(g) = 0 is called the kernel of f And
will be denoted by ker f. It is easy to see that ker f is a subgroup of G: if
9,9 € ker [, then f(g) = f(¢') = 0, hence f(g+¢') = [(9)+[(g') = 0+0 =0,
hence g + ¢’ € ker f.

As another exercise, let us now prove that (Z/9Z)* ~ Z/6Z. To this
end we define a map f : Z/6Z — (Z/9Z)* by f([ale) = [2"]9. As above,
[ is clearly a homomorphism. Its kernel consists of all [a]g such that 2* =
1 mod 9; the smallest exponent a with this property is a = 6, hence the set
of all a with this property are the multiples of 6 (by Proposition 2.6), so
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ker f = [0]¢ and f is inject ive. Moreover, f is surjective because ¢(9) = 6
and 26 is the smallest power of 2 congruent to 1 mod 9.

Let us now prove that (Z/8Z)* ~ Z/2Z & Z/2Z. To this end we define a
map [ : Z/2Z®L)2Z — (Z/8Z)* by putting f([a]s, [b]2) = [(—1)*5°]s (one
of many possible choices; g([a]z, [b]2) = [(—1)*3%]s would do as well). This is
well defined because changing a or b by even numbers does not change the
residue class (—1)?5° mod 8: in fact, (—1)? = 52 = 1 mod 8. Moreover, f is
a homomorphism: f([a+a']y, [b+b]2) = [(—1)*t*'5* s = ... = f([a]s, [b]2)-
f(ld]2, [b]2). Finally, f is bijective: this is most easily seen by going through
all elements of Z /27 & 7 /27.

One of the fundamental results in the theory of finite abelian groups is
the classification theorem that we formulate as follows:

Theorem A.3. If G is an abelian group, then there exist prime numbers
pi and integers a; > 0 such that G ~ Z/p'Z & ... & Z/p»Z. Moreover,
GoZ/PZe .. & T/¢"T for primes q; and integers b; > 0 if and only if
r=s and (p;,a;) = (g, bi), possibly after rearranging the q;.

Observe the similarity to the unique factorization theorem. We will nei-
ther prove nor use this result. Note that it implies e.g. that Z/4Z is not
isomorphic to Z/2Z & 7. /27 since p; = 2, ay = 2 for Z/4Z and p; = py = 2,
ay =ay=1"for Z2Z 3 7 /27.

Corollary A.4. If G and H are cyclic groups of coprime order, then G H
is cyclic.

Proof. Let g and h be generators of G and H, respectively. Then the elements
(g,1) and (1, h) of G H have coprime orders, so by Lemma 2.17 their product
(g,h) generates G & H. O

Ring Homomorphisms

In a ring, there are two structures: addition and multiplication. A map
f R — S between rings is called a ring homomorphism if it respects both
of them, that is: if f(a +b) = f(a) + f(b) and f(ab) = f(a)f(b) for all
a,b € R. Bijective ring homomorphisms are of course called isomorphisms.
Our proof that showed (Z/abZ)* ~ (Z[aZ)* x (Z[bZ)* for coprime integers
a,b actually shows that there is a ring isomorphism Z/abZ ~ Z[aZ x Z | bZ.
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