
Let me start by discussing a few things that are taken for granted by Hasse.
A field extension K/F is just a pair of fields K and F with F ⊆ K. Well known

examples are C/R and R/Q.
If K/F is a field extension, then K can be interpreted as a vector space over F .

In the example above, C is an R-vector space: every element of C can be written
as z = a + bi; these ‘vectors’ form an additive group, and they can be multiplied
(scalar multiplication) by real numbers. If you write a vector (a, b) instead of a+bi,
it even looks like the vector spaces you know.

Every vector space has a basis; the number of elements in a basis is called its
dimension. The dimension dimF K of K as an F -vector space is called the degree
of the extension, and is denoted by [K : F ]. For example, [C : R] = 2, and {1, i} is
a basis of C over R. Note that [R : Q] = ∞ (this follows from the fact that finite
extensions of Q are countable).

The basic theorem about degrees is the transitivity in towers: If L/K/F is a
tower of fields, then [L : F ] = [L : K][K : F ]; for a proof, multiply the basis vectors
of K/F with those of L/K and show that this set is a basis for L/F .

Here’s an example: the field L = Q( 3
√

2,
√

3 ) has K = Q(
√

3 ) as a subfield.
The extension L/K has a basis {1, 3

√
2, 3
√

4}, and the extension K/Q has a basis
{1,

√
3 }. A basis for L/Q is given by {1, 3
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4}.
The next result assumed without proof is the existence of primitive elements:

given a finite extension K/F of fields of characteristic 0, there always is a θ ∈ K
such that K = F (θ). This means that every element α ∈ K can be written uniquely
in the form α = a0 + a1θ + a2θ

2 + . . . + an−1θ
n−1, where n = [K : F ].

If [K : F ] = 2, every element of K \ {F} is primitive. In the example L =
Q( 3
√

2,
√

3 ) over Q above, θ = 3
√

2 +
√

3 is primitive. In order to prove this, we
have to compute the minimal polynomial of θ and show that it has degree 6. We’ll
see how to do this later on.

Field extensions of type K = F ( n
√

m ) are called pure; you get arbitrary finite
extensions in the following way: take an irreducible polynomial over F = Q, say
f(X) = X3 + X + 1. Factor f over some algebraic closure: f(X) = (X − α)(X −
α′)(X − α′′), and put K = Q(α). This field consists of expressions a + bα + cα2;
adding is done coordinatewise, and multiplication is performed as usual, just reduce
the result using the relations α3 = −α− 1 and α4 = −α2 − α.

Showing that this ring is a field is best done with some algebra. Consider the
polynomial ring R = Q[X] and its ideal I = (f). Then R/I is a ring, whose
elements are represented by a + bα + cα2, where α = X + (f). It is known that
R/I is a field if and only if I is maximal, which for Q[X] is equivalent to (f) being
irreducible. But this is easily checked.

1


