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Preface

Class field theory has a reputation of being an extremely beautiful part of
number theory and an extremely difficult subject at the same time. For some-
one with a good background in local fields, Galois cohomology and profinite
groups there exist accounts of class field theory that reach the summit (exis-
tence theorems and Artin reciprocity) quite quickly; in fact Neukirch’s books
show that it is nowadays possible to cover the main theorems of class field
theory in a single semester.

Students who have just finished a standard course on algebraic number
theory, however, rarely have the necessary familiarity with the more advanced
tools of the trade. They are looking for sources that include motivational
material, routine exercises, problems, and applications.

These notes aim at serving this audience. I have chosen the classical ap-
proach to class field theory for the following reasons:

1. Zeta functions and L-series are an important tool not only in algebraic
number theory, but also in algebraic geometry.

2. The analytic proof of the first inequality is very simple once you know
that the Dedekind zeta function has a pole of order 1 at s = 1.

3. The algebraic techniques involved in the classical proof of the second
inequality give us results for free that have to be derived from class field
theory in the idelic approach; among the is the ambiguous class number
formula, Hilbert’s Theorem 94, or Furtwängler’s principal genus theorem.

4. Many of the central unsolved problems in modern number theory are
directly connected to analytic objects. Let me just mention the Riemann
conjecture for various L-functions, the Stark conjectures, the conjecture
of Birch and Swinnerton-Dyer, and the whole Langlands program.

I also have tried to approach certain central results by first treating special
cases; this is not particularly elegant, but it helps students to see how some
of the more technical proofs evolved from relatively simple considerations.



vi



Table of Contents

Part I. Dirichlet’s Analytic Methods

1. Dirichlet Series for Quadratic Characters . . . . . . . . . . . . . . . . . 3
1.1 Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Basic Properties of the Riemann Zeta Function . . . . . . . . . . . . . 7
1.3 Quadratic Number Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Dirichlet’s L-series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2. The Nonvanishing of L(1, χ) for Quadratic Characters . . . . 21
2.1 Dirichlet’s Proof for Prime Discriminants . . . . . . . . . . . . . . . . . . 21
2.2 Nonvanishing of Dirichlet’s L-functions . . . . . . . . . . . . . . . . . . . . 27
2.3 Computation of L(1, χ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3. Primes in Arithmetic Progression . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Primes in Arithmetic Progression . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Cyclotomic Number Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4. Dirichlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1 Dirichlet’s L-series for Quadratic Forms . . . . . . . . . . . . . . . . . . . 53
4.2 Genus Theory for Quadratic Number Fields . . . . . . . . . . . . . . . . 55
4.3 Primes with Prescribed Residue Characters . . . . . . . . . . . . . . . . 56
4.4 Primes Represented by Binary Quadratic Forms . . . . . . . . . . . . 58

5. Algebraic Number Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1 Archimedean Valuations of a Number Field . . . . . . . . . . . . . . . . 61
5.2 Arithmetic of Number Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Prime Decomposition in Relative Extensions . . . . . . . . . . . . . . . 65
5.4 Prime Ideals in Galois Extensions . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5 Minkowski Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6. Dirichlet’s Unit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.1 Units in Quadratic Number Fields . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Dirichlet’s Unit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



viii Table of Contents

6.3 The Unit Theorems of Minkowski and Herbrand . . . . . . . . . . . . 82

7. Dedekind’s Zeta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.1 Distribution of Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2 Dirichlet’s Class Number Formula . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3 Cyclotomic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8. Density Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.1 Kronecker’s Density Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.2 Frobenius Density Theorem for Abelian Extensions . . . . . . . . . 100
8.3 Kummer Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.4 Decomposition Laws in Kummer Extensions . . . . . . . . . . . . . . . 105
8.5 Density Theorems of Kummer and Hilbert . . . . . . . . . . . . . . . . . 106

Part II. Hilbert Class Fields

9. The Hilbert Class Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.1 Weber’s Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.2 The Field Q(

√
−5 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.3 The Field Q(
√

3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.4 Hilbert Class Field Theory II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

10. The First Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
10.1 Weber’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
10.2 Proof of the First Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
10.3 Consequences of the First Inequality . . . . . . . . . . . . . . . . . . . . . . 128

11. The Second Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
11.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
11.2 The Second Inequality for Unramified Extensions . . . . . . . . . . . 136
11.3 The Ambiguous Class Number Formula . . . . . . . . . . . . . . . . . . . 138
11.4 The Herbrand Quotient of the Unit Group . . . . . . . . . . . . . . . . . 142

12. Examples of Hilbert Class Fields . . . . . . . . . . . . . . . . . . . . . . . . . 147

13. The Artin Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
13.1 Inertia Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
13.2 The Symbols of Frobenius and Artin . . . . . . . . . . . . . . . . . . . . . . 150
13.3 The Artin Isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

14. Frobenius Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
14.1 Frobenius and his Density Theorem . . . . . . . . . . . . . . . . . . . . . . . 157
14.2 Group Theoretical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 162
14.3 Prime Ideal Decomposition in Nonnormal Extensions . . . . . . . 163
14.4 The Proof of Frobenius’ Density Theorem . . . . . . . . . . . . . . . . . 165



Table of Contents ix

Part III. Takagi’s Class Field Theory

15. Ideal Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
15.1 Generalized Class Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
15.2 Takagi’s Class Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
15.3 The Fundamental Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

16. Artin’s Reciprocity Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
16.1 Cyclotomic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
16.2 Base Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
16.3 Proof of Artin’s Reciprocity Law . . . . . . . . . . . . . . . . . . . . . . . . . 183

17. The Existence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

18. Norm Residues and Higher Ramification . . . . . . . . . . . . . . . . . 187
18.1 Higher Ramification Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Part IV. Appendix

A. Gamma, Theta, and Zeta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
A.1 Euler’s Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
A.2 Jacobi’s Theta Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
A.3 Riemann’s Zeta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
A.4 Quadratic Gauss Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

B. A Beginner’s Guide to Galois Cohomology . . . . . . . . . . . . . . . . 195
B.1 H1(G,A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
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Part I

Dirichlet’s Analytic Methods

1





1. Dirichlet Series for Quadratic Characters

Analytic methods occupy a central place in algebraic number theory. In this
chapter we introduce the basic tools of the trade provided by Dirichlet. Most
of the results proved here will be generalized step by step in subsequent
chapters until we finally will have all the techniques required for the proof of
the First Inequality of class field theory.

Most modern accounts of class field theory give an arithmetic proof of
both the First and the Second Inequality. This approach has the additional
advantage of bringing out clearly the local-global aspects of class field the-
ory. On the other hand, class number formulas and the density theorems
of Dirichlet, Kronecker, Frobenius and Chebotarev are central results of al-
gebraic number theory which every serious student specializing in number
theory must be familiar with, in particular since these analytic techniques
are also needed in the theory of elliptic curves (or, more generally, abelian
varieties) and modular forms. In this theory, the analog of the class number
formula of Dirichlet and Dedekind is the conjecture of Birch and Swinnerton-
Dyer, which – together with the Riemann hypothesis – belongs to the most
important open problems in number theory.

1.1 Euler

One of the earliest outstanding results of Euler was the formula

π2

6
= 1 +

1
4

+
1
9

+
1
16

+ . . . . (1.1)

This is the value ζ(2) of Riemann’s zeta function

ζ(s) = 1 +
1
2s

+
1
3s

+
1
4s

+ . . . .

Euler’s first “proof” of (1.1) was full of holes, but very beautiful. In a nutshell,
here’s what he did.

Fix some α ∈ R with sinα 6= 0, and consider the function f(x) = 1− sin x
sinα .

This function has a Taylor expansion
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f(x) = 1− x

sinα
+

x3

3! sinα
+

x5

5! sinα
− . . . .

The real roots of this function are x = 2nπ + α and x = (2n+ 1)π − α.
Euler knew that two polynomials of degree n with equal roots and equal

constant term (the value at x = 0) must be the same. Regarding f(x) as a
polynomial of infinite degree, he concluded that

f(x) =
∞∏

n=−∞

(
1− x

2nπ + α

)(
1− x

(2n+ 1)π − α

)
=

(
1− x

α

) ∞∏
n=1

(
1− x

(2n− 1)π − α

)(
1 +

x

(2n− 1)π + α

)
(
1− x

2nπ + α

)(
1 +

x

2nπ − α

)
.

Expanding the right hand side and comparing coefficients yields

1
sinα

=
1
α

+
∞∑
n=1

( 1
(2n− 1)π − α

− 1
(2n− 1)π + α

+
1

2nπ + α
− 1

2nπ − α

)
, (1.2)

1
sin2 α

=
1
α2

+
∞∑
n=1

( 1
((2n− 1)π − α)2

− 1
((2n− 1)π + α)2

+
1

(2nπ + α)2
− 1

(2nπ − α)2
)
. (1.3)

Putting α = π
2 in (1.2) gives Leibniz’s series

π

4
= 1− 1

3
+

1
5
− 1

7
± . . . .

For α = π
4 , (1.2) produces

π

2
√

2
= 1 +

1
3
− 1

5
− 1

7
+

1
9

+ . . . ,

which Euler credits to Newton; in fact, this formula appears in a letter from
Newton to Oldenberg from October 24, 1676.

Plugging α = π
2 into (1.3) gives

1 +
1
32

+
1
52

+ . . . =
π2

8
.

Euler then observes that

ζ(2) =
(
1 +

1
32

+
1
52

+ . . .
)

+
1
4
ζ(2), (1.4)
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and this then implies ζ(2) = π2

6 .
Euler’s arguments for the product expansion of f(x) are not convincing

for two reasons: first, he only considered real roots of f ; second, the functions
f(x) and exf(x) have the same roots and the same constant term, so these
properties do not determine f .

Euler found the formula ζ(2) = π2

6 by comparing the coefficients of x2 in
the expansions of f(x); by comparing the coefficients of x2k, he was able to
come up with the formula

ζ(2k) = (−1)k−1 (2π)2k

2(2k)!
B2k,

where the Bernoulli numbers Bk are defined by

xex

ex − 1
=

∞∑
k=0

Bk
xk

k!
.

Euler also found that ζ(s) has a product decomposition, which he wrote in
the form

ζ(s) =
2s · 3s · 5s · 7s · 11s · · ·

(2s − 1)(3s − 1)(5s − 1)(7s − 1)(11s − 1) · · ·
.

Let us now introduce the functions

ζ2(s) = 1− 2−s + 3−s − 4−s ± . . . ;

and

θ(s) = 1 + 3−s + 5−s + 7−s + . . . ;

then 21−sζ(s) = 2(2−s+4−s+6−s+ . . .) shows that ζ2(s)+21−sζ(s) = ζ(s),
and similarly we find θ(s) = (1 − 2−s)ζ(s). Euler “computed” the values of
ζ2(s) at the negative integers as follows. He started with the geometric series

1
1− x

= 1 + x+ x2 + x3 + x4 + . . . ;

applying the operator x ddx he found

x

(1− x)2
= x+ 2x2 + 3x3 + 4x4 + . . . ,

and similarly

x(1 + x)
(1− x)3

= x+ 22x2 + 32x2 + 42x4 + . . . .
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These expansions converge for |x| < 1; boldly evaluating them at x = −1,
Euler finds

ζ2(0) = 1− 1 + 1− 1 + . . . =
1
2
,

ζ2(−1) = 1− 2 + 3− 4 + . . . =
1
4
,

ζ2(−2) = 1− 22 + 32 − 42 + . . . = 0,

ζ2(−3) = 1− 23 + 33 − 43 + . . . = −1
8
,

ζ2(−5) = 1− 25 + 35 − 45 + . . . = −1
4
,

ζ2(−7) = 1− 27 + 37 − 47 + . . . = −17
16

etc. Comparing the formulas above with the values of θ(2k) resulting from
(1.4), Euler found

ζ2(−1) =
2 · 1
π2

θ(2), ζ2(−3) = −2 · 3!
π4

θ(4), ζ2(−5) =
2 · 5!
π6

θ(6);

we remark in passing that expressing ζ2(s) and θ(s) in terms of ζ(s), these
formulas lead to the beautiful formula

ζ(−k) = −Bk+1

k + 1
. (1.5)

Since B3 = B5 = B7 = . . . = 0, the zeta function has zeros at the even
negative integers; these are called the trivial zeros of the zeta function.

Euler’s observations led him to the general result

θ(1− 2k) = (−1)k−1 2 · (2k − 1)!
π2k

ζ2(2k)

for all k ∈ N; Euler also saw that θ(−2k) = 0 for integers k ≥ 1. Expressing
these formulas in terms of the function ζ2(s) alone, Euler found

ζ2(1− 2k) = (−1)k−1 (22k − 1)(2k − 1)!
(22k−1 − 1)π2k

ζ2(2k).

Euler then made the even bolder conjecture that this formula can be “inter-
polated”:

ζ2(1− s) = −Γ (s)
2s − 1

(22s − 1)πs
cos

πs

2
ζ2(s)

for all s. Here Γ (s) denotes the gamma function

Γ (s) =
∫ ∞

0

xs−1e−xdx
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defined for s > 0, which satisfies the functional equation Γ (s + 1) = sΓ (s),
and which has the property that Γ (n+1) = n! for integers n ≥ 0. We remark
in passing that the gamma function was found by Euler.1

Rewriting Euler’s conjecture in terms of the Riemann zeta function shows
that this equation is equivalent to

ζ(1− s) = π−s21−sΓ (s) cos
πs

2
ζ(s).

This functional equation was first proved by Riemann.
Euler used the product decomposition of the zeta function to improve

Euclid’s theorem concerning the infinitude of prime numbers by showing that∑
p

1
p = 1

2 + 1
3 + 1

5 + 1
7 + 1

11 + . . . diverges. In the next section, we will give
rigorous proofs for some of Euler’s results on the zeta function.

1.2 Basic Properties of the Riemann Zeta Function

The integral test immediately shows that ζ(s) converges (pointwise) for all
s > 1. If s = σ+it is a complex number, then |ns| = nσ|ns−σ| = nσ|nit| = nσ

shows that if a Dirichlet series f(s) =
∑
ann

−s converges absolutely for all
real s > σ, then it converges absolutely for all s ∈ C with Re s > σ.

The most important property from a number theorists point of view is
Euler’s product formula:

Theorem 1.1. For all s > 1 we have

ζ(s) =
∏
p

1
1− p−s

, (1.6)

where the product is over all primes p.

Proof. For s > 1 and a fixed natural number N we have

ZN (s) :=
∏
p≤N

1
1− p−s

=
∏
p≤N

∞∑
k=0

p−ks =
∑
n∈N∗

n−s,

where N∗ denotes the set of natural numbers without prime factors > N .
Thus

0 < ζ(s)− ZN (s) ≤
∑
n>N

n−s,

and the right hand side goes to 0 as N −→∞.
1 In a lecture by Serre called “How to write mathematics badly” which you can

find on youtube, Serre stressed that it is important to choose a title that says
as little as possible about the content of the manuscript, and suggested “On a
theorem of Euler” as an example.
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Since the harmonic series 1 + 1
2 + 1

3 + . . . diverges, the function ζ(s) goes
to ∞ as s → 1. In fact, the behaviour of ζ(s) in a vicinity of s = 1 can be
described quite precisely:

Proposition 1.2. We have 0 < ζ(s)− 1
s−1 < 1 for s > 1.

Proof. For all n ≥ 2 we have∫ n+1

n

dx

xs
<

1
ns

<

∫ n

n−1

dx

xs

hence ∫ ∞

1

dx

xs
<

∞∑
n=1

1
ns

< 1 +
∫ ∞

1

dx

xs

and therefore

1
s− 1

< ζ(s) < 1 +
1

s− 1
.

This proves the claim.

Together with Euler’s product formula this immediately implies that there
must be infinitely many primes: if there only were finitely many, there would
be only finitely many products in Euler’s formula, and this would clearly
converge at s = 1. As Euler showed, however, the product formula implies a
lot more:

Theorem 1.3. The series
∑
p

1
p diverges.

Thus not only are there infinitely many primes, there are so many that
the sum over all their inverses diverges; in particular, there are “more” primes
than squares.

Proof. Since ζ(s) diverges for s −→ 1, so does log ζ(s). We find

log ζ(s) = log
∏
p

1
1− p−s

=
∑
p

log
1

1− p−s
= −

∑
p

log(1− p−s)

=
∑
p

∑
n≥1

1
n
p−ns =

∑
p

p−s +
∑
p

∑
n≥2

1
n
p−ns.

We now claim that the second sum converges; in fact,∑
p

∑
n≥2

1
n
p−ns <

∑
p

∑
n≥2

p−ns =
∑
p

p−2s

1− p−s
=

∑
p

1
ps(ps − 1)

≤
∑
p

1
p(p− 1)

≤
∞∑
n=2

1
n(n− 1)

= 1.
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Thus
∑
p p

−s → ∞ as s → 1. One might be tempted to think that this
implies the claim, but lim

s→1+0

∑
p p

−s =
∑

1
p can only be derived using the

continuity of ζ(s) at s = 1, i.e., at a place where the series for ζ(s) is not
even converging. A more careful approach is the following: replace ζ(s) by
ZN (s) in the proof above. Then we can form the limit for s→ 1 and get

0 ≤ logZN (1)−
∑
p

1
p
≤ 1.

Now letting N go to ∞ and observing that limN→∞ ZN (1) =∞ implies the
claim.

A different way of making the estimate above exact is the following: we
have found

0 < log ζ(s)−
∑

p−s < 1

for s > 1. This shows that log ζ(s) −
∑
p−s is bounded, i.e., that

∑
p−s =

log ζ(s) + O(1), where we have used Landau’s big-O notation (we say that
f = g+O(h) is there is a constant c such that |f(x)− g(x)| ≤ c · h(x) for all
x under consideration). The inequalitites 1

s−1 < ζ(s) < s
s−1 for s > 1 imply

log ζ(s) = log 1
s−1 +O(1) for all s ∈ (1, 2), say. Thus we get

Proposition 1.4. For all real s with 1 < s < 2 we have∑
p−s = log

1
s− 1

+O(1).

We will also show that the zeta function can be extended meromorphically
to the half plane Re s > 0. By Lemma 1.7 below, ζ2(s) is analytic for Re s > 0.
Similarly we can show ζ3(s) + (1− 31−s)ζ(s) for

ζ3(s) = 1 +
1
2s
− 2

3s
+

1
4s

+
1
5s
− 2

6s
. . . .

These formulas give an analytic continuation of ζ(s) for all s with Re s > 0,
except possibly where 1 − 21−s = 1 − 31−s = 0. This happens if and only if
(1− s) log 2 = 2πim and (1− s) log 3 = 2πin for integers m,n, which in turn
implies 2n = 3m and hence m = n = 0. We have proved:

Proposition 1.5. The Riemann zeta function ζ(s) can be extended to a
meromorphic function in the half plane Re s > 0, with a simple pole at s = 1.

We next prove a couple of results concerning the convergence of Dirichlet
series f(s) =

∑∞
n=1 ann

−s. These proofs use the concept of uniform conver-
gence. Recall that if a sequence of real-valued functions f1, f2, . . . converges
pointwise to a function f , then f need not be continuous even if the fi are
infinitely often differentiable. If we want to transfer properties like continuity
and differentiability from the fn to the limit function f , we need something
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stronger than pointwise convergence. We say that a sequence of complex-
valued functions fn : D −→ C converges uniformly to f on D (and write
fn =⇒ f) if for every ε > 0 there is an N ∈ N such that for all x ∈ D and all
n > N we have |fn(x)−f(x)| < ε. Thus uniform convergence means that the
difference fn(x)− f(x) can be made small for all x ∈ D at the same time.

In real analysis, we have the following classical results:

1. If fn =⇒ f and the fn are continuous, then so is f .
2. If fn =⇒ f , the fn are differentiable, and if f ′n =⇒ g, then f is differen-

tiable and f ′ = g.

In complex analysis, things are as usual a little bit simpler: If the fn
converge uniformly to f on all compacta inside a domain D, and if the fn
are analytic, then so is f . This result justifies the introduction of the term
“converges almost uniformly” for a sequence of functions on a domain D that
converges uniformly on each compact subset of D.

Proposition 1.6. If the partial sums of a Dirichlet series f(s) are bounded
for a specific value s0 ∈ C, then the series converges almost uniformly for
Re s > Re s0.

Proof. Consider the partial sums fm(s) =
∑m
n=1 ann

−s. By assumption,
there is a constant c > 0 such that |fn(s0)| < c for all n. Let σ0 = Re s0, and
pick a δ > 0. On the half plane Re s = σ ≥ σ0 + δ, we have

m+N∑
n=m+1

ann
−s =

m+N∑
n=m+1

ann
−s0ns0−s =

m+N∑
n=m+1

(fn(s0)− fn−1(s0))ns0−s

=
m+N∑
n=m+1

fn(s0)ns0−s −
m+N−1∑
n=m

fn(s0)(n+ 1)s0−s

= fm+N (s0)(m+N)s0−s − fm(s0)(m+ 1)s0−s

+
m+N−1∑
n=m+1

fn(s0)
(
ns0−s − (n+ 1)s0−s

)
.

Taking absolute values and using |fn(s0)| < c we find∣∣∣∣ m+N∑
n=m+1

ann
−s

∣∣∣∣ ≤ c(m+N)σ0−σ + c(m+ 1)σ0−σ

+ c
m+N−1∑
n=m+1

∣∣ns0−s − (n+ 1)s0−s
∣∣.

In order to give a bound for the last sum, observe that
∫
x−t−1dx = − 1

tx
−t

for t 6= 0, hence x−t = −t
∫
x−t−1dx. Now we find
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∣∣ns0−s − (n+ 1)s0−s
∣∣ =

∣∣∣∣(s− s0) ∫ n+1

n

xs0−s−1dx

∣∣∣∣
≤ |s− s0|

∫ n+1

n

|xs0−s−1|dx

≤ |s− s0|
∫ n+1

n

x−1−δdx

≤ |s− s0|
δ

[
(n+ 1)−δ − n−δ

]
.

For all s with |s− s0| < C this then implies∣∣∣∣ m+N∑
n=m+1

ann
−s

∣∣∣∣ ≤ c((m+N)−δ + (N + 1)−δ) +
cC

δ

m+N−1∑
n=m+1

(n−δ − (n+ 1)−δ).

The last sum is a telescope sum and equals (m+ 1)−δ − (m+N)−δ, and we
see ∣∣∣∣ m+N∑

n=m+1

ann
−s

∣∣∣∣ < 2cn−δ +
cC

δ
n−δ = c

(
2 +

C

δ

)
n−δ.

The last expression does not depend on N and tends to 0 for n → ∞; this
proves our claim.

A Dirichlet series f(s) need not converge anywhere; if it does converge
for some s0 ∈ C, then we have just seen that it converges for all s ∈ C
with Re s > σ = Re s0. The minimal σ ∈ R with this property is called the
abscissa of convergence; f(s) converges for Re s > σ, and does not converge
for Re s < σ.

Lemma 1.7. Consider the Dirichlet series f(s) =
∑
ann

−s. If the partial
sums A(m) =

∑m
n=1 an of the coefficients have the property that |A(m)| ≤

cmσ0 for some constants c, σ0 > 0, then f(s) is an analytic function in the
half plane Re s > σ0.

Proof. Let Re s = σ > σ0; then

m+N∑
n=m+1

ann
−s = A(m+N)(m+N)−s −A(n)(n+ 1)−s

+
m+N−1∑
n=m+1

ann
−sA(n)(n−s − (n+ 1)−s).

The estimate involving the integral in the proof of Prop. 1.6 shows
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m+N∑
n=m+1

ann
−s ≤ c

(
(m+N)σ0−σ + (m+ 1)σ0−σ

)
+ c

m+N−1∑
n=m+1

nσ0 |s|
∫ n+1

n

x−σ−1dx

≤ 2cmσ0−σ + c|s|
∑

nσ0

∫ n+1

n

x−σ−1dx

≤ 2cmσ0−σ + c|s|
∑ ∫ n+1

n

xσ0−σ−1dx

≤ 2cmσ0−σ + c|s|(σ0 − σ)−1
m+N−1∑
n=m+1

(
(n+ 1)σ0−σ − nσ0−σ

)
≤ 2cmσ0−σ + c|s|(σ0 − σ)−1(n+ 1)σ0−σ

≤ c
(
2 +

|s|
σ − σ0

)
mσ0−σ.

This tends to 0 independently of N as m→∞.

1.3 Quadratic Number Fields

A quadratic number field is a quadratic extension K of Q. They all have the
form K = Q(

√
m ) for some squarefree integer m ∈ Z. The elements of K

are a+ b
√
m with a, b ∈ Q. The conjugate of α = a+ b

√
m is α = a− b

√
m,

and the map σ : K −→ K;α 7−→ σ(α) = α′ is the nontrivial automorphism
of K/Q. The rational numbers Nα = αα′ and Trα = α + α′ are called the
norm and the trace of α, respectively.

The ring of integers OK has the form OK = Z⊕ Zω, where

ω =

{
1+

√
m

2 if m ≡ 1 mod 4,
√
m if m ≡ 2, 3 mod 4.

The set {1, ω} is called an integral basis of K, and∣∣∣∣1 ω
1 ω′

∣∣∣∣2 = (ω − ω′)2

is called the discriminant of K. We find

discK =

{
m if m ≡ 1 mod 4,
4m if m ≡ 2, 3 mod 4.

The prime ideal decomposition is governed by the Kronecker symbol (dp ) for
d = discK; this is the usual Legendre symbol if p is an odd prime, and is
defined by



1.4 Gauss 13

(d
2

)
=


+1 if d ≡ 1 mod 8,
−1 if d ≡ 5 mod 8,
0 if d ≡ 0 mod 4.

Every prime ideal p 6= (0) in OK contains a unique rational prime p, and
we say that p lies above p. The prime p splits, is inert, or ramifies in K
according as pOK = pp′ for distinct prime ideals p 6= p′, pOK remains prime,
or pOK = p2 becomes a square.

Theorem 1.8 (Decomposition Law in Quadratic Number Fields). Let K be
a quadratic number field with discriminant d. Then a prime number p

• splits if and only if (dp ) = +1;
• is inert if and only if (dp ) = −1;
• ramifies if and only if p | d.

The norm Na of an ideal a is by definition the cardinality of the residue
class group OK/a. For prime ideals we have Np = pf , where f = 1 if p splits
or ramifies, and f = 2 if p is inert. Note that in Dedekind rings such as OK ,
all nonzero prime ideals are maximal, hence the OK/p is a finite field. It is
easily seen to contain Fp, and we have (OK/p : Fp) = f .

1.4 Gauss

Riemann’s zeta function can be interpreted as the sum of Na−s over all
(principal) ideals a = (n) of Z; recall that N(n) = #Z/nZ = |n|, and that
summation over ideals means that n and −n (for n ∈ N) only contribute n−s.

If we do the same in K = Q(i) and the ring of Gaussian integers Z[i], and
if we observe that each ideal (x+ iy) has a unique representative in the first
quadrant, then we find

ζK(s) =
∑
a6=0

Na−s =
∑

x,y≥0,(x,y) 6=(0,0)

1
(x2 + y2)s

.

Unique Factorization in Z[i] implies that the zeta function of Z[i] admits the
Euler factorization

ζK(s) =
∏
π

1
1−Nπ−s

,

where the product is over all primes π in the first quadrant. For π = 1 + i
we get Nπ = 2; there are exactly two primes π above primes p ≡ 1 mod 4,
and their contribution to the Euler product is

∏
p≡1 mod 4

1
(1−p−s)2 . Finally, the

primes p ≡ 3 mod 4 remain inert in Z[i] and have norm p2, so they contribute∏
p≡3 mod 4

1
1−p−2s . Thus we have
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ζK(s) =
1

1− 2−s
∏

p≡1 mod 4

1
(1− p−s)2

∏
p≡3 mod 4

1
1− p−2s

= ζ(s)
∏

p≡1 mod 4

1
1− p−s

∏
p≡3 mod 4

1
1 + p−s

= ζ(s)L(s, χ).

Here Dirichlet’s L-series L(s, χ) for the character χ = (−4
· ) is defined, for all

s > 1, via its Euler product

L(s, χ) =
∏
p

1
1− χ(p)p−s

.

Since χ is a multiplicative function, it is easily shown that

L(s, χ) =
∑
n≥1

χ(n)
ns

.

In particular,

L(1, χ) = 1− 1
3

+
1
5
− 1

7
± . . . = π

4
since

π

4
=

∫ 1

0

dx

x2 + 1
=

∫ 1

0

(1− x2 + x4 − x6 ± . . .)dx = 1− 1
3

+
1
5
− 1

7
± . . . .

Thus not only does L(s, χ) converge for s = 1, it converges to some nonzero
limit. Multiplying ζK(s) = ζ(s)L(s, χ) through by s− 1 and taking limits we
see

lim
s→1

(s− 1)ζK(s) =
π

4
for K = Q(i).

The pole of the zeta function of K at s = 1 immediately implies that
there are infinitely many prime ideals in Z[i], but this is of course a trivial
consequence of the infinitude of primes in Z since there is at least one prime
ideal above every rational prime.

But we can also, exactly as before, deduce that the sum
∑

1
Nπ over all

primes π in Z[i] diverges; since the sum for primes π ≡ 3 mod 4 obviously
converges (it is majorized by

∑
n≥9 n

−2), we deduce that
∑

1
Nπ diverges,

where the sum is over all odd primes of degree 1. Since there are exactly two
primes of norm p ≡ 1 mod 4, we find∑ 1

Nπ
= 2

∑
p≡1 mod 4

1
p
,

and thus we conclude
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∑
p≡1 mod 4

1
p

=∞.

That the divergence of
∑
Np−1 implies a stronger result is a consequence

of the fact that the divergence must result from primes of degree 1; primes of
degree ≥ 2 contribute only a finite amount to

∑
Np−1. Generalizing Dirich-

let’s technique to arbitrary number fields will therefore imply that each num-
ber field has infinitely many prime ideals of degree 1.

1.5 Dirichlet’s L-series

Let us now see how Dirichlet generalized this to quadratic number fields.
To be precise, Dirichlet worked not with quadratic number fields, but with
binary quadratic forms. Dedekind later showed that these two languages were
essentially isomorphic, and gave the defnition of the zeta function of a general
number field K:

ζK(s) =
∑

a6=(0)

Na−s

for all s ∈ C with Re s > 1. Unique factorization into prime ideals implies

ζK(s) =
∏
p

1
1−Np−s

,

where the product is over all prime ideals p 6= (0).
Now let K = Q(

√
d ) be a quadratic number field with discriminant d,

and let χ = (d· ) be its associated quadratic character; recall that χ(n) = 0 if
gcd(d, n) 6= 1). Define Dirichlet’s L-series L(s, χ) =

∑ χ(n)
ns for all s > 1.

Lemma 1.9. Let ψ be a multiplicative function defined on N. Then

L(s, ψ) =
∑ ψ(n)

ns
=

∏
p

1
1− ψ(p)p−s

wherever L(s, ψ) converges.

Proof. Exactly as for Riemann’s zeta function.

Now we claim

Theorem 1.10. The Dirichlet L-series has an Euler factorization

L(s, χ) =
∑ χ(n)

ns
=

∏
p

1
1− χ(p)p−s

.

Moreover, we have
ζK(s) = ζ(s)L(s, χ). (1.7)
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Note that L(s, χ) = ζK(s)
ζQ(s) is the quotient of the zeta functions of K and

its subfield Q. It can be shown that these zeta functions can be extended
to meromorphic functions on the whole complex plane, and that their only
singularity is a simple pole at s = 1. Thus their quotient L(s, χ) is an entire
function on the whole complex plane.

Proof. Exactly as for discK = −4; just use the decomposition law in quad-
ratic number fields.

It remains to show that L(1, χ) converges to a nonzero limit. This can
be done easily with a little bit of complex analysis, and there are also quite
elementary proofs using only real analysis. Our goal is a lot bigger: not only
will we show that L(1, χ) 6= 0, we will compute its exact value. In the next
section we will present an elementary proof of L(1, χ) 6= 0, then show how
Dirichlet succeeded in computing the exact value of L(1, χ), and finally ex-
plain how to derive the classical class number formulas for quadratic number
fields.

Consequences of the Nonvanishing of L(1, χ)

Assume now that L(1, χ) 6= 0 for χ(n) = ( dn ), where d is the discriminant
of a quadratic number field. Imitating Euler’s proof in the case K = Q, we
easily find

log ζK(s) =
∑

Np−s +O(1)

for s > 1. On the other hand, taking the log of the fundamental equation
(1.7) shows that

log ζK(s) = log ζ(s) + logL(s, χ).

If L(1, χ) 6= 0, then we can bound logL(s, χ) on some interval like (1, 2), and
get

log ζK(s) = log ζ(s) +O(1),

which in turn implies

log ζK(s) = log
1

s− 1
+O(1).

Finally, the contribution of primes of degree 2 to the sum
∑
Np−s is bounded,

and since there are two prime ideals above every prime p that splits in K we
have ∑

Np−s = 2
∑

( d
p )=1

p−s +O(1),

which implies ∑
( d

p )=1

p−s =
1
2

log
1

s− 1
+O(1).
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Let P be a set of positive integers such that
∑
p∈P

1
p diverges. Then a

subset S of P is said to have Dirichlet density δ if

lim
s→1+0

∑
p∈S p

−s∑
p∈P p

−s = δ.

The following properties are easy to prove:

• Finite sets have Dirichlet density 0.
• P has Dirichlet density 1.
• If S and S′ are disjoint sets with Dirichlet densities δ and δ′, respectively,

then S ∪ S′ has Dirichlet density δ + δ′.
• If S and S′ have Dirichlet density δ and δ′, respectively, and if S ⊆ S′,

then δ ≤ δ′.
• If S has Dirichlet density δ, then P \ S has Dirichlet density 1− δ.

If P is the set of all primes in N, then a subset S will have Dirichlet density
δ if and only if ∑

p∈S
p−s ∼ δ log

1
s− 1

as s→ 1 + 0. Here f(s) ∼ g(s) if lim
s→1+0

f(s)/g(s) = 1.

These properties then imply the following

Theorem 1.11. Let d be the discriminant of a quadratic number fields. Then
the sets of primes p with (dp ) = +1 and (dp ) = −1 have Dirichlet density 1

2 .

Notes

Observe that we have not used the quadratic reciprocity law for the proof of
Theorem 1.11; thus this result may be used to prove quadratic reciprocity if
the nonvanishing of L(1, χ) also can be proved without quadratic reciprocity.
In the next chapter we will give three proofs for L(1, χ) 6= 0; the one that
is only valid for prime discriminants uses the reciprocity law, the other two
do not. This has some relevance for the history of mathematics: Legendre’s
attempt at proving the reciprocity law was incomplete since he had to assume
the existence of certain primes p with (dp ) = −1 for suitable values of d.

The proof given in Section 1.4 can be found in [Ga1889, 655–677].
I would also like to say a few things about the distinction between analytic

and algebraic number theory. Nontrivial results about the distribution of
primes are encoded in the behavior of the zeta function:
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ζ(s) has a pole at s = 1 =⇒
∑
p

p−s ∼ 1
s− 1

ζ(s) 6= 0 for Re s = 1 =⇒ π(x) ∼ x

log x

ζ(s) 6= 0 for Re s >
1
2

=⇒ π(x) =
x

log x
+O(x

1
2+ε) for all ε > 0.

Here π(x) denotes the number of primes p ≤ x. For me, the watershed be-
tween algebraic and analytic number theory lies between the first and the
second statement, and the last two statements are analytic because they
deal with the distribution of zeros (more exactly they require knowledge
about zero-free regions of zeta functions). Of course zeta functions and L-
series are analytic objects, but they encode unique factorization into prime
ideals (Euler product) and decomposition laws of prime ideals in extensions
(equation (1.7)), which are algebraic objects, and their residues at poles are
connected with arithmetic invariants (class numbers, units, discriminants).

Let me also remark that the convergence of the Euler product of ζ(s) for
Re s > 1 implies that ζ(s) 6= 0 for all s ∈ C with Re s > 1. In particular,
1/ζ(s) is an entire function on this halfplane, and in fact Euler (who else?)
found that 1/ζ(s) =

∑
µ(n)n−s, where µ is the Moebius function.

Equation (1.7) is a special case of a conjecture of Dedekind, according to
which the zeta function ζk(s) divides ζK(s) for any extension K/k of number
fields; by this we mean that the quotient ζK(s)/ζk(s) should be an entire
function on the whole complex plane. This was proved for normal extensions
K/k by Aramata and Brauer, and for extensions whose normal closure is
solvable by Uchida and van der Waall.

The algebraic number theory that we need in this course can be found
in Marcus [Ma1977]; this is an excellent book with lots of exercises. A mod-
ern and very concise introduction to algebraic number theory is Swinnerton-
Dyer’s [Sw2001]; it also presents the main theorems of class field theory and
discusses local fields. The best introduction to local fields is probably Cas-
sels’ [Ca1986]; he also develops the theory of algebraic number fields, and
studying [Ca1986] may be followed up by looking at more advanced texts
like Serre’s excellent [Se1980]. Finally, Davenport’s [Da1980] contains a good
introduction to Dirichlet series.

Exercises

1.1 Plug α = π
3

and α = π
6

into Euler’s formula (1.2), and simplify the results as
much as possible.

1.2 Show that lim
s→1+0

cos π
2
sζ(s) = −π

2
(Hint: you know what happens for (s −

1)ζ(s)). Show that the functional equation then implies that ζ(0) = − 1
2
.
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1.3 Every factor on the right hand side of the Euler product (1.6) has a pole at
s = 0, whereas the functional equation predicts ζ(0) = − 1

2
. Explain.

1.4 Show that if f(s) =
P
ann

−s, where an ∈ R, converges absolutely for some
real number σ, then it converges absolutely for all s ∈ C with Re s > σ.

1.5 Let ψ be a multiplicative function such that |ψ(n)| < C for some constant
C > 0. Show that X

n≥1

ψ(n)

ns
=
Y
p

1

1− ψ(p)p−s

for all s ∈ C with Re s > 1.

1.6 Let K be a number field. Show that the number of integral ideals of norm
≤ n is O(n), and deduce that the Dedekind zeta function ζK(s) =

P
Na−s

converges for all s ∈ C with Re s > 1.

1.7 Let K be a number field. Use unique factorization into prime ideals to show
that Dedekind’s zeta function admits an Euler factorization:

ζK(s) =
X

Na−s =
Y
p

1

1−Np−s
.

1.8 LetK be a quadratic number field with discriminant d. Let χ be the associated
character defined by

χ(n) =

(
( d
n
) if gcd(d, n) = 1,

0 if gcd(d, n) 6= 1.

Use the decomposition law in K to show that

ζK(s) = ζ(s)L(s, χ)

for all s ∈ C with Re s > 1.

1.9 For this exercise you need some knowledge about the decomposition of
prime ideals in normal extensions. Consider the biquadratic number field
K = Q(

√
d1,

√
d2 ). It contains three quadratic subfields kj = Q(

p
dj ) with

discriminants d1, d2, and d3.
1. Show that d1d2 = d3m

2 for some integer m.
2. Show that p splits completely if and only if (d1/p) = (d2/p) = +1.
3. Show that primes p - d1d2 have inertia degree 2 if and only if (dj/p) = +1

for exactly one index j.
4. Show that no prime can remain inert in K/Q.
5. Show that if p | dj for every j, then p = 2. Deduce that if p ramifies

completely, then p = 2.
6. Discuss the possible decompositions pOK = P4, P2, P2

1P
2
2 in terms of

the Kronecker symbols (dj/p).

1.10 (continued) Let χj = (dj/ · ) be the quadratic character attached to the quad-
ratic number field kj . Show that

ζK(s) = ζ(s)L(s, χ1)L(s, χ2)L(s, χ3)

for all s > 1, and that the right hand side represents an analytic function for
all s ∈ C with Re s > 0, with a simple pole of order 1 at s = 1.
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1.11 (continued) Show that the primes p with (d1/p) = (d2/p) = +1 have Dirichlet
density 1

4
, and then deduce the same thing for primes with (d1/p) = +1,

(d2/p) = −1, as well as for primes with (d1/p) = (d2/p) = −1.

1.12 (continued) Show that there are infinitely many primes in each of the residue
classes a ≡ 1, 3, 5, 7 mod 8. Do the same for a ≡ 1, 5, 7, 11 mod 12.

1.13 (continued) Sketch a proof for the existence of infinitely many primes p with
(d1/p) = (d2/p) = (d3/p) = +1, where d1, d2, d3 are independent (i.e., do not
differ just by square factors) quadratic discriminants.

1.14 Show that (1.7) implies the decomposition law in quadratic extensions.



2. The Nonvanishing of L(1, χ) for Quadratic
Characters

In this chapter I will present various techniques for showing that L(1, χ) > 0
for quadratic characters χ = (d· ). Since L(s, χ) ≥ 0 for all s ≥ 0, this is
equivalent to showing L(1, χ) 6= 0.

2.1 Dirichlet’s Proof for Prime Discriminants

Let d = discK be the discriminant of a quadratic number field, and let χ =
(d· ) be the corresponding character. In his attempts to prove that L(1, χ) 6= 0,
Dirichlet computed L(1, χ) more or less explicitly. For doing so he observed
that (d· ) is periodic with period m = |d| since ( da ) = ( d

a+m ) for all positive
integers a. This follows easily from the quadratic reciprocity law (see Exercise
8).

The computation of L(1, χ) will allow us to prove that L(1, χ) 6= 0 only in
special cases; the calculation is, however, also indispensible for the derivation
of Dirichlet’s class number formula. We will now give a simplified approach
to Dirichlet’s calculations, and will discuss Dirichlet’s original proof in the
Notes.

Let us now deal with the problem of computing L(x, χ) for a general
character χ = (d· ) with period m = |d|. The periodicity implies

L(1, χ) =
∑

χ(n)n−1

= χ(1) + χ(2)2−1 + . . .+ χ(m)m−1

+ χ(1)(m+ 1)−1 + . . .+ χ(m)(2m)−1 + . . .

=
m∑
k=1

χ(k)
∑

n≡k mod m

n−1.

Let ζ denote a primitive m-th root of unity. Since
m−1∑
a=0

ζra =

{
m if m | r,
0 if m - r,

we can write
∑

n≡k mod m

n−1 = 1
m

m−1∑
a=0

ζ(n−k)a, and find
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L(1, χ) =
1
m

∑
k mod m

χ(a)
m−1∑
a=0

ζ(k−n)an−1

=
1
m

m−1∑
a=0

( ∑
k mod m

χ(k)ζak
) ∞∑
n=1

ζ−nan−1

The sum τa(χ) =
∑
k mod m χ(k)ζak is called a quadratic Gauss sum for the

character χ. A simple calculation1 shows that τa(χ) = χ(a)τ1(χ), and we put
τ = τ1(χ). Another straightforward computation reveals that τ2 = p∗ for
p∗ = (−1

p )p; in particular, τ 6= 0.
The sum

∑∞
n=1 z

nn−1 converges for all z 6= 1 inside the unit disc to
− log(1− z), where we have to choose the principal branch of the logarithm
(the one that vanishes at z = 0); thus

∑∞
n=1 ζ

−nan−1 = − log(1 − ζa), and
we get

L(1, χ) = − τ
m

m−1∑
a=0

χ(a) log(1− ζa). (2.1)

Evaluation of (2.1)

It remains to evaluate
∑
χ(a) log(1 − ζ−a). As a runs through a coprime

system of residue classes, so does −a, hence

m−1∑
a=1

χ(a) log(1− ζ−a) = χ(−1)
m−1∑
a=1

χ(a) log(1− ζa).

For evaluating the expression log(1 − ζa), we fix the primitive m-th root
of unity by setting ζ = exp( 2πi

m ). With ξ = exp(πim ) we find ξ2 = ζ and
1−ζa = −ξa(ξa−ξ−a) = −2iξa sin πa

m . This implies log(1−ζa) = log(−2iξa)+
log sin πa

m . Thus for 0 < a < m we get log(1 − ζa) = log 2 + ( am −
1
2 )πi +

log sin πa
m (observe that −i = e−πi/2). Collecting everything we see

L(1, χ) = −χ(−1)
τ

p

p−1∑
a=1

χ(a)
(

log sin
aπ

m
+
aπi

m

)
where we have used

∑
χ(a) = 0 (see Exercise 1).

Let us pause for a moment to discuss a subtle point. The complex log
function is, as you know, multivalued since exp(z) = exp(z + 2πi). On the
positive real axis, however, we can fix the value of log by demanding that
Im log z = 0 for real z > 0; this is also the value that is produced by the
Taylor expansion of log(1− z) for real z with |z| < 1.

In order to select a well defined value log z for complex values of z we
remove the negative real axis (including the origin); if we write log(1− z) =
1 I will provide proofs for these basic facts in an appendix.
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x+ iy for such z with |z| ≤ 1 and z 6= ±1, then −π < y < π. These values of
log(1− z) are said to form the principal branch of the complex log function,
and by analytic continuation this holds for all z outside the negative axis. In
our case, the value of log(1− ζa) came from an integration, that is, from the
Taylor expansion of log(1−z), hence we have to take the principal value. The
imaginary part of log(1 − ζa) computed above is ( am −

1
2 )π, and this is the

principal value if we choose 0 < a < m. Thus everything involving log(1−ζa)
below is only valid for this particular choice of representatives of a mod m.

Next we invoke the following

Lemma 2.1. Let χ be a quadratic character modulo m. Then{∑
χ(a)a = 0 if χ(−1) = 1,∑
χ(a) log sin aπ

p = 0 if χ(−1) = −1,

where the sums are over all a ∈ (Z/mZ)×.

Proof. If χ(−1) = 1, then
∑
χ(a)a =

∑
χ(m− a)(m− a) = −

∑
χ(a)a since∑

χ(a) = 0; this implies
∑
χ(a)a = 0.

If χ(−1) = −1, then
∑
χ(a) log sin aπ

m =
∑
χ(m − a) log sin (m−a)π

m =
−

∑
χ(a) log sin aπ

m , hence this sum vanishes.

A character χ is called odd or even according as χ(−1) = −1 or χ(−1) =
+1. Using this lemma, our expression for L(1, χ) simplifies to

L(1, χ) =


πiτ
m2

m−1∑
a=1

χ(a)a if χ is odd,

− τ
m

m−1∑
a=1

χ(a) log sin aπ
m if χ is even.

(2.2)

With this equation we have expressed L(1, χ) as a finite sum that can be
computed for a given character χ. In the special case where d = p ≡ 3 mod 4 is
prime, the first formula immediately implies that L(1, χ) 6= 0: this is because
in this case,

∑
χ(a)a ≡

∑
a = p(p−1)

2 ≡ 1 mod 2 is an odd integer and
therefore 6= 0.

Theorem 2.2. Let p ≡ 3 mod 4 be an odd prime and χ = ( ·p ). Then
L(1, χ) > 0.

Simplifying (2.2) for Odd Characters

In the special case d = −3, we have τ = ζ − ζ2 = −1−i
√

3
2 − −1+i

√
3

2 = i
√

3,
hence L(1, χ) = πi2

√
3

9 (1− 2) = π
3
√

3
≈ 0.604599788. Here is a table with the

partial sums Lm =
∑m
n=1 χ(n)n−s for a few values of m:
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m Lm
10 0.66785

100 0.61123
1000 0.60526

10000 0.60466

m Lm
11 0.57694

101 0.60133
1001 0.60426

10001 0.60456

If d = −4, then τ = i− i3 = 2i, hence L(1, χ) = π
4

Now consider discriminants d < −4; we would like to simplify the expres-
sion

h = − 1
m

∑
χ(a)a,

where the sum is over all 1 ≤ a < m = |d| with gcd(a, d) = 1. We have to
distinguish a few cases:

1. m = |d| is even. Then χ(a+ m
2 ) = −χ(a) (see Exercise 9). Then

hm = −
∑

0<a<m/2

χ(a)a−
∑

0<a<m/2

χ(a+ m
2 )(a+ m

2 )

= −
∑

0<a<m/2

χ(a)a+
∑

0<a<m/2

χ(a)(a+ m
2 )

=
m

2

∑
0<a<m/2

χ(a),

hence h = 1
2

∑
0<a<m/2 χ(a).

2. m = |d| is odd. Then m ≡ 3 mod 4, hence χ(−1) = −1 by Exercise 8.
This time we find

hm = −
∑

0<a<m/2

χ(a)a−
∑

0<a<m/2

χ(m− a)(m− a)

= −2
∑

0<a<m/2

χ(a)a+m
∑

0<a<m/2

χ(a),

as well as

hm = −
∑
2|a

χ(a)a−
∑
2|a

χ(m− a)(m− a)

= −4
∑

0<a<m/2

χ(2a)a+m
∑

0<a<m/2

χ(2a)

= −4χ(2)
∑

0<a<m/2

χ(a)a+mχ(2)
∑

0<a<m/2

χ(a).

Combining these formulas shows
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(2− χ(2))h =
∑

0<a<m/2

χ(a).

Thus, in both cases, we have proved the following formula:

Theorem 2.3. Let d < −4 denote the discriminant of a complex quadratic
number field. Then

h = − 1
m

∑
χ(a)a =

1
2− χ(2)

∑
0<a<m/2

χ(a).

The value of the quadratic Gauss sum can be determined explicitly:

Theorem 2.4 (Gauss). For χ = (d· ), the value of the Gauss sum τ = τ1(χ)
is given by

τ =

{√
d if d > 0,

i
√
−d if d < 0.

In particular, we have

Theorem 2.5. Let d be the discriminant of a complex quadratic number
field. Then

L(1, χ) =
π√
|d|
h.

Since h ≥ 1, this gives us the lower bound L(1, χ) ≥ π√
|d|

for the values

of L(1, χ). If we could show that there is an ε > 0 such that L(1, χ) > ε for
all quadratic characters χ, we could deduce that there are only finitely many
complex quadratic number fields with given class number.

Specializing Theorem 2.3 to fields Q(
√
−p ) for odd primes p > 3 we

immediately get

Corollary 2.6. Let p ≡ 3 mod 4 be prime > 3, and let R and N denote the
sum of the quadratic residues and nonresidues in the interval [1, p−1

2 ]. Then

h =

{
R−N if p ≡ 7 mod 8,
1
3 (R−N) if p ≡ 3 mod 8.

Computing these numbers for a few small primes produces the following
table:

d −3 −4 −7 −8 −11 −15 −19 −20 −23
h 1 1 1 1 1 2 1 2 3

Dirichlet knew this numbers h: these are the class numbers of the quadratic
forms with discriminant d. In fact, Jacobi had earlier conjectured (in connec-
tion with calculations involving Jacobi sums) that the class number of the
complex quadratic number field Q(

√
−p ) is given by the formula in Cor. 2.6.
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This surprising connection between the values L(1, χ) and the class numbers
of complex quadratic fields made Dirichlet look for a proof that would explain
this mystery. Eventually, Dirichlet found such a proof, and we will present it
in Section 2.3 below.

Note that Cor. 2.6 implies that R > N (since h has the same sign as
L(1, χ), hence is positive), i.e., that there are more residues than nonresidues
in the interval [1, p−1

2 ]. The only known proofs of this elementary fact are
analytic.

Simplifying (2.2) for Even Characters

The case of even characters χ is a great deal more complicated. For showing
that L(1, χ) 6= 0 we have to show that the expression∑

(a,d)=1

χ(a) log sin
πa

m

does not vanish. Since χ(a) = χ(m− a) and sinx = sin(π − x), this sum can
also be written in the form ∑

1≤a<m/2

χ(a) log sin
πa

m
.

Now we observe that∑
χ(a) log sin

aπ

m
= log η for η =

∏
sin πn

m∏
sin πr

m

,

where n and r run through the integers from 1 to m
2 with χ(n) = −1 and

χ(r) = 1. Clearly L(1, χ) 6= 0 if and only if η 6= 1.
We will now study η using Galois theory applied to cyclotomic fields.

Dirichlet was able to do this using Gauss’s results on cyclotomy (in modern
terms, Gauss developed the Galois theory of cyclotomic extensions in Chapter
VII of his Disquisitiones; general Galois theory had not yet been invented).

Lemma 2.7. η is a unit in Q(
√
d ).

Proof. η is a product of terms of the form ξn−ξ−n

ξr−ξ−r , where ξ = exp(πim ), and
where n and r satisfy χ(n) = −1 and χ(r) = 1. We will show first that each
such factor is a unit in Q(ξ), and then show that η lies in Q(

√
d ).

Now ξn−ξ−n

ξr−ξ−r = ξn−r 1−ζ−n

1−ζ−r . Let s be an integer with rs ≡ 1 mod m, and

let σs denote the automorphism of Q(ζ) with σs(ζ) = ζs. Then σs
(

1−ζ−n

1−ζ−r

)
=

1−ζ−ns

1−ζ , which clearly is an algebraic integer in Q(ζ). Thus 1−ζ−n

1−ζ−r is integral,

and a similar argument shows that so is 1−ζ−r

1−ζ−n ; thus this element is a unit in
Q(ζ).
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The root of unity ξn−r also lies in Q(ζ): if d is even, then n and r must
be odd, hence ξn−r = ζ(n−r)/2. If d is odd, then ξ ∈ Q(ζ).

The equation τ2 = d shows that k = Q(τ) = Q(
√
d ) is a subfield of

K = Q(ζ). The Galois group of K/Q consists of all automorphisms σa with
gcd(a,m) = 1. In order to show that k is the fixed field of the group of all σa
with χ(a) = +1, we only need to show that these σa fix k. But this follows
immediately from σa(τ) = τa = χ(a)τ .

Thus η will be a unit in k if we can show that σa(η) = η for all a with
χ(a) = +1. The proof involves a variant of Gauss’s lemma from the elemen-
tary theory of quadratic reciprocity and will be added soon.

Lemma 2.8. Let d be a positive discriminant, χ the corresponding character,
and ε > 1 the fundamental unit of Q(

√
d ). Then there is an integer h ≥ 0

such that η = εh.

Proof. This follows immediately from the fact that η ≥ 1, i.e., that log η ≥ 0,
which in turn is a consequence of L(1, χ) ≥ 0.

Lemma 2.9. assume that d = p ≡ 1 mod 4 is prime. Then Nη = −1, hence
the fundamental unit ε of Q(

√
p ) has negative norm, and the integer h in

Lemma 2.8 is odd.

Proof. To be added soon.

We have proved:

Theorem 2.10. Let p be an odd prime and χ = ( ·p ). Then L(1, χ) > 0.

In Section 2.3 below we will show that
∑

(ap )a = hp for all primes p ≡
3 mod 4 with p > 3, where h is the class number of Q(

√
−p ), and that the

unit η is equal to η = ε2h, where ε is the fundamental unit and h the class
number of Q(

√
p ).

The miracle that the explicit value L(1, χ) of Dirichlet’s L-function for
the characters ( ·p ) at s = 1 is connected to deep arithmetic invariants of
the fields Q(

√
p∗ ) such as their class number and fundamental unit will be

explained in Section 2.3 below.

2.2 Nonvanishing of Dirichlet’s L-functions

In this section I will present an elementary proof that L(1, χ) 6= 0 for quad-
ratic Dirichlet characters χ. The idea behind it is due to Gelfond [GL1965,
pp. 47–49], with some simplifications thrown in by Monsky [Mo1993].

We start by putting

cn = cχ(n) =
∑
d|n

χ(d).

The function cχ has the following properties:
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Lemma 2.11. We have

1. cχ(m)cχ(n) = cχ(mn) whenever gcd(m,n) = 1;
2. cχ(pa) ≥ 0 for all prime powers pa;
3. cχ(n) ≥ 0 for all integers n ≥ 1;
4. cχ(n2) ≥ 1.

Proof. 1. We have cχ(mn) =
∑
d|mn

χ(d) =
∑
e|m

∑
f |n

χ(ef) = cχ(m)cχ(n).

2. Clearly cχ(pa) = χ(1) + χ(p) + χ(p2) + . . .+ χ(pa) ≥ 0 since χ(r2) = 1.
3. This follows immediately from (1) and (2).
4. Observe that cχ(pk) = 0 or = 1 according as k is odd or even. Now use

multiplicativity.

The series f(t) =
∑
n≥1

χ(t) tn

1−tn converges absolutely in [0, 1).

Lemma 2.12. 1. We have f(t) =
∑
n≥1

cχ(n)tn.

2. lim
t→1−

f(t) =∞.

Proof. 1. f(t) =
∑
n≥1

χ(t) tn

1−tn =
∑
n≥1

χ(t)
∑∞
m=1 t

mn =
∞∑
N=1

cχ(N)tN .

2. Clearly f(t) ≥
∞∑
n=1

tn
2
, and the right hand side diverges as t→ 1−.

Now let us see why L(1, χ) 6= 0 for quadratic characters χ 6= 1. Assume
that 0 = L(1, χ) =

∑ χ(n)
n ; then

−f(t) =
∑
n≥1

χ(n)
( 1
n(1− t)

− tn

1− tn
)

=:
∑
n≥1

bnχ(n).

Lemma 2.13. We have b1(t) ≥ b2(t) ≥ b3(t) ≥ . . . for all t ∈ [0, 1).

Proof. Observe that

(1− t)(bn − bn+1) =
1
n
− 1
n+ 1

− tn

1 + t+ . . .+ tn−1
+

tn+1

1 + t+ . . .+ tn

=
1

n(n+ 1)
− tn

(1 + t+ . . .+ tn−1)(1 + t+ . . .+ tn)

≥ 1
n(n+ 1)

− 1
n(n+ 1)

= 0,

where we have used the inequality between arithmetic and geometric means:
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1 + t+ . . .+ tn−1 ≥ nt(n−1)/2 ≥ ntn/2,
1 + t+ . . .+ tn ≥ (n+ 1)tn/2.

The claim now follows.

Observe that χ is defined modulo d, and that
∑d
n=1 χ(d) = 0. Now we

use a trick called Abel summation: we have

k∑
n=1

χ(n)bn = χ(1)(b1 − b2) + (χ(1) + χ(2))(b2 − b3)

+ (χ(1) + χ(2) + χ(3))(b3 − b4) + . . .

+ (χ(1) + . . .+ χ(k))(bk − bk+1) + (χ(1) + . . .+ χ(k))bk+1.

Taking absolute values, applying the triangle inequality and observing that
|χ(1) + . . .+ χ(m)| ≤ d and bm − bm−1 ≥ 0 yields

∣∣∣ k∑
n=1

χ(n)bn
∣∣∣ ≤ d(b1 − b2) + d(b2 − b− 3) + . . .+ d(bk − bk+1) + d|bk+1|

= db1 + d(|bk+1| − bk+1).

Since lim bn = 0, the last term is bounded, hence −f(t) =
∑
χ(n)bn is

bounded as well, and this contradiction proves the claim.

2.3 Computation of L(1, χ)

Our starting point is the basic equation

ζK(s) = ζ(s)L(s, χ),

where χ(n) = ( dn ) and d = discK is the discriminant of the quadratic number
field K. Multiplying through by s− 1 and taking limits we see that

lim
s→1+0

(s− 1)ζK(s) = lim
s→1+0

(s− 1)ζ(s)L(s, χ) = L(1, χ).

Thus if we can show that lims→1+0(s−1)ζK(s) exists and is nonzero, we will
have proved that L(1, χ) 6= 0.

Gaussian Integers

In order to understand the basic idea, let us first consider the case K = Q(i).
Let am denote the number of ideals of norm m; then ζK(s) =

∑
ann

−s. Put
Am = a1 + . . .+ am; then Am is the number of nonzero ideals of norm ≤ m.
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Since K has class number 1, every ideal is principal, and since the unit
group has 4 elements, am = 1

4bm, where bm is the number of elements with
norm m. Similarly, Bm = b1 + . . . + bm is the number of nonzero elements
with norm ≤ m.

If we represent Z[i] as a lattice in C, then Bm + 1 is the number of
lattice points inside a circle of radius

√
m. If m is large, this number can be

approximated by the area mπ of the circle (put a unit square around each
lattice point), and in fact we will show below that |Bm − mπ| = O(

√
m ).

Dividing through by 4 gives |Am −mπ
4 | = O(

√
m ).

Now define a Dirichlet function

f(s) = ζK(s)− π

4
ζ(s) =

∑
n≥1

(
an −

π

4

)
n−s.

Since the partial sums of the coefficients are O(n1/2), f(s) converges for
s > 1

2 , and we get

lim
s→1+0

(s− 1)ζK(s) = lim
s→1+0

(s− 1)f(s) +
π

4
lim

s→1+0
(s− 1)ζ(s) =

π

4
.

Thus we have proved that L(1, χ) = π
4 is a consequence of unique factorization

of Z[i].

Remark. Let Nt denote the number of lattice points inside a circle of radius
t; we have shown above that |Nt − πt2| = O(t). It is believed that the error
term can be improved to O(t

1
2+ε) for any ε > 0; the result is known to be

false for ε = 0. The best known result in this direction is due to Iwaniec
(1989), who proved |Nt − πt2| = O(t7/11).

Complex Quadratic Number Fields

Let K be a complex quadratic number field with discriminant d < 0, and let
w denote the number of roots of unity in K (thus w = 6, 4, 2 according as
d = −3,−4, or d < −4). As before, let am denote the number of ideals of
norm m, and put Am = a1 + . . . + am; then Am is the number of nonzero
ideals of norm ≤ m.

For an ideal class c ∈ Cl(K), let am(c) denote the number of ideals of
norm m in c, and put Am(c) = a1(c) + . . . + am(c). Pick an integral ideal
b ∈ c−1; then for any ideal a ∈ c with norm m, the ideal ab = (α) is principal
and has norm mNb. Conversely, if α ∈ b has norm mNb, then (α) = ab for
some a ∈ c with norm m. Thus ideals of norm m in c correspond bijectively
to principal ideals (α) of norm mNb with α ∈ b.

Let bm denote the number of elements of b with norm mNb, and put
Bm = b1 + . . . + bm as before; then Am(c) = 1

wBm. The elements of b form
a lattice in C, and Bm is the number of lattice points α with |α| ≤

√
mNb.
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A (full) lattice Λ in C is an additive subgroup of C of the form Zα⊕Zβ;
the fundamental parallelogram PΛ is the parallelogram with vertices 0, α, β,
and α+ β. The area of PΛ does not depend on the choice of the basis.

For counting the number of lattice points inside some circle we use the
following

Lemma 2.14. Let Λ be a lattice in C, and let A denote the area of its
fundamental parallelogram. Let Ct denote the circle with radius t around the
origin. Then there is a constant C > 0 such that the number N(t) of lattice
points inside Ct satisfies ∣∣∣N(t)− πt2

A

∣∣∣ ≤ Ct
for all t > 1.

Proof. For each λ ∈ Λ let Pλ denote the parallelogram you get by shifting
the fundamental parallelogram by λ. We introduce the following numbers:

• N1(t) denotes the number of lattice points such that Pλ lies inside Ct.
• N2(t) denotes the number of lattice points such that Pλ intersects Ct.

Then we obviously have

N1(t) ≤ N(t) ≤ N2(t).

Since the circle contains N1(t) parallelograms Pλ, we clearly have

N1(t) ·A ≤ πt2,

and since the parallelograms counted by N2(t) cover the circle, it is also clear
that

N2(t) ≥ πt2.

This gives

N1(t) ≤
πt2

A
, N2(t) ≥

πt2

A
.

Unfortunately, these inequalities go in the wrong direction. Luckily, we can
turn things around as follows.

Let δ denote the length of the long diagonal of the fundamental paral-
lelogram (this does depend on the choice of the basis). Then for any lattice
point λ inside Ct we see that Pλ ⊂ Ct+δ, which gives

N(t) ≤ N1(t+ δ) ≤ π(t+ δ)2

A
.

Similarly, if Pλ intersects Ct−δ, then Pλ ⊂ Ct, hence

π(t− δ)2

A
≤ N2(t− δ) ≤ N(t).
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Combining these inequalities we see

−2πδ
A
t+

πδ2

A
≤ N(t)− πt2

A
≤ 2πδ

A
t+

πδ2

A
.

Thus for all t > 1 we get ∣∣∣N(t)− πt2

A

∣∣∣ ≤ Ct
for C = π

A (2δ + δ2).

It remains to compute the area A of the fundamental parallelogram.
Clearly A = 1 for the lattice Λ = Z[i], and, more generally, A =

√
m for

Λ = Z[
√
−m ].

To deal with the general case, observe first that we may choose b primitive,
i.e., not divisible by a rational prime (b was chosen as an integral ideal in
c−1; but if b = nc for some n ∈ N with c primitive, then c is an integral
ideal in the same class). Let {1, ω} denote the standard integral basis of OK

and recall that if α1 = a + bω and α2 = c + dω form a basis of b, then the
area of the triangle spanned by 0, α1 and α2 is

∣∣ a b
c d

∣∣ = ad − bc times the
area of the triangle spanned by 0, 1 and ω. Since every primitive integral
ideal has the form b = aZ ⊕ (b + ω)Z for a = Nb, we find that the area of
its fundamental parallelogram is

∣∣ a 0
b 1

∣∣ = a = Nb times the volume of the
parallelogram spanned by 0, 1 and ω; the latter is easily seen to be 1

2

√
−d,

and this shows

Lemma 2.15. The area of the fundamental parallelogram of Λ is A = 1
2

√
|d|.

This shows that πt2

A = 2πmNb√
−dNb

= 2πm√
−d for a circle with radius t =

√
mNb;

thus Bm = 2πm√
−d + O(

√
m ) and |Am(c) − 2πm

w
√
−d | ≤ kc

√
m for a constant kc

depending on c (and the choice of b and its basis). Now we set k = max kc as
c runs through the finitely many ideal classes; then |Am − 2πh

w
√
−dm| ≤ k

√
m.

Imitating the argument from d = −4 we now set

f(s) = ζK(s)− 2πh
w
√
−d

ζ(s) =
∑
n≥1

(
an −

2πh
w
√
−d

)
n−s.

Since the partial sums of the coefficients are O(n1/2), f(s) converges for
s > 1

2 , and we get

lim
s→1+0

(s− 1)ζK(s) = lim
s→1+0

(s− 1)f(s) +
2πh
w
√
−d

lim
s→1+0

(s− 1)ζ(s) =
2πh
w
√
−d

.

Thus we have proved
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Theorem 2.16. Let d < 0 be the discriminant of a complex quadratic number
field K; let w denote the number of roots of unity in K, and h the class number
of K. Then

L(1, χ) =
2πh
w
√
−d

(2.3)

for χ = (d· ). In particular, we have L(1, χ) 6= 0.

In the special cases d = −4 and d = −8 give us back the series of Leibniz
and Newton we have come across in Chapter 1.

Dirichlet’s computation of L(1, χ) for characters χ = ( ·p ) easily extends
to all quadratic Dirichlet characters χ = (d· ) and shows

Theorem 2.17. Let d < 0 be the discriminant of a complex quadratic number
field K, and let τ =

∑
χ(a)ζa|d| be the corresponding Gauss sum. Then

L(1, χ) =
πiτ

d2

|d|−1∑
a=1

χ(a)a. (2.4)

Comparing (2.3) and (2.4) yields the following class number formula:

h =
wiτ

√
|d|

d2

∑
χ(a)a.

Thus in our case we get

Theorem 2.18 (Dirichlet’s Class Number Formula). Let d < 0 be the dis-
criminant of a complex quadratic number field K, let w denote the number
of roots of unity in K, and h its class number. Then

h =
w

2d

|d|−1∑
a=1

χ(a)a.

For d = −3 we have w = 6, hence h = − 3
3 (1 − 2) = 1; for d = −4 we

have w = 4, hence h = − 2
4 (1− 3) = 1. For all other quadratic fields, we have

w = 2 and therefore

h =
1
d

|d|−1∑
a=1

χ(a)a.

Although this is a very beautiful formula, its practical value is small: for
computing the class number of a field whose discriminant has 10 digits, you
already need to compute 1010 Legendre symbols.

Real Quadratic Number Fields

For real quadratic number fields there is an additional difficulty coming from
the existence of infinitely many units. Fortunately this problem is easily dealt
with:
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Lemma 2.19. Let K be a real quadratic number field with fundamental unit
ε > 1. Then every α ∈ K× has a unique associate β with the properties β > 0
and ε−2 < |β′/β| ≤ 1.

Proof. Every associate of α has the form β = ±αεm for some m ∈ Z. The
condition β > 0 determines the sign. Now Nε = εε′ = ±1 shows that |ε′| =
1/|ε|, hence |β′/β| = ε−2m|α′/α|; this clearly implies that there is a unique
choice of m for which this expression lies between ε−2 and 1.

Next we embed K into R2 by sending α ∈ K to the point (α, α′) ∈ R2.
Since Nα = αα′, elements of norm n will lie on the hyperbola xy = n in R2.
The elements β satisfying the conditions of Lemma 2.19 lie inside a domain
in the right half plane (β > 0), and those in the first quadrant lie between
the lines through (1, 1) and (ε, 1

ε ).
As before, pick a primitive ideal b in the inverse of the ideal class c; then

every integral ideal a in c with norm m corresponds to a unique principal
ideal (α) with α ∈ b and |Nα| = mNb. Each such principal ideal has a
unique representative in the domain D constructed above.

This shows that N(m) = Am(c) + 1 is the number of lattice points inside
the domain Dm = {mP ∈ R2 : m > 1, P ∈ D}. For real t > 1, the domain
Dt is bounded and has a “nice” (piecewise differentiable) boundary; thus we
can argue as before and find that the number N(t) of lattice points inside Dt

is approximately equal to 1
A times the area of Dt, where A denotes the area

of the fundamental parallelogram of the lattice Λb attached to b. Clearly Dt

is t2 times the area of D1 = D, hence it remains to compute A and the area
of D.

The fundamental parallelogram P of Λb is spanned by the vectors pointing
from (0, 0) to (1, 1) and (ω, ω′), respectively. If ω =

√
m, then P is a rectangle

with sides
√

2 and
√

2m, hence has area 2
√
m =

√
d. If ω = 1+

√
m

2 , recall that
the area T of a triangle with (positively oriented) vertices (xj , yj) is given by

T =
1
2

∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣ ,
so in our case we find that the area of the fundamental parallelogram is∣∣∣∣∣∣

1 0 0
1 ω ω′

1 1 1

∣∣∣∣∣∣ = ω − ω′ =
√
m.

Since A is Nb times this area, we find A = (discK)Nb.
The area of the part ofD lying in the first quadrant consists of the triangle

with vertices (0, 0), (1, 1), and (1, ε−2), as well as of the area bounded by the
lines x = 1, x = ε, the line y = ε−2x from below and y = 1

x from above. Thus
we find
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1
2
area(D) =

∫ 1

0

∫ x

x/ε2
dydx+

∫ ε

1

∫ 1/x

x/ε2
dydx

=
∫ 1

0

(1− ε−2)xdx+
∫ ε

1

( 1
x
− x

ε2

)
x dx

= log ε.

In exactly the same way as for negative discriminant we now get

Theorem 2.20. Let d > 0 be the discriminant of a real quadratic number
field K; let ε > 1 denote the fundamental unit, and h the class number of K.
Then

L(1, χ) =
2h log ε√

d
(2.5)

for χ = (d· ). In particular, we have L(1, χ) 6= 0.

Dirichlet’s direct evaluation of L(1, χ) shows

Theorem 2.21. Let d > 0 be the discriminant of a real quadratic number
field K. Then

L(1, χ) = − 1√
d

∑
(a,d)=1

χ(a) log sin
πa

d
. (2.6)

Comparing (2.5) and (2.6) yields the following class number formula:

h = − 1
2 log ε

∑
(a,d)=1

χ(a) log sin
πa

d
.

Since ( da ) = ( d
d−a ) and sinx = sin(π − x), this formula can be simplified

slightly:

h = − 1
log ε

∑
1≤a<d/2

χ(a) log sin
πa

d
.

Notes

Dirichlet originally only considered prime discriminants d (these are discrim-
inants of the form d = p (p ≡ 1 mod 4) or d = −p (p ≡ 3 mod 4)). He started
with the simple observation2

n−1 =
∫ 1

0

xn−1dx. (2.7)

Plugging this into L(1, χ) and exchanging integration and summation, we get

2 Actually this is how Dedekind presented Dirichlet’s proof in his edition of Dirich-
let’s lectures on number theory.
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L(1, χ) =
∫ 1

0

∞∑
n=1

(n
p

)
xn−1dx. (2.8)

Now (np ) is a periodic function of n; this implies that

∑
n≥1

(n
p

)
xn−1 = (1 + xp + x2p + . . .)

p−1∑
a=1

(a
p

)
xa−1 = − f(x)

xp − 1

for f(x) =
p−1∑
a=1

(ap )x
a−1.

In order to compute the integral we split f(x)
xp−1 into partial fractions. Let

ζ = e2πi/p denote a primitive p-th root of unity; then we try to determine
complex numbers ha such that

f(x)
xp − 1

=
∑ ha

x− ζa
.

Multiplying through by xp− 1 and setting x = ζb we find f(ζb) = hb
xp−1
x−ζb

∣∣
ζb .

Now
xp − 1
x− ζb

∣∣∣∣
ζb

=
∏
j 6=b

(ζb − ζj) = ζa(p−1)

p−1∏
j=1

(1− ζj) = ζ−ap

since
∏

(1− ζj) =
∏

(x− ζj)|1 = 1 + x+ x2 + . . .+ xp−1|1 = p. Thus

f(x)
xp − 1

=
1
p

p−1∑
a=0

ζa
f(ζa)
x− ζa

.

Substituting this into (2.8) we find

L(1, χ) = −1
p

p−1∑
a=1

ζaf(ζa)
∫ 1

0

dx

x− ζa
.

The integral is computed easily:∫ 1

0

dx

x− ζa
= log(x− ζa)

∣∣∣1
0

= log(1− ζa)− log(−ζa) = log(1− ζ−a).

The expression

τa(p) = ζaf(ζa) =
p−1∑
k=1

(k
p

)
ζak

is a quadratic Gauss sum, and with τa(p) = (ap )τ we get

L(1, χ) = −τ
p

p−1∑
a=1

(a
p

)
log(1− ζ−a). (2.9)
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This is a special case of (2.1).

Remark. Instead of using (2.7), Dirichlet actually used the definition of the
Gamma function

Γ (s) =
∫ ∞

0

xs−1e−xdx.

The substitution x 7−→ n log 1
x then shows that

Γ (s) = ns
∫ 1

0

(
log

1
x

)s−1

xn−1dx,

hence

n−s =
1

Γ (s)

∫ 1

0

xn−1
(

log
1
x

)s−1

dx.

Plugging this into L(s, χ) we get

Γ (s)L(s, χ) =
∫ 1

0

(
log

1
x

)s−1 ∞∑
n=1

(n
p

)
xn−1dx.

This formula can then be used to extend L(s, χ) to an entire function in the
whole complex plane.

Just as the Riemann zeta function, the L-series L(s, χ) satisfy a functional
equation connecting its values at s and 1− s; putting s = 1 in the functional
equation shows that

L(0, χ) =

{
0 if d > 0,
h if d < 0.

Thus the value of L(s, χ) is a lot “simpler” than that at s = 0, and it seems
that, once the L-series is extended to the left of Re s = 0, it is even easier to
derive (see Stark [St1993]). On the other hand, it seems that we have lost all
information in the real case; this is, however, not true: if d > 0, then L(s, χ)
has a zero of order 1 at s = 0, and the information on the class number
and the fundamental unit of Q(

√
d ) is contained in the derivative L′(0, χ).

Explanations for the values of L-functions and their derivatives at s = 0 are
provided by the Stark conjectures (which can be proved in the abelian case,
but are wide open in general).

Exercises

2.1 Show that
p−1P
a=1

(a
p
) = 0.

2.2 For primes p ≡ 1 mod 4, show that the sum of the quadratic residues is equal
to the sum of the quadratic nonresidues modulo p.
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2.3 Compute the Gauss sums attached to the quadratic characters ( d· ) directly
from the definition for d = −3, d = −4, d = −8, and d = 8.

2.4 Use pari or a pocket calculator to compute η (or rather its real approximation)

and compare it with ε2, where ε = 1+
√

5
2

is the fundamental unit of Q(
√

5 ).

2.5 In the proof of Theorem 2.16 we have used that the class number of a com-
plex quadratic number field is finite. The following idea allows us to actually
prove the finiteness of the class number using this approach. As a first step,
show that, for an arbitrary number field K, the Dedekind zeta function ζK(s)
converges for Re s > 1.
Hints: start with the Euler product

Q
p(1 − Np−s)−1 and show that this

converges for Re s > 1. To this end, observe that 1
1−Np−s ≤ 1

1−p−s , and that

there are at most n = (K : Q) primes p above p. Thus ζK(s) ≤ ζ(s)n.

2.6 (continued) Let C = {c1, . . . , cr} be a set of ideal classes, and let bn denote
the number of ideals with norm n from one of the classes in C. Let ζC(s) =P
bnn

−s and show that ζK(s) ≥ ζC(s). Multiply through by s − 1; conclude
that (s− 1)ζK(s) →∞ if there are infinitely many ideal classes, and derive a
contradiction.

2.7 Is it possible to give an analytic proof of the finiteness of the class number and
the solvability of the Pell equation for real discriminants in a way analogous
to that of the preceding exercises?

2.8 We have defined the Kronecker symbol χ = ( d
p
) for all positive primes, and

therefore for all n ∈ N coprime to m = |d|. Show that the quadratic reciprocity
law implies that, for positive a coprime to d, we always have χ(a) = χ(a+m).
Use this relation to extend χ to all integers coprime to d, and then show that

χ(−1) =

(
+1 if d > 0,

−1 if d < 0,

by observing χ(−1) = ( d
2m−1

).

2.9 Let d < 0 be an even discriminant and put χ = ( d· ) and m = |d|. Show that
χ(a+ m

2
) = −χ(a) for all positive a coprime to d.

Hints: First write d = 8k for some odd k < 0; then ( d
a+4k

) = ( 2
a+4k

)( k
a+4k

) and

( d
a
) = ( 2

a
)( k
a
). Now show that ( 2

a+4k
)( 2
a
) = −1 and ( k

a+4k
)( k
a
) (here you should

multiply and invert the Jacobi symbol, observing that a(a+ 4k) ≡ 1 mod 4).
Now consider the case d = 4k for k ≡ 3 mod 4.

2.10 This is an exercise from an old trigonometry textbook by Hobson (A treatise
on plane geometry, Chap. XV, Ex. 22; 7th ed. CUP 1928; the first edition
appeared in 1891): show that

π

4
+

√
3

4
log

2 +
√

3

2−
√

3
= 3
�
1− 1

7
+

1

13
− 1

19
+

1

25
− . . .

�
.

Actually, the problem also asked you to show that this sum equals

tan−1 α

α
+

tan−1 β

β
+

tan−1 γ

γ
,

where α, β, γ denote the three cube roots of unity.
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2.11 Use the class number formula to show that the class number h(p) of Q(
√
−p ),

where p ≡ 1 mod 4 is prime, is even, and that in fact h(p) ≡ p−1
2

mod 4.

2.12 Use the class number formula to show that the class number h(pq) of Q(
√
pq ),

where p ≡ q ≡ 3 mod 4 primes, is odd.
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3. Primes in Arithmetic Progression

We have seen so far how to prove the existence of infinitely many primes of
the form (dp ) = +1 using L-series of quadratic characters. These techniques,
however, do not seem to allow us to “separate” the residue classes ±2 mod 5
and prove that there are e.g. infinitely many primes p ≡ 2 mod 5. The reason
for this failure is that ( 2

5 ) = ( 3
5 ), so quadratic characters cannot see the

difference between these classes. In order to make progress, we have to define
more general characters. Consider e.g. the map ψ : (Z/5Z)× −→ C× defined
by ψ(a mod 5) = 1, i,−1,−i according as a ≡ 1, 2, 3, 4 mod 5. Such characters
ψ can distinguish between the residue classes 2 mod 5 and 3 mod 5 since
ψ(2 mod 5) = i and ψ(3 mod 5) = −1. Dirichlet’s approach to the Theorem
on primes in arithmetic progression was to show that the L-series L(s, χ)
defined with these more general characters also satisfy L(1, χ) 6= 0. In this
chapter, we will present his proof.

In order to motivate the following discussion, let us briefly go through
Dirichlet’s proof that there are infinitely many primes in each of the residue
classes 1 mod 4 and 3 mod 4. Consider the Dirichlet characters on (Z/4Z)×

defined by χ4(n) = (−4
n ) and the unit character χ1. Then

L(s, χ4) =
∏
p

1
1− χ(p)p−s

,

L(s, χ1) = (1− 2−s)ζ(s),

because χ1(n) = 0 for even integers n. Taking logs we find

logL(s, χ4) =
∑

p≡1 (4)

p−s −
∑

p≡3 (4)

p−s +O(1),

logL(s, χ1) =
∑

p≡1 (4)

p−s +
∑

p≡3 (4)

p−s +O(1),

hence ∑
p≡1 (4)

p−s ≡ 1
2
(logL(s, χ1) + logL(s, χ4)) +O(1),

∑
p≡3 (4)

p−s ≡ 1
2
(logL(s, χ1)− logL(s, χ4)) +O(1).
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Since logL(s, χ4) remains bounded as s→ 1, we find that the primes in each
residue class have Dirichlet density 1

2 .
Thus the two characters χ1 and χ4 on (Z/4Z)× allow us to seperate the

residue classes p ≡ 1 mod 4 and p ≡ 3 mod 4. This example is not typical
in the sense that it was sufficient to look at quadratic characters, that is,
characters with values ±1. The reason for this is the fact that the group
(Z/4Z)× has exponent 2. In the next few sections, we will introduce general
Dirichlet characters, study their L-series, and give a full proof of Dirichlet’s
theorem on primes in arithmetic progressions.

3.1 Characters

A Dirichlet character defined mod m is a homomorphism (Z/mZ)× −→ C×;
more generally, a character on a finite abelian group G is a homomorphism
G −→ C×. If g ∈ G has order f , then χ(g)f = χ(gf ) = χ(1) = 1, hence
the image of φ consists of roots of unity. The characters of an abelian group
G form a group Ĝ with respect to the multiplication of values; this group
X(G) = Ĝ is called the character group of G.

Dirichlet’s Lemma

The principal character 1l is the character that sends every element of G to
1. Examples for nontrivial characters modulo m for odd integers m are given
by Legendre symbols χ = ( ·

m ). These are Dirichlet characters mod m since
χ(a) only depends on a mod m, and since χ(ab) = χ(a)χ(b).

The only nontrivial Dirichlet character χ defined modulo 4 must satsify
χ(3) = −1; thus we have χ(a) = (−4

a ) for a > 0. More generally, for any
discriminant d = discK of a quadratic number field, the map χ(a) = ( da )
for a > 0 defines a Dirichlet character defined mod |d| since the quadratic
reciprocity law implies χ(a) = χ(a+ |d|).

We can also define a character ψ modulo 5 by demanding χ(2) = i; then
χ(4) = χ(2)2 = −1, χ(3) = χ(2)3 = −i, and of course χ(1) = χ(2)4 = 1.
This is of course not a character induced by a Kronecker symbol since it has
nonreal values. Dirichlet’s Lemma now characterizes all Dirichlet characters
coming from Kronecker symbols:

Lemma 3.1 (Dirichlet’s Lemma). Let m > 1 be an integer, and χ a non-
trivial Dirichlet character defined modulo m. Then there is a discriminant d
with χ(a) = ( da ) for all a > 0 if and only if χ is a quadratic character.

Proof. Let us first prove this for prime powers m = pr. If p is odd, this is a
cyclic group; every quadratic character χ is trivial on squares since χ(a2) =
χ(a)2 = 1. Thus kerχ has index ≤ 2; since χ 6= 1l, the kernel kerχ must
consist only of the squares mod pr, and we must have χ(n) = −1 for all
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nonsquares n. Now a ∈ (Z/prZ)× is a square if and only if a is a square mod
p: this is due to the fact that (Z/prZ)× ' (Z/pZ)× × Z/pr−1Z, and that
every element in the second component is a square since this group has odd
order. Thus χ(a) = (ap ) for all a ∈ (Z/prZ)×.

The case p = 2 is different, since the group (Z/2rZ)× is, in general, not
cyclic; in fact, (Z/2rZ)× ' 〈−1〉 × 〈5〉 ' Z/2Z × Z/2r−2Z for r ≥ 3. Since
χ is determined by its images on −1 and 5, there are exactly four quadratic
characters mod 2r. One of them is the trivial character, the other three are
given by the formulas χ4(a) = (−4

a ), χ8(a) = ( 8
a ), and χ4χ8(a) = (−8

a ) for
a > 0.

The claim now follows from the Chinese Remainder Theorem.

Basic Properties of the Character Group

The set of characters X(G) = Ĝ (we will use both notations) of G is an
abelian group with respect to the multiplication (ψχ)(a) = ψ(a)χ(a). If A and
B are finite abelian groups, then we obviously have X(A⊕B) ' X(A)⊕XB).
Now we claim

Proposition 3.2. If G is a finite abelian group, then G ' X(G) (non-canon-
ically) and G ' X(X(G)) (canonically).

Proof. Since G is the direct sum of cyclic groups, and since X(A ⊕ B) '
X(A) ⊕ X(B), it is sufficient to prove G ' X(G) for cyclic groups G. Let
G = 〈g〉; then any character χ ∈ Ĝ is determined by the value of χ(g), since
we have χ(ga) = χ(g)a. Now χ(g) must be a #G-th root of unity; there are
exactly #G of them, and they are all powers of a primitive #G-th root of
unity. Therefore, each character ∈ X(G) is a power of the character χ which
maps g to a primitive #G-th root of unity. This shows that Ĝ is a cyclic
group of order #G, and in particular, we find G ' X(G).

In order to prove that G ' X(X(G)) we observe that every g ∈ G induces
a map γg : Ĝ −→ C× : γg(χ) = χ(g). The map ψ : g 7−→ γg defines a

homomorphism G −→ ̂̂
G with kerψ = 1; it must be onto since #G =

#X(G) = #X(X(G)).

An important property of characters are the orthogonality relations:

Proposition 3.3. Let G be a finite abelian group with character group X.
Then∑
x∈G

χ(x) =
{

#G if χ = 1l
0 if χ 6= 1l and

∑
χ∈X

χ(x) =
{

#G if x = 1
0 if x 6= 1 .

Proof. The first assertion is clear if χ = 1l. If χ 6= 1l, then there must be a
y ∈ G such that χ(y) 6= 1. But now
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χ(y)
∑
x∈G

χ(x) =
∑
x∈G

χ(xy) =
∑
x∈G

χ(x),

proving our claim. The ‘dual’ assertion is reduced to the first case by identi-
fying G and X(X(G)).

Primitive Characters and Conductors

Let χ be a Dirichlet character on (Z/nZ)×; every integer m ∈ N such that

a ≡ b mod m =⇒ χ(a) = χ(b)

whenever a, b are prime to n is called a defining modulus for χ.
Consider e.g. the character χmodulo 8 which has values +1 for the residue

classes 1, 5 mod 8 and −1 for 3, 7 mod 8. Then this character is also de-
fined modulo 4 since it agrees with the character sending the residue classes
±1 mod 4 to ±1. It is, however, not defined modulo 2 since 1 ≡ 3 mod 2,
whereas χ(1 mod 8) = 1 and χ(3 mod 8) = −1.

Ifm1 andm2 are defining moduli, then so is their greatest common divisor
(this is easily seen by using a Bezout representation d = m1x + m2y of
d = gcd(m1,m2)), hence there exists a smallest defining modulus f, which is
called the conductor of χ. A Dirichlet character χ defined modulo m is called
primitive if m is the conductor of χ.

Let us now compute the conductors of the Dirichlet characters defined
mod 15. Since (Z/15Z)× ' 〈−1〉 × 〈2〉, such characters are defined by their
values on the residue classes −1 and 2 mod 15.

Define χ by χ(−1) = 1, χ(2) = i, and ψ by ψ(−1) = −1 and ψ(2) = 2.
It is then easily checked that the eight characters χrψs for 0 ≤ r ≤ 3 and
0 ≤ s ≤ 1 are pairwise distinct; thus we have found all 8 = φ(15) characters
mod 15. Here is a table with all these characters, their values, and their
conductors :

1 2 4 7 8 11 13 14 f
1l +1 +1 +1 +1 +1 +1 +1 +1 1
χ +1 +i −1 −i −i −1 +i +1 15
χ2 +1 −1 +1 −1 −1 +1 −1 +1 5
χ3 +1 −i −1 +i +i −1 −i +1 15
ψ +1 +1 +1 −1 +1 −1 −1 −1 15
χψ +1 +i −1 +i −i +1 −i −1 5
χ2ψ +1 −1 +1 +1 −1 −1 +1 −1 3
χ3ψ +1 −i −1 −i +i +1 +i −1 5

The table also shows that the three quadratic characters are induced by
Legendre symbols: ψ = ( ·

15 ), χ2 = ( ·5 ), and χ2ψ = ( ·3 ).



3.2 Primes in Arithmetic Progression 45

3.2 Primes in Arithmetic Progression

For each character χ on (Z/mZ)× we now can define its L-series in the usual
way, and observe that the multiplicativity of χ implies that we have an Euler
factorization for all s with Re s > 1:

L(s, χ) =
∑

χ(n)n−s =
∏
p

1
1− χ(p)p−s

.

If χ 6= 1l, this L-series actually converges for Re s > 0: in fact, we have
m∑
a=1

χ(a) = 0, and this implies that
µ∑
a=1

χ(a) =
ν∑
a=1

χ(a) for µ ≡ ν mod m for

some ν < m. Thus

|A(N)| =
∣∣∣∣ N∑
a=1

χ(a)
∣∣∣∣ =

∣∣∣∣ ν∑
a=1

χ(a)
∣∣∣∣ ≤ ν∑

a=1

|χ(a)| = ν < m,

and so the partial sums of the coefficients of L(s, χ) are bounded. Lemma 1.7
then implies that L(s, χ) converges to an analytic function for Re s > 0.

Assuming for the moment that L(1, χ) 6= 1 whenever χ 6= 1, we can prove
Dirichlet’s theorem as follows. For a Dirichlet character χ we have

logL(s, χ) =
∑
p

log
1

1− χ(p)p−s

=
∑
p

∑
n≥1

1
n
χ(pn)p−ns

=
∑
p

χ(p)p−s +
∑
p

∑
n≥2

1
n
χ(pn)p−ns

=
∑
p

χ(p)p−s +O(1)

by a now standard argument. Setting fχ(s) =
∑
p χ(p)p−s, we therefore have

logL(s, χ) = fχ(s) +O(1).
Next we fix an integer a coprime to n, set G = (Z/m)×, and compute∑
χ χ(a)fχ(s) in two different ways. On the one hand, we have

1
φ(m)

∑
χ

χ(a)fχ(s) =
1

#G

∑
χ

χ(a)
∑
p

χ(p)p−s

=
1

#G

∑
p

p−s
∑
χ

χ(a)χ(p)

=
∑
p

p−s
1

#G

∑
χ

χ(p/a).
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The inner sum here is 0 unless p ≡ a mod m, when it equals #G; thus we get

1
φ(m)

∑
χ

χ(a)fχ(s) =
∑

p≡a mod m

p−s.

On the other hand we know

1
φ(m)

∑
χ

χ(a)fχ(s) =
1

φ(m)
log

1
s− 1

+O(1)

for small s > 1. Combining these equations we get∑
p≡a mod m

p−s =
1

φ(m)
log

1
s− 1

+O(1),

and this shows

Theorem 3.4 (Dirichlet’s Theorem). For any integer m > 1 and any a
coprime to m, the set of primes p ≡ a mod m has Dirichlet density 1

φ(m) . In
particular, there are infinitely many such primes.

To complete the proof, we have to show that L(1, χ) 6= 0 for every Dirichlet
character modulo m different from the trivial character.

The Nonvanishing of L(1, χ)

Next we will give the first of two proofs for fact that L(1, χ) 6= 0 for nonprin-
cipal Dirichlet characters χ. We start with the following simple observation:

Lemma 3.5. Fix an integer m > 1 and let G = (Z/mZ)×. Then∑
χ∈ bG

logL(s, χ) > 0

for all s < 1.

Proof. This is a straightforward calculation:∑
χ∈ bG

logL(s, χ) =
∑
χ

log
∏
p

1
1− χ(p)p−s

=
∑
χ

∑
p

∑
n≥1

1
n
χ(p)np−ns

=
∑
n≥1

1
n

∑
p

p−ns
∑
χ

χ(pn).

The last sum is 0 unless pn ≡ 1 mod m; thus
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∑
χ∈ bG

logL(s, χ) =
∑
n≥1

1
n

∑
pn≡1

p−ns > 0

as claimed.

Now recall that logL(s, 1l) = − log(s−1)+O(1) for small s > 1. If χ 6= 1l,
then L(s, χ) is analytic in a vicinity of s = 1, and there are two cases.

1. If L(1, χ) 6= 0, then logL(s, χ) = O(1) in some vicinity of 1.
2. If L(1, χ) = 0, then L(s, χ) = (s − 1)a(χ)f(s) for some integer a(χ) ≥ 1

and a function f that is analytic around s = 1 with f(s) 6= 0. Thus
logL(s, χ) = a(χ) log(s− 1) +O(1).

This implies∑
χ∈ bG

logL(s, χ) = − log(s− 1) +
∑
χ6=1

a(χ) log(s− 1) +O(1) (3.1)

for s > 1. If
∑
χ a(χ) ≥ 2, then the right hand side of (3.1) goes to −∞ for

s → 1; but the left hand side is > 0 by Lemma 3.5, and this contradiction
shows that

∑
a(χ) ≤ 1.

Thus there is at most one character χ 6= 1l with L(1, χ) = 0 (and if
there is one, the order of the zero is 1). This immediately implies that χ
must be real: for if χ is a nonreal character, then so is χ = χ−1; but then
L(1, χ) = L(1, χ) = 0, so there would be at least two characters for which
L(1, χ) vanishes.

So if there is any character χ at all for which L(1, χ) = 0, then χ must be
a real character. By Dirichlet’s Lemma, we have χ = (d· ) for some quadratic
discriminant d; but for such characters we have already seen in Chapter 2
that L(1, χ) 6= 0.

We have proved:

Theorem 3.6. If χ 6= 1l is a Dirichlet character modulo m, then L(1, χ) 6= 0.

3.3 Cyclotomic Number Fields

The second proof of Dirichlet’s Theorem, or rather of the nonvanishing of the
L-series, will employ the arithmetic of K = Q(ζm). This is quite a natural
field to look at in this connection since the decomposition of a prime p in
K/Q only depends on the residue class p mod m. In the following, we will
briefly recall the basic properties of these cyclotomic fields.

For any m ∈ N, let ζ = ζm denote a primitive m-th root of unity. The
cyclotomic field K = Q(ζm) has degree n = φ(m); it is an abelian extension
of Q with Galois group G ' (Z/mZ)×; the residue class a mod m corresponds
to the automorphism σa : ζm 7−→ ζam.
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The following result will eventually turn out to be a special case of a
general theorem in class field theory, and can be proved by quite elementary
means:

Theorem 3.7 (Kronecker-Weber). Every abelian extension of Q is contained
in some cyclotomic extension Q(ζ).

The ring of integers ofK is OK = Z[ζ], and the elements 1, ζ, ζ2, . . . ζφ(m)−1

form an integral basis.

Theorem 3.8 (Decomposition Law in Cyclotomic fields). Let ζ be a prim-
itive m-th root of unity, and let K = Q(ζ) denote the field of m-th roots of
unity. If p - m is a prime, then pOK = p1 · · · pg for prime ideals pi with
inertia degree f , where f is the smallest integer f > 0 with pf ≡ 1 mod m,
and g is determined by fg = (K : Q) = φ(m).

Thus the decomposition type of a prime p only depends on its residue
class modulo m; we will later see that such fields are class fields, and that
cyclotomic fields are the simplest examples.

For example, primes p ≡ 1 mod 3 split completely in Q(ζ3), and primes
p ≡ 2 mod 3 have inertia degree 2 (that is, they are inert since Q(ζ3) =
Q(
√
−3 ) is a quadratic extension). The decomposition law for quadratic ex-

tensions, on the other hand, tells us that p will split completely in Q(
√
−3 )

if and only if (−3
p ) = +1; comparing the two statements implies that

(−3
p ) = (p3 ), and this is a special case of the quadratic reciprocity law. In

fact, the general reciprocity laws (not just the quadratic ones) can be derived
by comparing the decomposition law in class fields and Kummer extensions.

Recall that the fundamental equation ζK(s) = ζ(s)L(s, χ) for quadratic
Dirichlet characters was basically equivalent to the decomposition law for
primes in quadratic extensions K/Q. We will now prove the following cyclo-
tomic analog:

Theorem 3.9. Let K = Q(ζm) be the field of m-th roots of unity, and let G '
(Z/mZ)× denote its Galois group. The decomposition law in cyclotomic fields
implies that the Euler factors for primes p - m in ζK(s) and

∏
χ∈ bG L(s, χ)

are the same.

Proof. We have pOK = p1 . . . pg for fg = φ(m), where f is the order of the
residue class p mod m in (Z/mZ)×. Since Npj = pf , the Euler factor for each
prime above p in the product expansion of ζK(s) is (1 − p−fs)−1, and since
there are g of them, we find that p contributes the factor( 1

1− p−fs
)g

to the product expansion of ζK(s).
From the factorization
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1− xf =
f−1∏
j=0

(1− ζkx)

we deduce

1− p−fs =
f−1∏
j=0

(
1− ζj

ps

)
,

where ζ is a primitive f -th root of unity.
Let 〈p〉 denote the subgroup of G = (Z/mZ)× generated by p. Since p has

order f , the quotient G/〈p〉 has order g. Since X(〈p〉) is isomorphic to the
group of f -th roots of unity, we have

∏
χ∈X(〈p〉)

(1− χ(p)X) =
f−1∏
j=0

(1− ζjX),

since χ(p) runs through the f -th roots of unity as χ runs through X(〈p〉).
The dual of the exact sequence

1 −−−−→ 〈p〉 −−−−→ G −−−−→ G/〈p〉 −−−−→ 1

is the exact sequence

1 −−−−→ X(G/〈p〉) −−−−→ X(G) −−−−→ X(〈p〉) −−−−→ 1.

This shows that each character on 〈p〉 lifts to exactly g characters on G, hence
we have ∏

χ∈X(G)

(1− χ(p)X) =
f−1∏
j=0

(1− ζjX)g,

and this implies the claim.

In the next chapter we will prove that the Dedekind zeta function ζK(s)
has a pole of order 1 at s = 1 for any number field K, and compute its
residue. Taking this for granted and using the fact that ζK(s) and

∏
χ L(s, χ)

differ only by finitely many Euler factors, we see that
∏
χ L(s, χ) has a pole

of order 1 at s = 1. But this pole comes from the factor L(s, 1l), since this
is, up to finitely many Euler factors, just the Riemann zeta function. This
implies that L(1, χ) 6= 0 for all characters χ 6= 1.

The statement in Theorem 3.9 can be given a slightly more satisfying
form. In fact, consider a character χ defined modulo m, and let f be its
conductor. Then there is a unique (primitive) character χ̃ defined modulo
f such that χ(a) = χ̃(a) for all a coprime to m. The L-series L(s, χ) and
L(s, χ̃) differ by at most the Euler factors for the primes dividing m/f . For
example, the unit character χ modulo 4 and χ̃ have L-series
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L(s, χ) = 1 + 3−s + 5−s + 7−s + . . . ,

L(s, χ̃) = 1 + 2−s + 3−s + 4−s + . . . = ζ(s).

We now claim

Theorem 3.10. Let K = Q(ζm) be the field of m-th roots of unity, and let
G ' (Z/mZ)× denote its Galois group. The decomposition law in cyclotomic
fields implies

ζK(s) =
∏
χ∈ bG

L(s, χ̃).

Proof. There are two things to show: first, that the Euler factors for the prime
p in L(s, χ) and L(s, χ̃) are the same if p is unramified, and second that the
Euler factors for all primes p | m in ζK(s) and

∏
χ L(s, χ̃) are the same.

For the first point, consider Dirichlet characters as homomorphisms χ :
G −→ C× for G = Gal (K/Q); then Gχ = kerχ is a subgroup of G, and we
say that χ is unramified at p if p is unramified in the fixed field of Gχ. Clearly
every χ is unramified at the primes p - m, and the principal character 1l is
unramified everywhere since its fixed field is Q. The key to the proof is the
observation that χ is ramified at p if and only of χ̃(p) = 0.

Details will be added later.

Notes

The conjecture that every arithmetic progression a+mb for coprime integers
a and m contains infinitely many primes goes back to Euler. Legendre needed
such a result in his proof of the quadratic reciprocity law; he eventually even
sketched a proof of his conjecture, but its key lemma later turned out to be
false. Dirichlet tried to repair Legendre’s arguments, but succeeded in proving
his theorem only by using Euler’s techniques.

Some cases of Dirichlet’s theorem can be proved by elementary techniques
à la Euclid; it can even be shown that Euclidean proofs for the infinitude of
primes in the arithmetic progression a+mb exist if and only if a2 ≡ 1 mod m.
In particular, there are such proofs for the residue classes a ≡ 1 mod m and
a ≡ −1 mod m.

Exercises

3.1 Let A and B be abelian groups. Show that X(A⊕B) ' X(A)⊕X(B).

3.2 Let
1 −−−−−→ A −−−−−→ B −−−−−→ C −−−−−→ 1

be an exact sequence of finite abelian groups. Show that there is an exact
sequence
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1 −−−−−→ bC −−−−−→ bB −−−−−→ bA −−−−−→ 1.

3.3 Let χ and ψ be Dirichlet characters defined modulo m, and with conductors
fχ and fψ. Show that if gcd(fχ, fψ) = 1, then the character χψ has conductor
fχfψ.

3.4 List all Dirichlet characters modulo 24, determine their conductors, and iden-
tify them with Kronecker symbols.
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4. Dirichlet

This chapter is devoted to other results that Dirichlet obtained using his an-
alytic techniques, as well as to results that were obtained later using methods
available to Dirichlet.

4.1 Dirichlet’s L-series for Quadratic Forms

Dirichlet obtained his class number formula using the language of quadratic
forms: ideals had not yet been invented. In the following, we will explain the
connection between the two approaches.

A binary quadratic form is an expression Q(X,Y ) = AX2 +BXY +CY 2;
we will often denote this form by Q = (A,B,C). Its discriminant is ∆ =
B2 − 4AC. A form (A,B,C) is called primitive if gcd(A,B,C) = 1, and
positive definite if ∆ < 0 and A > 0. The group SL2(Z) of 2 × 2-matrices
with integral entries and determinant 1 acts on these forms as follows: for
M = ( r st u ), we set Q|M (X,Y ) = Q(rX + sY, tX +uY ). Two forms Q, Q′ are
called equivalent if Q′ = Q|M for some M ∈ SL2(Z). It is easy to see that
equivalent forms have the same discriminant and represent the same integers.
The set of equivalence classes of primitive (and, if ∆ < 0, positive definite)
forms is a finite abelian group Cl(∆) with respect to “composition”

In order to keep things as simple as possible, we will only consider the
easier case of negative discriminants. To each positive definite form Q =
(A,B,C) we associate the ideal b = (A, B−

√
∆

2 ) in the ring of integers of the
quadratic number field with discriminant ∆. Equivalent ideals correspond to
ideals in the same ideal class, so the map sending forms to ideals induces
an isomorphism between the class group Cl(∆) of forms and the ideal class
group Cl(K). Conversely, given an ideal a we write a = αZ⊕ βZ and set

Q(x, y) =
N(αx+ βy)

Na
.

Now let c ∈ Cl(∆) be a class of forms; pick a form Q ∈ c and define the
L-series

L(s, c) =
1
w

∑
x,y

1
Q(x, y)

,
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where the sum is over all integers x, y ≥ 0 with (x, y) 6= (0, 0), and where
w is the number of roots of unity in K (or, in the language of quadratic
forms, the number of automorphs of a quadratic form of discriminant ∆).
Since equivalent forms represent the same integers, this does not depend on
the choice of Q. It is easy to see that the integers represented by Q are
exactly the integers n for which there is an α ∈ b with nNb = Nα. To each
principal ideal (α) of this form there correspond w values of α; moreover we
have already seen that these principal ideals are in bijection with the ideals
a ∈ c−1 of norm m such that ab = (α) is principal.

Lemma 4.1. Let Q = (A,B,C) be a quadratic form associated to the ideal
a. Then a natural number n is represented by Q if and only if there is an
integral ideal b ∈ [a]−1 with Nb = n.

Proof. If b ∈ [a]−1 with Nb = n, then ab = (α)
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4.2 Genus Theory for Quadratic Number Fields

In this section we will review genus theory for quadratic number fields, and
give Dirichlet’s analytic proof for the existence of genera.
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4.3 Primes with Prescribed Residue Characters

In this section we will generalize Theorem 1.11. Dirichlet apparently never
bothered proving this result, since it is an immediate consequence of his
density result and quadratic reciprocity. Research by Kummer and Hilbert
on reciprocity laws in number fields, however, required results that did not
depend on reciprocity. Remarks made by Kummer in one of his proofs of
quadratic reciprocity show that Kummer was aware of these applications,
and Hilbert later generalized them to arbitrary number fields and used them
to prove the quadratic reciprocity law in totally complex number fields with
odd class number.

Let a1, . . . , at be squarefree integers; we will call them independent mod-
ulo squares if any relation

∏
a
ej

j = a2 for an integer a and exponents ej = 0, 1
implies e1 = . . . = et = 0. Distinct primes, for example, are always in-
dependent modulo squares, whereas the integers 6, 10, 15 are not because
6 · 10 · 15 = 223252 is a square.

Theorem 4.2. Assume that a1, . . . , at ∈ Z are independent modulo squares.
Then for any choice c = (c1, . . . , ct) of signs cj = ±1, the set Sc of primes p
satisfying (a1

p

)
= c1, . . . ,

(at
p

)
= ct

has Dirichlet density δ(S) = 2−t.

If we choose c1 = . . . = ct = +1, then S = Spl(K/Q) for the multi-
quadratic number field K = Q(

√
a1, . . . ,

√
at ). Since the independence mod-

ulo squares of the aj is equivalent to (K : Q) = 2t, we find that the set of
primes splitting completely in K/Q has Dirichlet density 1

(K:Q) .
Our proof of Theorem 4.2 will be modeled after Dirichlet’s proof of his

density theorem. For showing that, for coprime integers a and m, there are
infinitely many primes p ≡ a mod m we introduced Dirichlet characters

χ : Gal (Q(ζm)/Q) ' (Z/mZ)× −→ C×;

here we have to consider characters

χ : Gal (K/Q) ' (Z/2Z)t −→ C×.

Every σ ∈ Gal (K/Q) defines a vector (e1, . . . , et) ∈ (Z/2Z)t via

σ(
√
a1 ) = (−1)e1

√
a1, . . . , σ(

√
at ) = (−1)et

√
at,

and we will identify σ with the sign vector(
(−1)e1 , . . . , (−1)et

)
=

(√
a1
σ−1

, . . . ,
√
at
σ−1)

,

and therefore Gal (K/Q) with µt2, where µ2 is the group of 2nd roots of unity.
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Every prime p - a1 · · · at defines an automorphism σp via

σp =
((a1

p

)
, . . .

(at
p

))
.

Now we are ready for the

Proof of Thm. 4.2. Set fχ(s) =
∑
p χ(σp)p−s, where the sum is over all

primes p - a = a1 · · · at. Since χ is a quadratic character, fχ(s) = O(1)
as s −→ 1 unless χ = 1l; this follows by taking logs of the corresponding
L-function L(s, χ) and observing that L(1, χ) 6= 0.

Now ∑
χ

χ(c)χ(σp) =
∑
χ

χ(σp/c) =

{
0 if σp = c,

2t if σp 6= c

by the orthogonality relations, hence

2−t
∑
χ

χ(c)fχ(s) = 2−t
∑

χ(c)
∑
p

χ(σp)p−s

= 2−t
∑
p

p−s
∑
χ

χ(c)χ(σp)

=
∑

p: σp=c

p−s.

On the other hand,

2−t
∑
χ

χ(c)fχ(s) = 2−t log
1

s− 1
+O(1),

because all fχ(s) with χ 6= 1l are bounded as s→ 1, whereas fχ(s) = log 1
s−1+

O(1) for χ = 1l (in this case, fχ(s) =
∑
p-a p

−s). The claim now follows.
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4.4 Primes Represented by Binary Quadratic Forms

The odd primes represented by the quadratic form Q(X,Y ) = X2 + Y 2 are
exactly the primes p ≡ 1 mod 4, hence have Dirichlet density 1

2 . Do primes
represented by a general quadratic form Q(X,Y ) = AX2 +BXY +CY 2 (we
will often denote this form by Q = (A,B,C)) also have a Dirichlet density?
The problem is trivial if gcd(A,B,C) 6= 1: the form 2X2 +2Y 2, for example,
represents only 2. Let us therefore assume that Q is primitive, i.e., that
gcd(A,B,C) = 1. Then Dirichlet claimed

Theorem 4.3. Let Q = (A,B,C) be a quadratic form with discriminant
∆ = B2 − 4AC. Then the set SQ of primes represented by Q has Dirichlet
density

δ(SQ) =

{
1
h if Q 6∼ (A,−B,C),
1
2h if Q ∼ (A,−B,C),

where h is the class number of forms of discriminant ∆.

Actually Dirichlet’s claims were slightly different, since he worked with
forms Q = (A, 2B,C) with even middle coefficients. If Q = (1, 0, 1), then
h = 1, hence Thm. 4.3 tells us that primes represented by Q have Dirichlet
density 1

2 .
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Exercises
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5. Algebraic Number Fields

The purpose of this chapter is to present the results from algebraic number
theory that we will assume to be known. We will also derive several results
on the decomposition of primes that we will need later on.

5.1 Archimedean Valuations of a Number Field

Let K be an algebraic number field; we can write K = Q(α), where α is a
root of an irreducible polyonmial f ∈ Q[x]. Actually, it is sometimes better
to think of K as a purely algebraic object, namely K = Q[X]/(f); in this
interpretation, α = X + (f) is a root of f , but it does not make sense to ask
e.g. what |α| is. We can, however, define Q-homomorphisms κj : K −→ C as
follows: over the complex numbers, f factors into n distinct linear factors:

f(X) = (X − α1) · · · (X − αn).

We now put κj(α) = αj and extend this linearly to K by demanding

κj

( n−1∑
t=0

atα
t
)

=
n−1∑
t=0

atκj(α)t.

These maps κ1, . . . , κn : K −→ C are called embeddings of K into C. They
are Q-homomorphism, that is, they respect the ring structure of K and are
Q-linear.

If κj(K) ⊂ R, the embedding κj is called a real embedding, and a complex
embedding otherwise. The number field K = Q( 3

√
2 ), for example, has one

real embedding sending α = X + (X3 − 2) to 3
√

2 ∈ R, and two complex
embeddings sending α to ρ 3

√
2 and ρ2 3

√
2, respectively, where ρ is a primitive

cube root of unity. If κj is a complex embedding, then so is κj defined by
κj(α) = κj(α). Thus complex embeddings come in pairs. If we denote the
number of real embeddings ofK by r, and the number of complex embeddings
by 2s, then we always have n = (K : Q) = r+2s. The pair of natural numbers
(r, s) is often called the signature of K.

Using these emebddings we now can define “archimedean valuations” on
K as follows. For each j = 1, . . . , n set |α|j = |σj(α)|, where the absolute
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value on the right hand side is the usual absolute value in R or C. Since pairs
κj , κj of complex embeddings give rise to the same valuation, this provides
us with r + s valuations | · |1, . . . , | · |r+s.

Now assume that all the fields κj(K) coincide. Then we can define
σj(α) := κ−1

1 (κj(α)) and get endomorphisms σj : K −→ K. For a ∈ Q, we
clearly have σj(a) = a, and this shows that the σj are Q-automorphisms of
K. Thus in this case, the extension K/Q is normal, and we have Gal (K/Q) =
{σ1 = id, σ2, . . . , σn}.

Conversely, if K/Q is Galois with Galois group Gal (K/Q) = {σ1 =
id, σ2, . . . , σn}, and if κ1 a fixed embedding of K, then the maps κj := κ1 ◦σj
define distinct embeddings of K into C. Thus in this case, we get all embed-
dings by twisting one of them with elements of Gal (KQ).

Trace and Norm

For any α ∈ K, multiplication by α is a Q-linear endomorphism µα :
K −→ K of the Q-vector space K. With respect to some Q-basis such as
{1, α, α2, . . . , αn−1}, this linear map can be described by an n × n-matrix
Mα. The trace and the determinant of this matrix Mα are rational numbers
that do not depend on the choice of the basis, and are called the trace Trα
and the norm Nα of α. It follows immediately that Tr (α+ β) = Trα+ Trβ
and N(αβ) = Nα ·Nβ.

Trace and norm can also be defined using the embeddings of K into C:
we have

Trα = σ1(α) + . . .+ σn(α),
Nα = σ1(α) · · ·σn(α).

5.2 Arithmetic of Number Fields

Ring of Integers

Algebraic integers are roots of monic polynomials with integral coefficients.
If f is the minimal polynomial of an algebraic integer (the monic polynomial
f with minimal degree such that f(α) = 0), then f has integral coefficients.

The set A of algebraic integers forms a ring. The ring OK of integers in a
number fieldK is defined by OK = A∩K. Since traces and norms of algebraic
integers are coefficients of their minimal polynomial, they are integers.

Algebraic integers α1, . . . , αn ∈ OK are called an integral basis if every
α ∈ OK can be written as a Z-linear combination of the αi. It is not difficult
to prove

Theorem 5.1. Every number field has an integral basis.
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Proof. Among all Q-bases α1, . . . , αn with αj ∈ OK choose one for which the
natural number |disc (α1, . . . , αn)| is minimal. It is then an easy matter to
show that every α ∈ OK is a Z-linear combination of these αj .

More generally, each ideal a in OK has a Z-basis {α1, . . . , αn}, and

disc a = disc (α1, . . . , αn)

is independent of the choice of the integral basis, and is called the discriminant
of a. If a = OK is the unit ideal, discK := disc OK is called the discriminant
of the field K.

Proposition 5.2. For any integral ideal a we have

disc a = Na2 · discK. (5.1)

Proof. Instead of giving the proof, let me sketch the idea behind one of them.
The result is almost obvious if a = (α) is a principal ideal, since then a has
a Z-basis of the form αω1, . . . , αωn, where ω1, . . . , ωn is an integral basis of
K; equation (5.1) then follows immediately.

The problem now is that the Dedekind rings OK do not necessarily have
class number 1. The solution to this problem is localization: let R be a domain
and S a multiplicatively closed set not containing 0; then RS is the set of all
“fractions” r

s with r ∈ R and s ∈ S. If P is a prime ideal, then S = R \ P
is multiplicatively closed, and we call RP = RS the localization of R at P . If
R = OK , the ring Rp for a prime ideal p has a unique nonzero prime ideal,
namely pRp, and is a principal ideal domain. In commutative algebra, this
technique (it is completely elementary) is studied in detail, and it allows us
to reduce the proof of (5.1) to a proof in all the localizations of OK ; but since
these are PIDs, the proof given above applies.

If f is the minimal polynomial of α ∈ OK , then discK | disc f ; in fact,
these discriminants differ by a perfect square.

In quadratic number fields Q(
√
m ) with squarefree m ∈ Z, we can pick

the integral basis {1,
√
m } and {1, 1

2 (1 +
√
m )} according as m ≡ 2, 3 mod 4

or m ≡ 1 mod 4; the discriminant of K is 4m and m in these cases.
Let ζ = ζp be a primitive p-th root of unity, i.e., a root of the cyclotomic

polynomial

Φp(X) =
Xp − 1
X − 1

= Xp−1 + . . .+X + 1.

The cyclotomic field Q(ζ) has an integral basis {1, ζ, ζ2, . . . , ζp−2 } and dis-
criminant (−1)(p−1)/2pp−2.

The discriminant satisfies congruences modulo 4 and “modulo ∞”:

Proposition 5.3. Let K be a number field. Then

1. discK ≡ 0, 1 mod 4 (Stickelberger);
2. discK has sign (−1)s.
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Arithmetic of Ideals

The basic result here is

Theorem 5.4. The ring of integers OK of a number field is a Dedekind
domain.

Recall that a domain R is a Dedekind domain if the following conditions
hold:

1. R is integrally closed;
2. R is Noetherian;
3. every nonzero prime ideal of R is maximal.

These conditions are equivalent to the statement that every nonzero ideal in
R can be written uniquely as a product of prime ideals.

Thus, in the number field case, for every rational prime p there are prime
ideals p1, . . . , pg with

pOK = pe11 · · · peg
g ;

the exponent ej is called the ramification index of pj . Since prime ideals are
maximal, the residue class rings OK/pj are finite fields; their cardinality is
called the normNpj of the prime ideal pj . Moreover, OK/pj has characteristic
p, hence is an extension of the finite field Fp (in fact, the map sending a mod
p to a mod pj is an injective ring homomorphism sending Fp to a subfield
isomorphic to Fp inside OK/pj). Thus OK/pj is a finite field with pfj elements
(where fj = (OK/pj : Fp) is the degree of the extension), and fj is called the
inertia degree of pj . These numbers satisfy the relation e1f1 + . . .+ egfg = n.

The actual decomposition of a prime p is computed as follows: let
K be a number field of degree n; for every α ∈ OK , put disc (α) =
disc (1, α, α2, . . . , αn−1). Then disc (α) = j2discK for an integer j = jα that
measures how far the subring Z[α] = Z ⊕ Zα ⊕ . . . ⊕ Zαn−1 of OK differs
from OK : we have j = (OK : Z[α]). A prime p dividing this index j for every
choice of α is called an inessential discriminant divisor, and Dedekind showed
that we always have p < n.

Theorem 5.5. Assume that K = Q(α), and let f ∈ Z[X] denote the minimal
polynomial of α. We can decompose f(X) into irreducible factors over Fp[X]:

f(X) = P1(X)e1 · · ·Pg(X)eg .

If p - jα, then pOK = Pe1
1 · · ·P

eg
g for prime ideals Pi = (p, Pi(α)) with

inertia degrees fi = degPi.

Observe that this immediately implies n = e1f1 + . . . + egfg since n =
deg f = e1 degP1 + . . .+ eg degPg. Also note that in quadratic fields and in
cyclotomic fields we can always find an α with jα = 1.
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5.3 Prime Decomposition in Relative Extensions

So far we have studied number fields K mostly as extensions of Q. In class
field theory, we will almost always deal with extensions L/K of number fields.

Some of the definitions we have given can be applied directly to the rel-
ative situation: for example, the relative trace Tr L/K and the relative norm
NL/k can be defined in a completely analogous way: multiplication by α ∈ L
is a K-linear map etc. Again the trace is additive and the norm multiplica-
tive; moreover, if L/F/K is a tower of number fields, then it is easily checked
that Tr L/Kα = Tr F/K(Tr L/Fα) and NL/Kα = NF/K(NL/Fα). Moreover, if
α ∈ F , then Tr L/Kα = (L : F ) · Tr F/Kα and NL/Kα = (NF/Kα)(L:F ).

We can also extend the norm to ideals: if A is an ideal in OL, then the
ideal generated by the norms NL/Kα, where α runs through A, is an ideal in
OK denoted by NL/KA. If σ1, . . . , σn are the n = (L : K) embeddings of L
into C that fix K elementwise, then there is a unique ideal a in OK such that
aON = σ1(A) · · ·σn(A), where the product of the ideals is formed inside the
normal closure N of L/K, and we have a = NL/KA.

If a prime ideal p in OK splits as pOL = Pe1
1 · · ·P

eg
g , then the prime

ideals Pj are said to lie above p; the exponents ej = e(Pj |p) = eK/k(Pj) are
called the relative ramification indices, and the relative degrees fj = f(Pj |p)
of the extensions (OK/Pj)/(Ok/p) are called the relative inertia degrees. As
before, we have n = (L : K) = e1f1 + . . .+ egfg.

The prime ideal Pj is said to be ramified in L/K if ej > 1; the prime
ideal p is said to be ramified in L/K if at least one of the ej is > 1. The same
remarks apply to infinite primes.

If L/K has degree n, we also can define the relative discriminant of ele-
ments α1, . . . , αn as before. But the definition of the discriminant of a number
field cannot be transferred directly to relative extensions, since in general a
number field L does not have a relative integral basis (that is, there do not
exist α1, . . . , αn ∈ OL such that every α ∈ OL is an OK-linear combination
of the αj). The reason for this failure is that the proof of the existence of an
integral basis over Q uses the fact that Q has class number 1. Thus we have
to proceed differently.

First recall the definition of fractional ideals in OK : these are Z-modules
a ⊆ K with the property that there is an α ∈ K× such that αa is an integral
ideal. For example, the set a = { 3a

2 : a ∈ Z} is a fractional ideal in Z since
2a = (3). If a is a nonzero fractional ideal, we put a−1 = {α ∈ K : αa ⊆ OK}.
If a has the prime ideal factorization a = pa1

1 · · · par
r (where the exponents are

integers, i.e., may be negative), then a−1 = p−a1
1 · · · p−ar

r .
It is now easy to check that, for extensions L/K of number fields, the set

O∗
L = {α ∈ K : Tr L/Kαω ∈ Ok for all ω ∈ OL}

is a fractional ideal; since OL ⊂ O∗
L, its inverse (O∗

L)−1 =: diff (L/K) is
an integral ideal in OL called the (relative) different of the extension L/K.
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The relative discriminant of L/K is simply the relative norm of the different:
disc (L/K) = NL/Kdiff (L/K). The different is an important invariant of an
extension L/K, and is multiplicative in towers L/F/K of number fields:

Proposition 5.6. The different and the discriminant have the following
properties:

1. diff (L/K) = diff (L/F ) · diff (F/K);
2. disc (L/K) = NF/Kdisc (L/F ) · disc (F/K)(L:F );
3. disc (K/Q) = (discK).

The second claim follows immediately from the first by taking norms.
The most important property of the different and the discriminant is

contained in the following

Theorem 5.7. A prime ideal P in OL above the prime ideal p in OK is
ramified if and only if P | diff (L/K); the prime ideal p is ramified in L/K
if and only if p | disc (L/K).

Valuations

Every rational prime p defines a valuation on Q: in fact, let vp(a) denote the
exponent of p in the prime factorization of a ∈ Q× (for example, v2( 3

4 ) = −2,
v3( 3

4 ) = 1, and vp( 3
4 ) = 0 for all primes p ≥ 5); extend this map to all of Q

by setting vp(0) =∞ (observe that 0 is infinitely often divisible by p). Then
vp : Q −→ Z ∪ {∞} is a map with the following properties:

1. vp(a) =∞ if and only if a = 0;
2. vp(ab) = vp(a) + vp(b);
3. vp(a+ b) ≥ min{vp(a), vp(b)}.

If we put |a|p = p−vp(a), we get a new map vp : Q −→ R with the following
properties:

1. |a|p ≥ 0, with equality if and only if a = 0;
2. |ab|p = |a|p|b|p;
3. |a+ b|p ≤ max{|a|p, |b|p}.

Thus the maps | · |p are valuations, that is, maps v : Q −→ R with the
properties

1. |a| = 0, with equality if and only if a = 0;
2. |ab| = |a| · |b|;
3. |a+ b| ≤ |a|+ |b|.

Note, however, that the | · |p satisfy a stronger triangle inequality (they are
called non-archimedean valuations). In addition to these valuations attached
to primes p, there is the archimedean valuation |·| given by the usual absolute
value. It can be shown that, up to rescaling, the valuations | · |p, | · |, and the
trivial valuation sending nonzero numbers to 1 are the only valuations on Q.
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Note that the integers can be characterized as the set of all rational numbers
z with |z|p ≤ 1 for all primes p.

All this generalizes to number fields: every prime ideal p defines an addi-
tive valuation vp on K by sending α ∈ K× to the exponent of p in the prime
ideal factorization of the ideal (α), and then the function |α|p = Np−vp(α)

gives us a non-archimedean valuation.
An extension L/K is called unramified outside ∞ if no prime ideal from

K is ramified in L; this is the case if and only if disc (L/K) = (1). We say
that L/K is unramified (everywhere) if it is unramified outside ∞, and if no
infinite prime is ramified in L/K.

5.4 Prime Ideals in Galois Extensions

In the following, let L/K be a finite Galois extension of number fields with
Galois group G = Gal (L/K). Let O = OL and o = OK denote the corre-
sponding rings of integers, p a prime ideal in o, and

pO = Pe1
1 · · ·Peg

g (5.2)

its prime ideal factorization in L. We will also denote the residue class field
of a prime ideal by κ; thus e.g. κ(P) = O/P and κ(p) = o/p.

Since Pj | pO, we clearly have p ⊆ Pj ∩ o (here we have used pO∩ o = p;
prove this!); on the other hand, p is a maximal ideal, so either Pj ∩ o = p or
Pj ∩ o = o; in the last case, we find the contradiction 1 ∈ Pj , hence we must
have Pj ∩ o = p.

We have proved

Lemma 5.8. If P is a prime ideal above p in L, then p = P ∩ o.

Note that since P ⊂ O, we also have P ∩K ⊆ P ∩K ∩O = P ∩ o, and
since the inverse inclusion is trivial, we conclude that p = P ∩K.

Recall the the absolute norm NLP of a prime ideal P is the cardinal-
ity of the residue class field O/P. This immediately implies that NLP =
(NKp)f(P|p). Moreover, NL/QP is known to be the ideal generated by NLP,
and this shows that NL/KP = pf(P|p).

Now we claim

Proposition 5.9. The Galois group acts transitively on the prime ideals
above p.

This means that if Pi and Pj are two prime ideals above p, then there is
a σ ∈ G such that Pj = Pσ

i .

Proof. We use the Chinese Remainder Theorem. Let P = Pi and P′ = Pj

denote two distinct prime ideals above p. Then we can find an α ∈ O with
α ≡ 0 mod P and α ≡ 1 mod Pj for all j 6= i.
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NowNL/Kα ∈ o∩P = p, and from p ⊂ Pj we conclude thatNL/Kα ∈ Pj .
Thus Pj |

∏
σ∈G α

σ, and since Pj is prime, we must have Pj | ασ for a
suitable σ ∈ G. But then α ∈ σ−1(Pj), and our construction implies that we
must have σ−1(Pj) = P, that is, Pσ = Pj .

Now consider the factorization (5.2). Then e1 is the exponent of P1 in the
prime ideal factorization of pO. Let σ denote an automorphism that maps
P1 to Pj ; then e1 is the exponent of Pj in the prime ideal factorization of
pO. The theorem of unique factorization into prime ideals then implies that
we must have ej = e1. Thus in Galois extensions, all ramification indices
coincide, and we can write e1 = . . . = eg =: e.

Since Oσ = O, the automorphism σ of L/K induces an isomorphism
κ(P1) −→ κ(Pj) by sending a residue class α+P1 to ασ+Pj ; this map leaves
the elements of κ(p) fixed, hence is a κ(p)-isomorphism κ(P1) −→ κ(Pj). In
particular, these extensions must have the same degree over κ(p), and we
conclude that f1 = . . . = fg =: f . We have proved:

Proposition 5.10. In Galois extensions L/K, a prime p in k splits as

pO = (P1 · · ·Pg)e,

where each Pi has inertia degree f , and we have efg = n = (L : K).

The Decomposition Group

Let P denote a prime ideal in O above p, and recall that pO = (P1 · · · Pg)e.
Define the decomposition group Z(P|p) by

Z(P|p) = {σ ∈ G : Pσ = P}.

This is the stabiliser group of P. The fixed field of Z(P|p) is a subfield LZ
of K/k and is called the decomposition field of P|p.

For a quadratic extension L/K with Galois group G of order 2, there are
only three possibilities:

decomposition Z(P|p)

p splits 1

p is inert G

p ramifies G

For finding the order of Z(P|p) in general, we consider the following ab-
stract situation: a finite group G acts transitively on a set X = {x1, . . . , xg};
let Gx = {σ ∈ G : σx = x} denote the stabiliser of x. Define a map φ from
the cosets of G/Gx to the elements of X by sending σGx to σx. Since G
acts transitively, φ is surjective. Moreover φ is injective: if σx = τx, then
τ−1σ ∈ Gx and hence τGx = ττ−1σGx = σGx. Thus there is a bijection
between the cosets of G/Gx and the elements of X:
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Lemma 5.11. Assume that a group G acts transitively on a finite set X.
Let Gx denote the stabiliser of x ∈ X. Then (G : Gx) = #X.

When we apply this lemma to our situation, we find

Corollary 5.12. We have (G : Z(P|p)) = g.

Since the decomposition group has index g in G, Galois theory tells us
that the degree of the decomposition field LZ over K is also equal to g.

Note that this result is already nontrivial: the group G has order efg,
and we have just proved the existence of a subgroup of order g. Recall that,
for arbitrary finite groups, it is not true that for every divisor n of the group
order there is a subgroup of order n.

We will now study how the prime ideal p splits in the intermediate fields
of L/K as we go from K to L.

Lemma 5.13. Let q = P ∩ LZ be the prime ideal below P in LZ .

1. q does not split in L/LZ ; in other words, P is the only prime ideal above
q in O.

2. e(P|q) = e and f(P|q) = f .
3. e(q|p) = f(q|p) = 1.

Proof. We have

Z(P|q) = {σ ∈ Gal (L/LZ) : Pσ = P} = Z(P|p) = Gal (L/LZ),

hence g(P|q) = (Gal (L/LZ) : Z(P|q) = 1. This proves the first claim. Next

e = e(P|p) = e(P|q) · e(q|p) and f = f(P|p) = f(P|q) · f(q|p).

Moreover, from 1, we see that e(P|q) · f(P|q) · 1 = (L : LZ) = ef . Since
e(P|q) ≤ e and f(P|q) ≤ f , we must have equality. The third claim now
follows, too.

Theorem 5.14. Let L/K be a normal extension and P a prime ideal above p
in L. Then LZ is the largest intermediate field F such that e(q|p) = f(q|p) =
1.

Corollary 5.15. A prime ideal that splits completely in two extensions L1/K
and L2/K splits completely in the compositum L1L2K.

Corollary 5.16. Let L/K be an extension of number field. A prime that
splits completely in L/K splits completely in the normal closure of L/K.
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Decomposition Groups for Infinite Primes

Let us set up the notation. If σ is an embedding of K and τ an embedding of
L restricting to σ, then all the embeddings of L restricting to τ are given by
τσj as σj runs through G = Gal (L/K). If v is the valuation on K defined by
τ and w the valuation on L defined by σ, then the embeddings τσj induce
the valuations of L restricting to v. If the infinite prime ∞ attached to v
does not ramify, then these valuations are pairwise different. If ∞ ramifies
(this happens if σ(K) is real, but τ(L) is complex), however, then σw(α) :=
τ−1(τ(α)) defines an element σw ∈ G (in fact, if α ∈ K, then τ(α) = σ(α)
is real, hence σw(α) = τ−1(τ(α)) = τ−1τ(α) = α) that fixes the subfield
Lw := τ−1(Lτ ∩ R); since τ(σ2

w(α)) = τ(σw(α)) = τ(α) = τ(α), the element
σw has order 2. Note that τσj and τσwσj both induce the same valuation
since |τσwσj(α)| = |τ(σj(α))| = |τ(σj(α))|.

The group Z(w|v) = {1, σw} is called the decomposition group of w, and
its fixed field Lw the corresponding decomposition field.

5.5 Minkowski Bounds

The geometric techniques introduced by Minkowski allow us to give rather
simple proofs of the two fundamental finiteness results of algebraic number
theory: the finiteness of the class number and Dirichlet’s unit theorem, ac-
cording to which the unit group of the rings OK are finitely generated.

Theorem 5.17 (Minkowski Bounds). Let K be a number field with degree
n = r + 2s. Then every ideal class contains an integral ideal a with norm

Na ≤ n!
nn

( 4
π

)s√
|discK|.

Since Na ≥ 1, the Minkowski bounds imply that |discK| ≥
(
nn

n! (
π
4 )s

)2.
It is easy to show that the expression on the right hand side is > 1 for all
number fields of degree n > 1; this implies the following result conjectured
by Kronecker:

Corollary 5.18. Let K be a number field 6= Q; then discK > 1. In particu-
lar, in every number field 6= Q at least one prime ramifies.

Let σ1, . . . , σn denote the embeddings of K into R and C and order them
in such a way that σ1, . . . , σr are the real embeddings, and that the σr+s+j
are the complex conjugate of σr+j . Let KR = Rr × Cs denote the tensor
product1 of K with R; then set

ι(α) = (σ1(α), . . . , σr(α), σr+1(α), . . . , σr+s(α)).
1 This is easily verified as follows: write K = Qα1 ⊕ . . . ⊕ Qαn; then K ⊗Q R =

Rα1 ⊕ . . .⊕ Rαn. But Rα = R if α is real, and Rα = C otherwise.
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The map ι : K −→ KR is a group homomorphism of the additive group
(in fact, it even respects multiplication, but we will not need that at the
moment), and it is obviously injective (already σ1(α) = 0 implies α = 0).

If, for x = (x1, . . . , xr+s) ∈ Rr × Cs, we define

N(x) = |x1 · · ·xr(xr+1 · · ·xr+s)2|,

then clearly N(ι(α)) = |Nα| for all α ∈ K, hence the following diagram
commutes:

K
ι−−−−→ KR

NK
Q

y yN
Q −−−−→ R

The map at the bottom is the usual embedding of Q into R. By the way, the
point of using these commutative diagrams is not preparing the application
of homological methods; their only purpose is helping you “see” what’s going
on.

For computing volumes it is desirable to work in Rn; the isomorphism
C ' R2 of vector spaces allows us to replace KR by Rn via the linear map

(x1, . . . , xr+s) 7−→ (x1, . . . , xr,Rexr+1, Imxr+1, . . . ,Rexr+s, Imxr+s).

For example, the element 1 + i ∈ C corresponds to the vector (1, 1) ∈ R2.
The composition of ι with this isomorphism gives us an embedding

ι∗ : K −→ Rn. If we give both Q-vector spaces their natural topology, the
image of ι∗ is dense in Rn. Note that ι∗ is still a group homomorphism from
the additive group of K to that of Rn, but that multiplicativity has been
destroyed by the isomorphism Rr × Cs ' Rn.

The extension of the norm function to Rn is defined by

N(x) = |x1 · · ·xr(x2
r+1 + x2

r+2) · · · (x2
n−1 + x2

n)|,

and we get a commutative diagram of Q-vector spaces

K
ι−−−−→ KR

'−−−−→ Rn

NK
Q

y yN yN
Q −−−−→ R id−−−−→ R

A lattice Λ is a discrete additive subgroup of Rn; each lattice has the form
Λ = Zξ1 ⊕ . . .⊕Zξt for some real numbers ξ1, . . . , ξt and t ≤ n; lattices with
maximal rank n are called full lattices. The elements ξ1, . . . , ξt are called a
basis of the lattice, and the set

PΛ = {x ∈ Rn : x =
∑

ajξj , 0 ≤ aj < 1}
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is called a fundamental domain of Λ (PΛ depends on the choice of the basis).
Let {α1, . . . , αn} be a Q-basis of K; then their discriminant, which is the

square of the determinant

D =

∣∣∣∣∣∣∣
σ1(α1) . . . σn(α1)

...
. . .

...
σ1(αn) . . . σn(αn),

∣∣∣∣∣∣∣ ,
is nonzero. Assume we have ordered the embeddings in the following way:
the embeddings σ1, . . . , σr are real, and the complex embeddings are σr+1,
σr+2 = σr+1, . . . . Adding the columns with index r + 2, r + 4, etc. to those
preceding them and factoring out the resulting factor 2 from s columns shows
that

D = 2s

∣∣∣∣∣∣∣
σ1(α1) . . . Reσr(α1) σr(α1) . . .

...
. . .

...
...

...
σ1(αn) . . . Reσr(αn) σr(αn) . . .

∣∣∣∣∣∣∣ .
Subtracting the columns with index r + 1, r + 3 etc. from those following
them and pulling out the resulting factors i from s of the columns shows that

D = (2i)s det(ι∗(αj)). (5.3)

If the αj form an integral basis of K, then their discriminant is discK, and
we find det(ι∗(αj))2 = (−4)−sdiscK.

Lemma 5.19. ι∗(OK) is a full lattice in Rn.

Proof. Clearly ι∗(OK) is an additive subgroup of Rn, so we only have to
show that ι∗(OK) is discrete. To this end, let Ct denote the hypercube in
Rn defined by the inequalities |xj | ≤ t. If ι∗(α) ∈ Ct, then |σj(α)| ≤ t for
j = 1, . . . , r, and |σj(α)| ≤

√
2 t for j = r + 1, . . . , n. This implies that the

coefficients of the minimal polynomial f(X) =
∏

(X − σj(α)) are bounded,
hence there can only be finitely many such α.

The volume of PΛ can be expressed as a determinant:

Lemma 5.20. Let Λ be a full lattice in Rn with fundamental domain PΛ.
Let ξ1, . . . , ξn be a Z-basis of Λ, and write ξj =

∑
aijei, where the ei form

the standard basis of Rn. Then vol (PΛ) = |det(aij)|.

Proof. The volume of PΛ is the absolute value of the integral
∫
PΛ
dx1 · · · dxn.

Consider the the linear map T with T (ei) = ξi, and define the change of
variables T (u1, . . . , un) = (x1, . . . , xn). This maps the “unit cube” PE , that is,
the fundamental domain of the lattice E with the standard basis {e1, . . . , en},
to PΛ, and the Jacobian transformation formula gives us∣∣∣∣ ∫

PΛ

dx1 · · · dxn
∣∣∣∣ =

∣∣∣∣ ∫
PE

(det aij)du1 · · · dun
∣∣∣∣ = |det aij |.
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Thus vol (Λ) := vol (PΛ) does not depend on the choice of the basis, and
(5.3) tells us that

vol (ι∗(OK)) = 2−s|discK|.

If Λ′ is a full sublattice of Λ, then the index (Λ : Λ′) is finite, and it is easily
checked that

vol (Λ′) = (Λ : Λ′)vol (Λ).

Thus if a is an ideal in OK , then

vol (ι∗(a)) = 2−sNa
√
|discK|.

We now have to invoke Minkowski’s geometry of numbers. The basic result
we need is

Theorem 5.21. Let Λ be a full lattice in Rn, and let S be a convex, compact,
measurable, centrally symmetric subset of Rn with

vol (S) ≥ 2nvol (Λ).

Then S contains a nonzero lattice point.

A set S is convex if it has the property that for all x, y ∈ S, the whole line
segment joining x and y is in S. The term measurable refers to the Lebesgue
measure in Rn and basically means that we can attach a volume to S. Finally,
S is centrally symmetric if x ∈ S implies −x ∈ S.

Minkowski’s result is intuitively clear in small dimensions, and giving a
rigorous proof is quite easy.

Corollary 5.22. Assume S is a convex, compact, measurable, centrally sym-
metric subset of Rn with the property that |N(x)| ≤ 1 for all x ∈ X. Then
every full lattice Λ in Rn contains a nonzero point x with

|N(x)| ≤ 2n

vol (X)
vol (Λ).

This follows easily by applying Theorem 5.21 to the set S = tX for a real
number t with

tn =
2n

vol (X)
vol (Λ).

The whole point of getting good bounds such as Minkowski’s is finding
a set S with the required properties that is as large as possible. The choice
S = {(x1, . . . , xn)}, where the xj satisfy the inequalities

|x1|, . . . , |xr| ≤ 1, x2
r+1 + x2

r+2, . . . , x
2
n−1 + x2

n ≤ 1,

obviously has the properties we need, and its volume is easily seen to be
vol (S) = 2rπs. This leads to the existence of a point x ∈ Λ \ {0} with
|N(x)| ≤ ( 4

π )svol (Λ).
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A better choice is the set T consisting of points satisfying

|x1|+ . . .+ |xr|+ 2
√
x2
r+1 + x2

r+2 + . . .+ 2
√
x2
n−1 + x2

n ≤ n.

Showing that T has all the required properties is not very difficult, and a
computation via double induction on r and s readily shows that

vol (T ) =
nn

n!
2r

(π
2

)s
.

With this choice of X = T , Cor. 5.22 gives

Theorem 5.23. Let Λ be a full lattice in Rn. Then there is an x ∈ Λ \ {0}
with

N(x) ≤ n!
nn

( 8
π

)s
vol (Λ).

If we apply this to the lattice ι∗(a) for some nonzero ideal a we get

Corollary 5.24. Every nonzero ideal a in OK contains a nonzero element
α with

|NK/Q(α)| ≤ n!
nn

( 4
π

)s√
|discK| ·Na. (5.4)

The Minkowski bounds follow from this by applying a trick we have seen
before: let c ∈ Cl(K) be an ideal class, and pick an integral ideal a ∈ c−1;
by Corollary 5.24, the ideal a contains an element α satisfying (5.4). Thus
ab = (α), and b ∈ c has norm Nb = |Nα|/Na.

Exercises

5.1 Show that quadratic number fields Q(
√
m ) have (r, s) = (2, 0) or (r, s) = (0, 1)

according as m > 0 or m < 0.

5.2 Show that pure cubic fields K = Q( 3
√
m ) have (r, s) = (1, 1).

5.3 Determine (r, s) for pure quartic fields Q( 4
√
m ).

5.4 Show that r and s do not depend on the choice of α or f : if Q(α) = Q(β),
show that the minimal polynomials of α and β have the same number of real
roots.

5.5 Show that if K is a number field of degree n and a ∈ Q, then Tr (a) = na
and N(a) = an. More generally, show that Tr (aα) = aTr (α) and N(aα) =
anN(α) for all α ∈ K.

5.6 Let ω = 3
√
m; compute Tr (a+ bω+ cω2) and N(a+ bω). Find a unit 6= ±1 in

Q( 3
√

2 ).

5.7 Show that disc (1,
√
m ) = 4m and disc (1, 3

√
m, 3

√
m

2
) = −27m2.

5.8 Compute |1 + 3
√

2 |1 and |1 + 3
√

2 |2 for the two archimedean valuations of

Q( 3
√

2 ).

5.9 Deduce from Theorem 5.5 how primes p split in quadratic extensions.
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5.10 Use the Minkowski bounds to show that the field Q( 3
√

2 ) has class number 1.

Show directly that 3 ramifies completely by verifying that (1 + 3
√

2 )3 = (3),
and show that this relation provides you with a unit.

5.11 Draw a lattice in R2 and sketch an example that shows why we need the
condition “centrally symmetric” in the statement of Thm. 5.21.

5.12 Show that the set T that occurred in the proof of the Minkowski bounds is
convex, centrally symmetric, and compact.
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6. Dirichlet’s Unit Theorem

Let K be an algebraic number field with ring of integers OK . The units in
this ring form a group EK = O×

K , which is often called the unit group of K
(this is an abuse of language, since the unit group of the field K is actually
K×). For K = Q, the unit group has order 2 since EQ = {−1,+1}. For a
general number field, Dirichlet proved (in modern terms) that EK is a finitely
generated abelian group, and in fact determined its abstract structure.

The unit group plays an important role in class field theory. This might
seem surprising at first, but we will see over and over again that questions
concerning the ideal class group are tied intricately to properties of the unit
group. One manifestation of this link is the fact that Dedekind’s class number
formula will give us a formula for the product hR, where h is the class number
of K and R its regulator, a number that does for units what the discriminant
does for rings of integers.

6.1 Units in Quadratic Number Fields

It is easy to see that α ∈ OK is a unit if and only if NK/Qα = ±1. For
quadratic number fields with discriminant d, this boils down to the solvability
of the Pell equation T 2−dU2 = ±4. It is then easy to check that, for complex
quadratic number fields, the unit groups are given by

EK =


〈−ρ〉 ' Z/6Z if d = −3; here ρ2 + ρ+ 1 = 0.
〈i〉 ' Z/4Z if d = −4; here i2 = −1.
〈−1〉 ' Z/2Z otherwise.

For positive d, however, the Pell equation always has a nontrivial solution.
This was known to Fermat and Euler, but it was Lagrange who first found
a proof. We will next present a proof for the solvability of the Pell equation
going back to Dirichlet, and then give his proof of the unit theorem in general
number fields.

Theorem 6.1. Let K = Q(
√
m ) be a real quadratic number field with m > 0

squarefree. Then
EK = O×

K ' Z/2Z⊕ Z. (6.1)
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In other words, there exists a unit η ∈ EK such that every unit ε ∈ EK can
be written uniquely in the form ε = (−1)aηb with a ∈ Z/2Z and b ∈ Z.

The idea behind the proof is the following: there are only finitely many
integral ideals of bounded norm in Q(

√
m ); if we can construct sufficiently

many elements with bounded norm, then there must be two that generate
the same ideal. But if (α) = (β), then ε = α

β is a unit. In order to make sure
that ε has infinite order, we observe

Lemma 6.2. Let K = Q(
√
m ) be a real quadratic number field. Then ε ∈ OK

has infinite order if and only if |ε| 6= 1.

Proof. If |ε| = 1, then ε = a + b
√
m = ±1. The irrationality of

√
m then

implies a = ±1 and b = 0, that is, ε = ±1.
If |ε| 6= 1, then ε cannot have finite order: in fact, εm = 1 implies |ε|m = 1,

hence |eps| = 1.

The idea is to construct a sequence of algebraic integers αj = xj + yj
√
m

(m a positive squarefree integer) with |Nαj | < B. Eventually there will be two
elements αi and αj generating the same ideal, and their quotient ε = αi/αj
will then be a unit. In order to make sure that ε 6= ±1 we construct the αj
in such a way that α1 > α2 > . . . > αk > . . ..

This is achieved in exactly the same way as above for m = 11: we consider
the sequence y = 0, 1, . . . , N and let x denote the smallest integer > y

√
m;

then 0 < x− y
√
m ≤ 1 and x+ y

√
m < BN for B = d2

√
me. Since there are

N + 1 such numbers x− y
√
m in the interval (0, 1), Dirichlet’s box principle

guarantees the existence of pairs (a, b) and (a′, b′) with 0 < (a−b
√
m)− (a′−

b′
√
m ) < 1

N . Putting x = a − a′ and y = b − b′ we find 0 < x − y
√
m < 1

N
and 0 < |x+y

√
m | < BN . Thus we can find numbers x−y

√
m with positive

absolute value as small as we wish, but in such a way that N(x−y
√
m ) < B

is bounded.
Now we can construct our sequence of αj . We start with α1 = 1. Assume

we have already found αi for i = 1, . . . , k − 1 with

α1 > α2 > . . . > αk−1 > 0

and |N(αi)| < B. By the argument above we can find αk = x − y
√
m with

0 < αk < αk−1 and |N(αk)| < B.
Since there are only finitely many integral ideals with norm < B, there

must exist i < j with (αi) = (αj). But then ε = αi/αj > 1 is a unit, and
we have proved that every real quadratic field has units 6= ±1. In particular,
the Pell equation X2 − mY 2 = 1, where m > 1 is an integer, has integral
solutions with y > 0.

In order to prove (6.1), we first show that there is a smallest unit η > 1.
If not, then there is a sequence of units η1 > η2 > . . . > 1; then 0 < |η′i| =
1/εi < 1, hence if we write ηj = xj + yj

√
m, we find 2|xj | = |ηj + η′j | ≤

|ηj |+ |η′j | < η1 +1: this shows that there are only finitely many choices for x,



6.2 Dirichlet’s Unit Theorem 79

and the same argument with η′j replaced by −η′j shows that the same holds
for yj . This is a contradiction.

Now let ε > 1 be any unit. If ε = ηn for some integer n we are done; if
not, then there is some n ∈ N with ηn < ε < ηn+1. But then υ = εη−n is a
unit in OK with 1 < υ < η, contradicting the choice of η.

Thus every unit > 1 has the form ηn for some n ∈ N. If 0 < ε < 1, then
1/ε > 1, hence ε = ηn for some integer m < 0. Finally, if ε < 0, then −ε > 0
has the form ηn. This proves that every unit can be written as ±ηn.

6.2 Dirichlet’s Unit Theorem

The structure of the unit group of rings OK was determined by Dirichlet (to
be honest, Dirichlet did not know the definition of an algebraic integer, and
worked with rings of the form Z[α] for roots α of monic polynomials with
integral coefficients; it is not hard to see that the unit group of OK and that
of its subring Z[α] have the same abstract structure) . The set WK of the
roots of unity contained in a number field K is a finite cyclic group, which
can easily be determined. In fact, if WK = 〈ζ〉 is generated by a primitive
w-th root of unity, then we must have Q(ζw) ⊆ K; this already shows that
WK is finite. Moreover, if w > 2, then K contains a totally complex number
field as a subfield, hence is totally complex; this shows that if K has r > 0
real embeddings, then we necessarily have WK = {±1}.

Theorem 6.3 (Dirichlet’s Unit Theorem). Let K be a number field of de-
gree n = r + 2s, and let ζ be a generator of WK . Then there exist units
ε1, . . . , er+s−1 ∈ O×

K such that every unit η ∈ O×
K can be written uniquely in

the form
η = ζaεa1

1 · · · ε
ar+s−1
r+s−1 ,

where the ai are integers, and where a is determined modulo the order w of
ζ. In particular, the unit group of OK is finitely generated, and we have

O×
K ' Z/wZ⊕ Zr+s−1.

In order to be able to apply Minkowski’s techniques, we need a map
(actually a homomorphism) from the unit group to some lattice in a finite
dimensional real vector space. It should not come as a big surprise that the
construction of a homomorphism from a multiplicative to an additive group
involves logarithms.

In fact, we get a “logarithmic” embedding λ : K× −→ Rr+s by setting

λ(α) = (log |σ1(α)|, . . . , log |σr(α)|, 2 log |σr+1(α)|, . . . , 2 log |σr+1(α)|).

Clearly the sum of the coordinates of λ(α) is equal to
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n∑
j=1

log |σj(α)| = log |Nα|

since |σr+1(α)| = |σr+1(α)|. In particular, the image of the unit group O×
K

lies in the hyperplane

H : x1 + . . .+ xr+s = 0 (6.2)

of Rr+s. Since the image of the homomorphism λ is a free abelian group, the
torsion subgroup of O×

K , namely the group of roots of unity in K, must be
in the kernel. In fact, it is the kernel:

Lemma 6.4 (Kronecker). We have an exact sequence

1 −−−−→ WK −−−−→ O×
K

λ−−−−→ Rr+s,

where WK denotes the group of roots of unity contained in K.

Proof. The kernel of λ consists of all units ε with |σj(ε)| = 1. These units
form a subgroup of O×

K , and since their images under ι∗ lie in a bounded
domain in Rn, the coefficients of their minimal polynomials are bounded,
too. Thus the group of these units must be finite, and hence each such unit
has finite order. i.e., is a root of unity.

The same type of argument shows that λ(O×
K) is a discrete subgroup

of the hyperplane (6.2) in Rr+s, hence that the free abelian group group
O×
K/WK has at most r + s− 1 independent generators.

The heart of Dirichlet’s proof is showing the existence of r + s − 1 inde-
pendent units, or, in other words, showing that λ(O×

K) is a full lattice in the
hyperplane H defined by (6.2).

The idea is to construct units εj with the property that

λ(εj) = (x1, . . . , xr+s), xi < 0 for all i 6= j,

(and, since λ(εj) lies in (6.2), xj > 0). A simple lemma from linear algebra1

will then immediately show that any selection of r + s− 1 out of these r + s
units are independent. In fact, if we delete the last row (corresponding to the
unit εr+s and the last column (giving the logs of the valuation | · |r+s, then
the sums of the entries in each row will be positive (before the deletion they
added up to 0, and then we have deleted a negative entry), and all entries
except those on the main diagonal will be negative. The lemma below shows
that such matrices have nonzero determinant, and this means that their rows
must be linearly independent.
1 This result is due to Minkowski; the special case n = 3 was used as a problem

in the 7th IMO in 1965. The proof given below is a simplification of a proof due
to Furtwängler and communicated by Artin to Hasse in a letter from Oct. 27,
1927; it was published in Artin’s article [Ar1932].
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Lemma 6.5. Let A = (aij) be a real n × n-matrix with the following prop-
erties:

i) aii > 0 for all 1 ≤ i ≤ n;
ii) aij ≤ 0 for all i 6= j;
iii) the column sums

∑n
i=1 aij are positive for j = 1, 2, . . . , n.

Then detA 6= 0.

Proof. Suppose that detA = 0. Then the system of equations
∑n
i=1 aijxi = 0,

i = 1, . . . , n has a nontrivial solution x = (x1, . . . , xn) 6= 0.
Assume that |xk| is maximal among all |xj |; without loss of generality we

may assume that xk > 0 (otherwise replace x by −x). Then xk ≥ xj for all
j. Now we find

0 =
n∑
i=1

aikxi ≥
n∑
i=1

aikxk = xk

n∑
i=1

aik > 0.

Here we have used that aik ≤ 0 for i 6= k implies aikxi ≥ aikxk.

The construction of the unit εj is done by finding a sequence of elements
α1, α2, . . . of bounded norm with the property that all coordinates xi 6= xj of
λ(αn) are strictly smaller than those of λ(αn−1). Since there are only finitely
many ideals with bounded norm, there must be two such αi that generate
the same ideal, and then their quotient is the desired unit.

The construction of this sequence of αj finally is done via the following

Lemma 6.6. Fix an index j with 1 ≤ j ≤ r + s; then for every nonzero
α ∈ OK there is a nonzero β ∈ OK such that

NK/Q(β) <
( 2
π

)√
|discK|,

as well as λ(α) = (a1, . . . , ar+s), λ(β) = (b1, . . . , br+s), and bi < ai for all
i 6= j.

Proof. Choose constants ci with 0 < ci < eai for i 6= j and determine ck from
the equation

c1c2 · · · cr+s =
( 2
π

)√
|discK|.

Consider the set S of points (x1, . . . , xn) ∈ Rn satisfying

|x1| ≤ c1, . . . , |xr| ≤ cr, x2
r+1 + x2

r+2 ≤ xr+1, . . . , x
2
n−1 + x2

n ≤ cr+s.

Then vol (S) = 2rπsc1 · · · cr+s = 2nvol (Λ), where Λ = ι∗(OK). By Minkowski,
S contains some nonzero lattice point ι∗(β), and this β ∈ OK has the desired
properties.
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6.3 The Unit Theorems of Minkowski and Herbrand

Minkowski’s Unit Theorem

For computing the Herbrand quotient of the unit group EL, we need to un-
derstand how the Galois group acts on EL. Unfortunately, the Galois action
on EL is too difficult to be understood properly. The best we can hope for
is to find a subgroup of finite index in EL on which the Galois group acts in
a way that can be described explicitly. The first such result was proved by
Minkowski and deals with the unit group in normal extensions L/Q. Such
extensions are either totally real or totally complex; in the second case, com-
plex conjugation fixes a subfield F with (L : F ) = 2, which, in general, will
not be normal (nor totally real): in fact, the extension L = Q( 3

√
2,
√
−3 ) is

normal over Q with Galois group S3, and the real subfield fixed by complex
conjugation is the field Q( 3

√
2 ). In each of these cases, observe that the unit

rank of L is (F : Q)− 1.

Theorem 6.7 (Minkowski’s Unit Theorem). Let L/Q be a normal extension,
and F its real subfield of degree ρ+1 = r+s. Then there exists a unit ε ∈ EF
such that any ρ units among the ρ+ 1 conjugates of ε generate a subgroup of
finite index in EL.

This result can be seen as the analog of the normal basis theorem in
Galois theory: if L/K is a finite Galois extension, then there is an element
α ∈ L whose conjugates form a K-basis for L. A normal basis for quadratic
extensions L = K(

√
µ ) is e.g. given by {1+

√
µ, 1−√µ }, and {ζ, ζ2, . . . , ζp−1}

is a normal basis for L = Q(ζ), where ζ is a primitive p-th root of unity (this
is even a normal integral basis). Minkowski’s result states that it is always
possible to choose an independent system of units consisting of conjugate
elements.

Minkowski’s unit theorem is trivial for quadratic extensions, where we
can take ε to be a fundamental unit. If L = Q(

√
a,
√
b ) is a totally complex

biquadratic extension (say with a > 0 and b < 0), then we can take ε to be
the fundamental unit of Q(

√
a ). If L is totally real, the fundamental units

ε1, ε2, ε3 of the three real quadratic subfields of L generate a subgroup of
finite index; here it can be shown that we can take ε = ε1ε2ε3.

Proof of Thm. 6.7. Assume first that L is totally real, and let | · |1, . . . , | · |n
denote the n = (L : K) archimedean valuations attached to each of the
real embeddings σ1, . . . , σr via |α|j = |σj(α)|. In the proof of Dirichlet’s unit
theorem we have seen that there exists a unit ε with the property |ε|1 > 1,
|ε|2, . . . , |ε|n < 1.

Since L/Q is normal, the real embeddings σj are the elements of G =
Gal (L/Q), hence the unit εi = σ−1

i (ε) ∈ EL has the property

|εi|j = |σj(εi)| = |σj(σ−1
i (ε))|, hence

{
|εi|i > 1
|εi|j < 1 if j 6= i.
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In the proof of Dirichlet’s Unit Theorem we have seen that such units are
independent, and this concludes the proof of Minkowski’s Unit Theorem in
the case where L is totally real.

Now assume that L is totally complex of degree n = 2m, and let K be the
fixed field of complex conjugation σ. From each pair of complex embeddings
pick one; then σ1, . . . , σm give rise to the m archimedean valuations | · |1, . . . ,
| · |m of L. As above, Dirichlet’s unit theorem provides us with a unit η ∈ EL
such that |η|1 > 1, |η|2, . . . , |η|m < 1. Now we claim that ε = η1+σ has the
desired properties. First of all, ε ∈ EF since ε is fixed by complex conjugation
σ. Next |ε|1 > 1, |ε|2, . . . , |ε|m < 1 because |ε|j = |η|j |ησ|j = |η|2j . Finally we
check that the units εi = σ−1

i (ε) have the same properties as in the totally
real case.

Herbrand’s Unit Theorem

For normal extensions L/Q, Minkowski’s Unit Theorem guarantees the ex-
istence of a unit whose set of conjugates contains an independent system of
units. If L is normal over some number field K, then there are fewer con-
jugates of units, so we cannot expect that the conjugates of a single unit
generate a subgroup of finite index in the unit group.

How many units do we need then? Assume that (K : Q) = rK + 2sK ,
where rK and sK are the number of real and pairs of complex embeddings.
The unit rank of K is, by Dirichlet’s unit theorem, ρ = rK + sK − 1. If
n = (L : K) denotes the relative degree of the extension L/K, then clearly
each of the sK pairs of complex embeddings lifts to n complex embeddings of
L (in fact, if κ is a complex embedding of K, then each σ ∈ G = Gal (L/K)
induces a co,plex embedding κσ). Let d denote the number of real embedding
of K that lift to complex embeddings of L; since n is even if d > 0, this gives
rise to dn2 pairs of complex embeddings of L. Each of the remaining rK − d
real embeddings lifts to n real embeddings of L.

Thus we find rL = (n − d)rK and sL = nsK + n
2 drK . The degree of L

then becomes rL+2sL = (n−d)rK +2nsK +drK = n(rK +2sK) = n(K : Q)
as expected. In particular, the unit rank of L is given by ρL = rL + sL− 1 =
(n− d)rK + nsK + n

2 drK − 1 = n(rk + sK)− n
2 d− 1.

Lemma 6.8. Let L/K be a normal extension, and assume that d real primes
ramify in L/K. Then the following formulas hold:

rL = (rK − d)n,

sL = nsK +
n

2
dn

ρL = n(rk + sK)− n

2
d− 1.

We can rewrite these equations by invoking the ramification indices e(p∞)
of infinite primes (this number equals 2 or 1 according as p∞ is ramified or
not). In fact, we have
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∑
p|∞

n

e(p)
= (rK + sK − d)n+

n

2
d = n(rK + sK)− n

2
d

since n
e(p) = n if p is unramified (this happens for rK−d real and sK complex

primes), and n
e(p) = n

2 otherwise (this happens d times). This shows

Lemma 6.9. Let L/K be a normal extension. Then L has
∑
p|∞

n
e(p) infinite

primes.

This is of course not very surprising since each infinite prime p in K splits
into n

e(p) infinite primes in L.

Herbrand’s Unit Theorem

Our task now is to find a generalization of Minkowski’s unit theorem to
relative extensions. We will use the notation from Section ??; let us denote
the valuations in K by v1, . . . , vr+s, and let pj denote the attached infinite
primes. Choose lifts w1, . . . , wr+s to L. If for each such j we can find a unit
εj lying in the decomposition field of wj |vj , then each such unit will have
at most n

e(pj)
conjugates, and the set of conjugates of all such units will be∑

p|∞
n
e(p) = rL + sL, and if we choose the units carefully, we can make sure

that any subset of rL + sL − 1 among these conjugates form an independent
system of units.

Theorem 6.10 (Herbrand’s Unit Theorem (I)). Let K be a number field
with r + s archimedean valuations, and let L/K be a normal extension with
Galois group n. Then there exist r+ s independent units η1, . . . , ηr+s in EL
such that the only relations between their conjugates are

• σjηj = ηj, where σj generates the decomposition group of wj |vj;
•

∏
j,σ σ(ηj) = 1.

Proof. Let σ1, . . . , σρ+1 denote generators of the decomposition groups of
wj |vj . Choose units ηj ∈ EL with wj(ηj) > 1 and wi(ηj) < 1 for i 6= j. If
σj 6= 1, observe that

• wj(η
1+σj

j ) = wj(η2
j ) > 1;

•

Replacing ηj by η
1+σj

j ∈ Lwj produces units ηj with wjσ(ηj) > 1, and
wjσ(ηi) < 1 for i 6= j, where σ runs through a set of representatives for
G/〈σjra. Omitting any unit from the set of rL+ sL conjugates will therefore
produce an independent system of units. This implies that we must have a
relation ∏

j,σ

σ(ηj)m(j,σ) = 1
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in which none of the exponents can vanish (since every conjugate of a unit
can be expressed by the others). Applying τ ∈ G to this relation produces
another one; since we only can have one independent relation, this implies
that the exponents mj = m(j, σ) do not depend on σ. Replacing each unit ηj
by η1

jmj the produces a system of units with the same properties as before,
and with the single relation ∏

j,σ

σ(ηj) = 1.

This concludes the proof.

In the special case of cyclic extensions, this result can be stated in the
following form:

Theorem 6.11 (Herbrand’s Unit Theorem (II)). Let L/K be a cyclic ex-
tension with Galois group G = 〈σ〉, and let ρ denote the Z-rank of EK . Then
there exist ρ + 1 units η1, . . . , ηρ+1 (one for each infinite prime ∞j of K)
with the following properties:

• The ηj and their conjugates, together with a system of fundamental units
ε1, . . . , ερ of K, generate a subgroup of finite index in EL.
• The only relations between the ηj are the following:

η1+σ+...+σnj−1

j = 1, where nj =
n

e(∞j)
, j = 1, . . . , ρ+ 1.

The version of Herbrand’s Unit Theorem can be derived easily from Thm.
6.10: let Nj denote the norm from the decomposition field of wj |vj down to
K and put εj = Nj(ηj). The relation

∏
j,σ σ(ηj) = 1 then becomes

ε1 · · · ερ+1 = 1. (6.3)

Since every relation between the εj is also a relation between the ηj , (6.3) is
the only relation among the εj , and in particular ε1, . . . , ερ is an independent
system of units in EK . If we put Hj = E

nj

j /ηj , then Nj(ηj) = εj implies
NjHj = 1.

Notes

The original proofs of the unit theorems of Minkowski and Herbrand can
be found in Minkowski [Mi1900], Herbrand [He1930, He1931], and Artin
[Ar1932]. A nontrivial upper bound for the finite index (EL : UL) was derived
by Odai [Od1994].
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Exercises

6.1 Let K/Q be a real biquadratic extension, and let ε ∈ EK be the product of
the fundamental units of the quadratic subfields. Show that the conjugates of
ε generate a subgroup of finite index in EL.



7. Dedekind’s Zeta Function

In this chapter we will prove that the zeta function of any number field K
has a simple pole of order 1 at s = 1, and compute its residue; we will find

Theorem 7.1. Let K be a number field with r real and 2s complex embed-
dings. Then

lim
s→1

(s− 1)ζK(s) =
2r+sπsRK
w

√
|discK|

· hK ,

where RK is the regulator, w the number of roots of unity, and hK the class
number of K.

The general theory of Dirichlet series tells us exactly what we will have
to do to prove this result. Recall that ζK(s) =

∑
ann

−s, where an denotes
the number of ideals with norm n. In particular, ζK(s) is a Dirichlet series
with nonnegative coefficients an. Landau proved the following

Theorem 7.2. Let f(s) =
∑
ann

−s be a Dirichlet series with real coefficients
an ≥ 0, and assume that f has abscissa of convergence σ0. Then f has a
singularity at s = σ0.

We would like to show that ζK(s) has a pole at s = 1, so we need to be
able to compute its abscissa of convergence:

Theorem 7.3. Let
∑
ann

−s be a Dirichlet series for which
∑
an diverges.

Then the abscissa of convergence σ0 is given by

σ0 = lim sup
log |A(m)|

logm
,

where A(m) = a1 + . . .+ am.

Landau’s theorem can be made more precise in the special case we need:

Theorem 7.4. Let f(s) =
∑
ann

−s, and assume that there is some κ ∈ C,
a σ1 with 0 ≤ σ1 < 1, and a constant c such that |A(m) − κm| < cmσ1 for
all m ≥ 1. Then f(s) is holomorphic in the half plane Re s > σ1 except for a
simple pole at s = 1 with residue κ.

Proof. Consider the Dirichlet series f(s) − κζ(s); Lemma 1.7 shows that
this is holomorphic in the half plane Re s > σ1. But then lim(s − 1)f(s) =
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κ lim(s−1)ζ(s) = κ 6= 0 shows that f has a simple pole at s = 1 with residue
κ, and that it is holomorphic everywhere else in the half plane Re s > σ1.

Thus if we want to show that ζK(s) → ∞ as s → 1, we need to show
that the number A(m) = a1 + . . . + am of ideals with norm ≤ m satisfies
lim logA(m)

logm = 1, which is easily seen to follow from A(m) = κm + O(m1−ε)
for some ε > 0. In order to show that ζK(s) has a pole at s = 1, we are
therefore almost forced to count the number of ideals in K with norm ≤ m.

In fact, if we can show that A(m) = κm+O(m1−ε) for some ε > 0, then
we will also know that the Dedekind zeta function ζK(s) can be extended
holomorphically to Re s > 1 − ε with the exception of a simple pole with
residue κ at s = 1.

It should be clear how to achieve this. Let K be a number field with ideal
class group Cl(K), and fix an ideal class c ∈ Cl(K). Choose an integral ideal
b ∈ c−1; then for every a ∈ c, we can write ab = (α) for some α ∈ b with
|Nα| = NaNb. Thus the ideals in c with norm ≤ m correspond to principal
ideals (α) for α ∈ b with |Nα| ≤ mNb.

7.1 Distribution of Ideals

Recall the situation we are in: let K be a number field with ideal class group
Cl(K), and fix an ideal class c ∈ Cl(K). Choose an integral ideal b ∈ c−1; then
for every a ∈ c, we can write ab = (α) for some α ∈ b with |Nα| = NaNb.
Thus the ideals in c with norm ≤ m correspond to principal ideals (α) for
α ∈ b with |Nα| ≤ mNb.

Our next job is constructing a fundamental domain D with the property
that every α ∈ b is associated to exactly one element in D. To this end, let
us introduce the following maps:

1. Let ι denote the restriction of the embedding K ↪→ Rr ×Cs to K×; this
gives us an embedding ι : K× −→ R× r × C× s.

2. Define the norm map N : Rr × Cs as before via

N(x) = |x1 · · ·xrx2
r+1 · · ·x2

r+s| for x = (x1, . . . , xr + s).

Then |NK/Q(α)| = N(ι(α)).
3. Define the logarithmic map ` : R× r × C× s −→ Rr+s by

`(x1, . . . , xr+s) = (log |x1|, . . . , log |xr|, 2 log |xr+s|, . . . , 2 log |xr+s|).

Clearly λ = ` ◦ ι.
4. Observe that logN(α) = ξ1+. . .+ξr+s for (ξ1, . . . , ξr+s) = λ(α), and that
λ(O×

K) is a full lattice in the hyperplane H defined by x1+ . . .+xr+s = 0.
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Now let ε1, . . . , ερ (ρ = r + s − 1) denote a system of fundamental units
of OK . Then the vectors λ(ε1), . . . , λ(ερ) form a basis of the hyperplane H.
The fundamental domain of this lattice λ(O×

K) is

F = {x = a1λ(ε1) + . . .+ aρλ(ερ) ∈ H : 0 ≤ ai < 1}.

Since u = (1, . . . , 1, 2, . . . , 2) (the first r coordinates are 1, the other s are
2) does not lie in H (its coordinates do not add up to 0), the elements λ(εj)
and u form a basis of Rr+s. The reason for this particular choice will become
clear below.

Now define a subset D ⊆ R× r × C× s by

D = {x ∈ R× r × C× s : log(x) ∈ F ⊕ Ru}.

This condition means that we can write

`(x) = a1λ(ε1) + . . .+ aρλ(ερ) + au

for real numbers 0 ≤ ai < 1 (there is no condition on a ∈ R).

Example: Real Quadratic Number Fields

Consider a real quadratic number field K = Q(
√
m ); here r = 2 and s = 0,

hence u = (1, 1). We have ι(α) = (α, α′) and `(x, y) = (log |x|, log |y|), hence
λ(α) = (log |α|, log |α′|). Let ε > 1 denote the fundamental unit; then εε′ =
N(ε) = ±1 implies log |ε′| = − log |ε|, hence λ(ε) = (log |ε|,− log |ε|). The
condition `(x, y) ∈ F + Ru means

`(x, y) = (a1 log ε+ au,−a1 log ε+ au)

for some a1 ∈ R with 0 ≤ a1 < 1. This implies log |y|
|x| = −2a1 log ε, and

the inequalities 0 ≤ a1 < 1 then show that −2 log ε ≤ log |y|
|x| < 0. Applying

exp gives ε−2 ≤ |y|
|x| < 1, and for (x, y) = ι(α) = (α, α′) this gives us back

the condition ε−2 ≤
∣∣α′
α

∣∣ < 1 we have used for constructing a fundamental
domain for real quadratic fields in Chapter 2.

Basic Properties of D

We now list a couple of basic properties of the set D defined above.

Lemma 7.5. For every α ∈ K× there are exactly w units η ∈ O×
K such that

ι(αη) ∈ D.

Proof. Write λ(α) =
∑
biλ(εi) + au and set ai = bi − bbic, as well as η =

ε
−bb1c
1 · · · ε−bbρc

ρ . Then λ(αη) =
∑
aiλ(εi) + au for real numbers 0 ≤ ai < 1,

hence ι(αη) ∈ D. In fact, replacing η by ζmη for some root of unity ζ ∈
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WK does not change λ(αη), hence we have found w units with the desired
property.

Conversely, if η1 and η2 are units such that both ι(αη1) and ι(αη2) are in
D, then it is easily seen that λ(η1/η2) = 0, and since kerλ = WK , it follows
that η1 and η2 differ by a root of unity.

The next property explains our choice of u:

Lemma 7.6. D is a cone: if x ∈ D, then tx ∈ D for all t ∈ R×.

Proof. Write x = (x1, . . . , xr); then

`(x) = (log |x1|, . . . , log |xr|, 2 log |xr+1|, . . . , 2 log |xr+s|),

hence

`(tx) = (log |tx1|, . . . , log |txr|, 2 log |txr+1|, . . . , 2 log |txr+s|)
= (log |t|, . . . , 2 log |t|) + (log |x1|, . . . , 2 log |xr+s|)
= (log t)u+ `(x).

Thus if x ∈ D, then `(x) =
∑
aiλ(εi) + au with 0 ≤ ai < 1, and this implies

`(tx)
∑
aiλ(εi) + (a+ log |t|)u. The claim follows.

Next we have to discuss the connection between the coordinates of `(x)
and the norm of x = (x1, . . . , xr+s). We know that logN(x) is the sum of the
coordingates of `(x) with respect to the standard basis of Rr+s. If we write
`(x) =

∑
aiλ(εi)+au, then the sum of the coordinates of each λ(εi) is 0, since

the images of units lie in the hyperplane H; thus the sum of the coordinates of
`(x) is a times the sum of the coordinates of u, which is r ·1+s·2 = r+2s = n.
We have proved

Lemma 7.7. If `(x) =
∑
aiλ(εi) + au, then logN(x) = na.

As an immediate corollary we get

Corollary 7.8. Write `(x) =
∑
aiλ(εi) + au for x ∈ D. Then N(x) ≤ 1 if

and only if a ≤ 0.

Now set D1 = {x ∈ D : N(x) ≤ 1}.

Lemma 7.9. The set D1 is bounded.

Proof. If x ∈ D1, then `(x) ∈ F ⊕ (−∞, 0]u. Since the fundamental domain
F of the lattice λ(O×

K) is bounded, the coordinates of `(x) are bounded from
above. Applying exp we see that the coordinates of x are bounded, and the
claim follows.
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The Fundamental Lemma

For counting lattice points inside some domain X we need a somewhat tech-
nical lemma. If we want a good error term on the cardinality of lattice points
inside X it is clear that the boundary of X has to be “nice”. For the appli-
cations we have in mind it suffices to assume that ∂X is covered by finitely
many differentiable functions; in the proof we will actually use something
slightly weaker. We call a map f : L1 −→ L2 between two metric spaces
(L1, d1) and (L2, d2) a Lipschitz map if it is continuous and if there is a real
c > 0 such that d2(f(x), f(y)) ≤ cd1(x, y) for all x, y ∈ L1. Note that differen-
tiable functions are Lipschitz. Next we will call a subset X ⊆ Rn k-Lipschitz
parametrizable if there are finitely many Lipschitz maps fi : Ik −→ X (here
I = [0, 1]) such that each x ∈ X is in the image of at least one fi.

Lemma 7.10. Let X be a subset of Rn, let Λ be a full lattice in Rn, and let
Nt = #(tX ∩Λ) denote the number of lattice points inside tX for real t > 1.
If ∂X is (n− 1)-Lipschitz parametrizable, then

Nt =
vol (X)
vol (Λ)

tn +O(tn−1).

Proof. Let P denote a fundamental domain of the lattice Λ, and let nt denote
the number of λ ∈ Λ for which λ+ P intersects the boundary ∂X. Then

(Nt − nt)vol (Λ) ≤ vol (tX) ≤ (Nt + nt)vol (Λ)

hence
|Ntvol (Λ)− vol (tX)| ≤ ntvol (Λ),

and ∣∣∣∣Nt − vol (X)
vol (Λ)

tn
∣∣∣∣ ≤ nt.

Thus it remains to show that nt = O(tn−1).
Since ∂X is covered by finitely many fi, it is sufficient to consider the

image of one of them, say f , and show that the number νt of lattice points λ
for which λ+P ∩ im f 6= ∅ is O(tn−1). To this end, we cut the interval I into
btc equally long subintervals, hence In−1 into btcn−1 little cubes. Since f is
Lipschitz, there is a constant c > 0 such that |f(x)− f(y)| ≤ c|x− y| < c1 =
c
√
n for all x, y ∈ In−1. Let W denote one of the little cubes; then f(W ) has

diameter ≤ c1/btc (in other words: it is contained in a ball with diameter
c1/btc), and tf(W ) has diameter ≤ c1t/btc < 2c1. Since a ball with radius
c1 contains only finitely many lattice points, there is a constant c2 such that
|tf(W ) ∩ Λ| ≤ c3, and this implies |tf(In−1) ∩ Λ| ≤ c3tn−1.
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The Regulator

We next compute the volume of the fundamental domain F of the lattice
λ(O×

K) in H. Before we do that, we prove the following

Lemma 7.11. Let (aij) be an ρ× (ρ+ 1)-matrix with real entries and with

the property that
ρ+1∑
i=1

aij = 0. Let v = (v1, . . . , vρ+1) be a real vector with∑
vi = 1. Then the determinant∣∣∣∣∣∣∣∣∣

a11 . . . a1,ρ+1

...
. . .

...
aρ,1 . . . aρ,ρ+1

v1 . . . vρ+1

∣∣∣∣∣∣∣∣∣
only depends on the aij and not on the vi.

Proof. Add all columns of this determinant to the last; then we get∣∣∣∣∣∣∣∣∣
a11 . . . a1,ρ 0
...

. . .
...

...
aρ,1 . . . aρ,ρ 0
v1 . . . vρ 1

∣∣∣∣∣∣∣∣∣
Developing with respect to the last line shows that the determinant in ques-
tion equals ∣∣∣∣∣∣∣

a11 . . . a1,ρ

...
. . .

...
aρ,1 . . . aρ,ρ

∣∣∣∣∣∣∣ .
Note that the determinant also equals any other ρ× ρ-minor of (aij).

If we apply this lemma to the minors of the determinant whose rows are
the λ(εj) we find that the determinant

RK =

∣∣∣∣∣∣∣
log |σ1(ε1)| . . . 2 log |σρ(ε1)|

...
. . .

...
log |σ1(ερ)| . . . 2 log |σρ(ερ)|

∣∣∣∣∣∣∣
does not depend on the choice of the embeddings (the factor 2 is only attached
to the logarithms of the nonreal embeddings). In particular, the regulator of
a real quadratic number field K with fundamental unit ε > 1 is RK = log ε.

Next we compute vol (F ). To that end we observe that the unit vector
v = 1√

r+s
(1, . . . , 1) is perpendicular toH; thus the volume of the fundamental

domain F of λ(O×
K) in H is the same as the volume V of the fundamental
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domain of the lattice λ(O×
K⊕Zv) in Rr+s. The latter is given by the absolute

value of the determinant

1√
r + s

∣∣∣∣∣∣∣∣∣
log |σ1(ε1)| . . . 2 log |σr+s(ε1)|

...
. . .

...
log |σ1(ερ)| . . . 2 log |σr+s(ερ)|

1 . . . 1

∣∣∣∣∣∣∣∣∣ ,
which equals 1√

r+s
RK . We have proved

Lemma 7.12. The volume of the fundamental domain of the lattice λ(O×
K)

in H is 1√
r+s

RK . In particular, RK does not depend on the choice of the
fundamental units.

The Volume of D1

The most technical part of the proof is the computation of vol (D1).

Lemma 7.13. We have

vol (D1) = 2r+sπsRK .

First let D+
1 denote the subset of D1 for which x1, . . . , xr ≥ 0; then clearly

vol (D1) = 2rvol (D+
1 ).

Next we introduce polar coordinates. We set xj = ρje
iφj (with φj = 0 for

j = 1, . . . , r) and map

(x1, . . . , xr+s) 7−→ (ρ1, . . . , ρr, ρr+1, φr+1, . . . , ρr+s, φr+s). (7.1)

The Jacobian of this transformation is ρr+1 · · · ρr+s. The subset D+
1 is de-

scribed in these coordinates by the equations

1. ρ1, . . . , ρr+s > 0;
2.

∏
ρ
bj

j ≤ 1, where b1 = . . . = br = 1 and br+1 = . . . = br+s = 2.

3. log ρbj

j = bj

n

∑r+s
i=1 bi log(ρi) +

∑r
i=1 aiλj(εi) with 0 ≤ ai < 1 for i =

1, . . . , r + s.

The last equation comes from the fact that x = (x1, . . . , xr+s) ∈ D1 satisfies
`(x) =

∑
ajλ(εj) + au with 0 ≤ aj < 1 and na = N(x).

The variables φr+1, . . . , φr+s independently run through the interval
[0, 2π); this shows that

vol (D+
1 ) = (2π)s

∫
eD+

1

ρr+1 · · · ρr+sdρ1 · · · dρr+s,

where D̃+
1 is described by the inequalities above.

We now introduce new variables a, a1, . . . , ar+s using the equations
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log ρbj

j =
bj
n

log(a) +
∑

aiλj(εi),

where a =
∏
ρai
i = N(x). The equations for the ρj now become 0 < a ≤ 1,

0 ≤ ai < 1 for i = 1, . . . , r + s. These equations describe the unit cube,
whose volume is 1. Thus all we have to do is compute the Jacobian of this
transformation.

To this end observe that

∂ρj
∂a

=
ρj
na
,

∂ρj
∂ai

=
ρj
bi
λj(εi).

Thus the Jacobian is given by

J =

∣∣∣∣∣∣∣∣∣
ρ1
na

ρ1
b1
λ1(ε1) . . . ρ1

b1
λ1(ερ)

ρ2
na

ρ2
b2
λ2(ε1) . . . ρ2

b2
λ2(ερ)

...
...

. . .
...

ρr+s

na
ρr+s

br+s
λr+s(ε1) . . . ρr+s

ar+s
λr+s(ερ)

∣∣∣∣∣∣∣∣∣
=
ρ1 · · · ρr+s
na2s

∣∣∣∣∣∣∣∣∣
b1 λ1(ε1) . . . λ1(ερ)
b2 λ2(ε1) . . . λ2(ερ)
...

...
. . .

...
br+s λr+s(ε1) . . . λr+s(ερ)

∣∣∣∣∣∣∣∣∣
=
ρ1 · · · ρr+s

a2s
RK =

RK
2sρr+1 · · · ρr+s

.

Putting everything together we see that

vol (D1) = 2r(2π)s2−sRK = 2rπsRK .

It remains to show that the boundary ∂D1 is (n − 1)-Lipschitz parame-
trizable.

Recall that we have to count the number of lattice points in Dt, where the
lattice Λ is the image of the ideal b. We know that vol (Λ) = 2−s

√
|discK|Nb,

and that each principal ideal (α) with α ∈ Λ and norm |Nα| ≤ mNb (where
m = Na) corresponds to exactly w lattice points in Dt for the real number
t = n
√
mNb.
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Thus Lemma 7.10 shows that

wNt =
vol (Dt)
vol (Λ)

tn +O(tn−1)

=
vol (D1)Nb

vol (Λ)
m+O(m1− 1

n )

=
2rπsRKNb

2−s
√
|discK|Nb

m+O(m1− 1
n )

=
2r+sπsRK√
|discK|

m+O(m1− 1
n ).

In particular, the number of integral ideals in an ideal class grows linearly
with the norm, and does not depend on the ideal class. This finally finishes,
by the same argument we used in the quadratic case, the proof of Theorem
7.1.

7.2 Dirichlet’s Class Number Formula

Dirichlet was the first to study binary quadratic forms whose coefficients are
Gaussian integers, and discovered a class number formula, which, in modern
terms, boils down to a statement of the following form: let k1 = Q(i), k2 =
Q(
√
m ) and k3 = Q(

√
−m ) three quadratic number fields with class numbers

h1 = 1, h2 and h3, respectively; also assume that m > 1. Then the class
number hK of the compositum K = k1k2k3 = Q(i,

√
m ) is given by hK =

1
2qhmh− for some index q ∈ {1, 2}. A little later, Eisenstein proved a similar
formula for fields Q(

√
−3,
√
m,
√
−3m ). Once Dedekind’s ideal theory was

available, these formulas were quickly generalized to the following general
result:

Theorem 7.14. Let k1, k2 and k3 be the three quadratic subfields of a bi-
quadratic extension K/Q, and let h1, h2, h3, hK denote the class numbers of
these fields. Then

hK =

{
1
2q(K)h1h2h3 if K is complex,
1
4q(K)h1h2h3 if K is real.

Here q(K) = (EK : E1E2E3) is the unit index, which measures to which
extent the unit group EK of K is generated by the unit groups E1, E2, E3 of
the three quadratic subfields. Moreover, we have q(K) | 2 if K is complex,
and q(K) | 4 if K is real.

It is not difficult to see how to prove such a result: using the factorization

ζK(s) = ζ(s)L(s, χ1)L(s, χ2)L(s, χ3)
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of the Dedekind zeta function into the Riemann zeta function and the three
L-series attached to the quadratic characters χj belonging to the quadratic
subfields kj , we immediately get the following formula for the residues at
s = 1 by multiplying through by s− 1 and taking limits s→ 1:

hKκK = h1h2h3κ1κ2κ3,

where κK = 24RK

wK

√
discK

, κj = 22Rj

wj

√
disc kj

if K is real (here wj denotes the

numbers of roots of unity in kj , and Rj is the regulator of kj), and κK =
π2RK

wK

√
discK

, κ1 = 22R1

w1

√
disc k1

for the real quadratic subfield k1, and κj =
2π

wj

√
|disc kj |

for the two complex quadratic subfields k2, k3 if K is complex.

Assume first that K is real; then

hK = h1h2h3
1
4
R1R2R3

RK

w1w2w3

wK

d1d2d3

discK
,

where dj = disc kj . Since K is real, the only roots of unity in K are ±1, hence
w1 = w2 = w3 = wK = 2.

7.3 Cyclotomic Fields

Exercises

7.1 Show that the Jacobian of the transformation (7.1) is ρr+1 · · · ρr+s. Hint: write

xj = uj + ivj for r + 1 ≤ j ≤ r + s, and compute
∂xj

∂ρi
and

∂xj

∂φi
. Then write

down the Jacobian matrix and compute the absolute value of its determinant.



8. Density Theorems

In this chapter we will discuss a few consequences of the fact (proved in
the last chapter) that the Dedekind zeta function ζK(s) of a number field
K has a pole of order 1 at s = 1. We will derive the density theorems of
Kronecker, Frobenius (for abelian extensions), as well as Kummer and Hilbert
(in this connection we also have to study prime decomposition in Kummer
extensions).

8.1 Kronecker’s Density Theorem

Kronecker’s starting point was his observation

Proposition 8.1. Let f ∈ Z[x] be a polynomial with g irreducible factors.
For primes p, let np denote the number of roots of f in Fp[x], counted with
multiplicity. Then ∑

p

npp
−s ∼ g log

1
s− 1

(8.1)

as s→ 1.

Here are a few very simple examples:

1. If f is the product of g linear factors, then np = g, and the statement is
equivalent to

∑
p−s ∼ log 1

s−1 .
2. If f(x) = x2 + 1, then g = 1, and we have

np =

{
2 if p ≡ 1 mod 4,
0 if p ≡ 3 mod 4,

hence primes p ≡ 1 mod 4 have Dirichlet density 1
2 .

3. If f(x) = Φm(x) is the m-th cyclotomic polynomial, then g = 1, and as
above we find

np =

{
φ(m) if p ≡ 1 mod m,
0 otherwise;

this implies that primes p ≡ 1 mod m have Dirichlet density 1
φ(m) .
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The Dirichlet series on the left hand side of (8.1) can be split up as follows.
Let Sj = Sj(f) denote the set of primes p for which f(x) has exactly p roots
(counted with multiplicity). If deg f = n, then∑

p

npp
−s =

∑
p∈S1

p−s + 2
∑
p∈S2

p−s + 3
∑
p∈S3

p−s + . . .+ n
∑
p∈Sn

p−s. (8.2)

Kronecker conjectured that each of these sets Sj has a Dirichlet density Dj =
δ(Sj); combining (8.1) and (8.2) then immediately implies the relation

D1 + 2D2 + 3D3 + . . .+ nDn = 1 (8.3)

for irreducible polynomials. Observe that Dn−1 = 0, since a polynomial with
n− 1 roots has n of them.

The existence of these densities has quite strong consequences: Dn is the
density of primes for which the polynomial f (assumed to be irreducible over
Q) splits into linear factors over Fp; according to Thm. 5.5, these are the
primes that split completely in the number field K = Q(α), where α is any
root of f . Equation (8.3) immediately implies that nDn ≤ 1, i.e. thatDn ≤ 1

n .
If K/Q is normal, then all the degrees of the factors of f over Fp must be the
same, which implies D1 = . . . = Dn−1 = 0. Kronecker’s conjecture therefore
implies

Theorem 8.2 (Kronecker’s Density Theorem). The primes p that split com-
pletely in a normal extension K/Q have Dirichlet density 1

(K:Q) .

For certain special cases we have already seen a proof of this result:

1. the primes p that split in a quadratic extension K/Q have Dirichlet den-
sity 1

2 ;
2. the primes p that split completely in a cyclotomic extension K = Q(ζm)

have Dirichlet density 1
φ(m) ;

3. the primes p that split in a multiquadratic extensionK = Q(
√
a1, . . . ,

√
at )

of degree 2t have Dirichlet density 2−t.

Kronecker’s density theorem follows easily from the fact that Dedekind’s
zeta function ζK(s) has a pole of order 1 at s = 1:

Proof of Thm. 8.2. Assume that lim
s→1

(s− 1)ζK(s) = κ 6= 0. Then log ζK(s) ∼
log 1

s−1 . Using the Euler product of the zeta function we find as usual

log
1

s− 1
=

∑
p

Np−s +O(1).

In a normal extension, we have pOK = p1 · · · pg for all unramified primes p,
with fg = (K : Q). Thus either p splits completely into (K : Q) prime ideals
of degree 1 (i.e., norm p), or all primes above p have inertia degree ≥ 2. Since∑
Np−1 = O(1) for primes not splitting completely, we find
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log
1

s− 1
=

∑
f(p)=1

Np−s +O(1).

Finally, since there are exactly (K : Q) prime ideals of norm p above each p
splitting completely, we find

log
1

s− 1
= (K : Q)

∑
p∈Spl(K/Q)

p−s +O(1).

But this says that primes splitting completely have Dirichlet density 1
(K:Q)

as claimed.

If the extension K/Q is not normal, let L/Q denote its normal closure.
Then a prime p splits completely in K/Q if and only if it splits completely
in L/Q. Thus Kronecker’s density theorem implies

Corollary 8.3. Let K/Q be an extension with normal closure L/Q. Then
the set Spl(K/Q) has Dirichlet density 1

(L:Q) .

Kronecker’s result has another nice corollary saying that the set Spl(K/Q)
of primes splitting in a normal extensionK/Q characterizesK in the following
way:

Corollary 8.4. Let K/Q and L/Q be normal extensions; then

Spl(K/Q) ⊆ Spl(L/Q) if and only if L ⊆ K.

Thus the set of splitting primes characterizes normal extensions of Q. As
the proof will show, the assumption Spl(K/Q) ⊆ Spl(L/Q) is needed only up
to a set of exceptional primes of density 0.

Proof. Primes splitting completely in K and L also split completely in the
compositum KL, hence Spl(K/Q) ⊆ Spl(KL/Q); on the other hand, any
prime splitting in KL/Q must also split in each of its subfield, hence we have
Spl(KL/Q) ⊆ Spl(K/Q), and thus Spl(K/Q) = Spl(KL/Q). By Kronecker’s
density theorem, this implies (K : Q) = (KL : Q), hence (KL : K) = 1, and
so L ⊆ K.

This result due to Bauer [Ba1903] has led to substantial research, first by
Gaßmann [Ga1926] (who showed that the result does not hold for nonnormal
extensions, not even up to conjugacy), and more recently, by Klingen, Perlis,
de Smit, and others.

Next we will generalize Kronecker’s density theorem to relative extensions
L/K. To this end we say that a set S of prime ideals of OK has Dirichlet
density δ if ∑

p∈S
Np−s = −δ log(s− 1) +O(1)

as s→ 1 + 0.
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Lemma 8.5. The set PK of all prime ideals in OK has Dirichlet density
δ(PK) = 1.

Note that the set of prime ideals of degree ≥ 2 has Dirichlet density 0. In
particular, the lemma implies that the primes of degree 1 in a number field
K have density 1.

Proof. We know lim(s − 1)ζK(s) = κ 6= 0; replacing ζK(s) by its Euler
factorization, taking the log and observing that the contribution from prime
ideals of degree ≥ 2 is bounded as s→ 1 shows that

− log(s− 1) =
∑

p

Np−s +O(1).

By the definition of Dirichlet density, this implies δ(PK) = 1.

Now we can state and prove

Theorem 8.6 (Kronecker’s Density Theorem). The set S = Spl(L/K) of
prime ideals p that split completely in a normal extension L/K has Dirichlet
density 1

(L:K) .

Proof. Let S′ denote the set of prime ideals in L above the p ∈ Spl(L/K).
Since each p ∈ Spl(L/K) splits into (L : K) distinct prime ideals in L, and
since p and P have the same absolute norm because f(P|p) = 1, we find∑

P∈S′
NP−s =

∑
p∈S

∑
P|p

NP−s = (L : K)
∑
p∈S

Np−s.

But S′ contains all prime ideals in L of degree 1; thus δ(S′) = 1, and now
the claim follows.

What can we say about prime ideals that do not split completely? If L/K
is cyclic of prime degree p, then unramified prime ideals either split completely
or are inert. Thus the set PK of prime ideals in OK is the disjoint union of the
finite set of ramified prime ideals, Spl(L/K), and the inert prime ideals; this
implies that the set of inert prime ideals has Dirichlet density 1− 1

p = p−1
p :

Corollary 8.7. Let L/K be a cyclic extension of prime degree p. Then the
set of prime ideals p in OK that are inert in L/K has Dirichlet density p−1

p .

8.2 Frobenius Density Theorem for Abelian Extensions

Kronecker’s Density Theorem can be improved easily in the case of abelian
extensions. Using results about Frobenius symbols and a little bit of group
theory, we will later show how to generalize these results to arbitrary normal
extensions.
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To get started, let L/K be a cyclic extension of degree p2, and let F/K
denote the subextension of degree p. Then there are three kinds of unramified
prime ideals: Spl(L/K), the primes in Spl(F/K) that remain inert in L, and
the primes remaining inert in L/K (primes remaining inert in F/K cannot
split in L/F , since the decomposition field must be one of K, F , or L). If we
denote these sets of primes by S0, S1 and S2, respectively, then

1. δ(S1 ∪ S2 ∪ S3) = 1;
2. δ(S1) = 1

p2 by Kronecker’s density theorem applied to L/K.
3. δ(S1 ∪ S2) = 1

p by Kronecker’s density theorem applied to F/K, and
using the fact that S1 ∪ S2 = Spl(F/K).

4. δ(S2) = 1
p −

1
p2 is a consequence of 2. and 3.

5. δ(S3) = 1− 1
p is a consequence of 1. and 3.

Thus we arrive at the following result:

Corollary 8.8. Let L/K be a cyclic extension of degree p2, where p is prime.
Let H be the subgroup of order p. Then for every subextension F/K, the set
SF of prime ideals in K that split in F/K and are inert in L/F has Dirichlet
density

δ(SF ) =
φ(L : F )
(L : K)

.

The obvious generalization of this result is

Theorem 8.9 (Frobenius Density Theorem for Cyclic Extensions). Let L/K
be a cyclic extension, and let F be an intermediate field. The set SF of prime
ideals p with decomposition field F has Dirichlet density

δ(SF ) =
φ(L : F )
(L : K)

.

Note that the statement δ(SL) = 1
(L:K) is just Kronecker’s density theo-

rem.

Proof. We proceed by induction on the number of prime factors of the degree
(L : K). We have already seen that the proposition holds if (L : K) is prime.

Now let (L : K) = n and assume the result holds for all cyclic extensions
of degree d, where d is a proper divisor of n. Then the set of prime ideals of
K is a disjoint union of the sets SF , where F runs through the intermediate
fields of L/K; since all SF with F 6= K have a Dirichlet density by induction
assumption, so does SK , and we find

1 =
∑
F

δ(SF ) = δ(SK) +
∑
F 6=K

δ(SF ) = δ(SK) +
∑
F 6=K

φ(L : F )
n

.

Since in cyclic extensions L/K there is a bijection between the intermediate
fields F and the divisors of n, we get
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δ(SK) = 1− 1
n

∑
d|n,d<n

φ(d).

But
∑
d|n φ(d) = n from elementary number theory, hence

δ(SK) = 1− 1
n

(n− φ(n)) =
φ(n)
n

as claimed.

The generalization to abelian extensions is now very easy:

Corollary 8.10. Let L/K be an abelian extension, and F an intermediate
field such that L/F is cyclic. Then the set SF of prime ideals with decompo-
sition field F has Dirichlet density

δ(SF ) =
φ(L : F )
(L : K)

.

We will later see (in connection with studying the inertia subgroup of a
Galois group) that we cannot drop the assumption that L/F be cyclic, since
there are no inert prime ideals in noncyclic extensions. We have already seen
this in the special case K = Q(

√
a,
√
b ).

Proof. Set δ = δ(SF ), and let ΣF denote the set of prime ideals q in F that
remain inert in L/F . Then

(F : K)
∑

p∈SF

Np−s =
∑
q∈Σ

Nq−s +O(1),

since prime ideals q of relative degree > 1 only contribute to O(1), and every
prime ideal q of relative degree 1 lies over (F : K) prime ideals p in F , with
at most finitely many exceptions due to ramified primes. Thus

δ(SF ) =
1

(F : K)
δ(Σ) =

1
(F : K)

φ(L : F )
(L : F )

=
φ(L : F )
(L : K)

,

where we have used Thm. 8.9 for the second equality.

8.3 Kummer Extensions

Kummer extensions occupy a central place in class field theory. They were
first studied by Kummer in connection with reciprocity laws and Fermat’s
Last Theorem, and became an indispensable tool for proving the existence
theorem of class field theory.
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Hilbert’s Theorem 90

We start with two simple but important results that are called Hilbert’s
Theorem 90 for numbers and ideals, respectively:

Proposition 8.11 (Hilbert’s Theorem 90). Let L/K be a cyclic extension
of fields, and let σ be a generator of G = Gal (L/K). Then Nα = 1 for some
α ∈ L× if and only if α = β1−σ for some β ∈ L×. In other words: there is
an exact sequence

L×
1−σ−−−−→ L×

N−−−−→ K×.

This result was used by Kummer for cyclic extensions of cyclotomic num-
ber fields, and was called a theorem (the 90th in his famous Zahlbericht) by
Hilbert. It is the grandfather of Galois cohomology.

Before we give the general proof, let us first discuss the case of quadratic
extensions. If K has characteristic 6= 2, we can write L = K(

√
µ ). Assume

that Nα = 1; we have to find a β (which will depend on α) with αβσ = β.
Trying our luck with β = a+bα for a, b ∈ K we get αβσ = α(a+bασ) = aα+b
since α1+σ = Nα = 1. This will be equal to β if a = b; thus we are led to
put β = 1 + α, and now we find αβσ = α(1 + ασ) = α + Nα = α + 1 = β,
hence α = β1−σ unless β = 0. But β = 0 if and only if α = −1, and in that
case you can take β =

√
µ.

If L/K is cyclic of degree 3, then it is easy to see that β = 1 + α+ α1+σ

has the property αβσ = β. This time, however, there seems to be no easy
way out of the dilemma that we might have β = 0 for certain values of α.
In order to get more general expressions, we can try β = a + bα + cα1+σ.
Since we want β to behave nicely under σ, we put b = aσ and c = aσ

2
, i.e.,

β = a + aσα + aσ
2
α1+σ. Then it is easily checked that αβσ = β. It remains

to show that we can choose a ∈ L× in such a way that β 6= 0; this will be
done in the proof below:

Proof. Although Hilbert’s Theorem 90 holds for arbitrary cyclic extensions,
we will prove it here only for number fields. Assume that Nα = 1, and write
L = K(γ). Set n = #G = (L : K), a0 = 1, and ai = α1+σ+...+σi−1

, as well as

β = γ + a1γ
σ + a2γ

σ2
+ . . .+ an−2γ

σn−2
.

It is then easily checked that αβσ = β, and this implies the claim if we can
show that β 6= 0 for some choice of γ. We claim that replacing γ by γj for
some j = 0, 1, . . . , n− 1 will work. For if not, then

γj + a1γ
jσ + a2γ

jσ2
+ . . .+ an−2γ

jσn−2
= 0

for j = 0, 1, 2, . . . , n− 1. Then the system of linear equations

γjx0 + γjσx1 + γjσ
2
x2 + . . .+ γjσ

n−1
xn−1 = 0
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has the nontrivial solution xi = ai, hence the determinant of this system
must vanish. But the square of this determinant is disc (1, γ, . . . , γn−1), and
since the powers of γ form a K-basis of L, their discriminant is nonzero.

The corresponding result for ideals states that, assuming that L/K is a
cyclic extension of number fields, ideals a with trivial norm have the form
a = b1−σ. One difference to Hilbert 90 for elements is that although there
might exist algebraic integers α ∈ OL with Nα = 1 (namely certain units),
the only integral ideal a with Na = (1) is the unit ideal.

Proposition 8.12 (Hilbert’s Theorem 90 for Ideals). Let L/K be a cyclic
extension of number fields, and let σ be a generator of G = Gal (L/K). Then
Na = (1) for some nonzero fractional ideal a ∈ DL if and only if a = b1−σ

for some ideal b ∈ DL. In other words: there is an exact sequence

DL
1−σ−−−−→ DL

N−−−−→ DK .

Assume for the moment that L/K is a quadratic extension, and thatNa =
(1). Then we can set b = (1) + a, where the sum of ideals represents forming
the gcd. Obeserve that gcd(

∏
pap ,

∏
pbp) =

∏
pcp , where cp = min(ap, bp).

If a = pq−1, for example, then gcd((1), a) = p. Thus b = (1) + a is a nonzero
ideal with abσ = a + a1+σ = a + (1) = b. The same idea works in general:

Proof of Thm. 8.12. Formally, the proof is almost the same: we put

b = (1) + a + a1+σ + . . .+ a1+σ+...+σn−1
,

where + denotes forming the sum (gcd) of fractional ideals. As above, we
find abσ = b, and since b 6= (0), we are done.

Kummer Theory
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8.4 Decomposition Laws in Kummer Extensions
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8.5 Density Theorems of Kummer and Hilbert

Assume that α1, . . . , αt are nonzero elements of some number field K. If
αe11 · · ·α

et
t = γ2 in K× for exponents ej ∈ {0, 1} implies that e1 = . . . = et =

0, then they are called independent modulo squares.
Hilbert’s Satz 18 from his memoir on relative quadratic extensions reads

Theorem 8.13. Let K be an algebraic number field, and assume that the
elements α1, . . . , αt ∈ K× are independent modulo squares. Then for any
choice of signs c1, . . . , ct = ±1 the set S of prime ideals p in K such that(α1

p

)
= c1, . . . ,

(αt
p

)
= ct

has Dirichlet density δ(S) = 2−t.

Basically we only have to follow the proof that there exist infinitely many
primes p with (dp ) = c for a given nonsquare integer d and some c = ±1.

Lemma 8.14. Let α be a nonsquare in K and χ a character on the group of
fractional ideals defined by χ(p) = (αp ). Then f(s) =

∑
χ(p)Np−s is bounded

as s→ 1 + 0.

Proof. Let L = K(
√
α ). Then the decomposition law in relative quadratic

extensions implies ζK(s) = ζk(s)L(s, ψ), where the character ψ is defined by

ψ(p) =


+1 if p splits in L/K,
0 if p ramifies in L/K,
−1 if p is inert in L/K.

Except possibly for the finitely many prime ideals p | (2α), we have χ(p) =
ψ(p).

Since both ζK(s) and ζk(s) can be extended to the halfplane Re s > 1− 1
2n

and have a pole of order 1 at s = 1, we deduce that L(s, χ) is also analytic
there, and has a nonzero limit as s → 1. But logL(s, χ) = f(s) + O(1), and
now the claim follows.

Proof of Thm. 8.13. We have to show that∑
p∈S

Np−s = 2−t log
1

s− 1
+O(1)

as s → 1. To this end we identify ±1 with Z/2Z and consider the character
group X of (Z/2Z)t.

Kummer had already considered similar problems in cyclotomic number
fields. For a number field K containing a primtive `-th root of unity ζ we
define the `-th power residue character of some α ∈ Z[ζ] for all prime ideals
p coprime to α by (αp ) = ζj if α(Np−1)/` ≡ ζj mod p.
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Proposition 8.15 (Decomposition in Kummer Extensions). Let K be a
number field K containing a primtive `-th root of unity ζ, and assume that
L = K(

√̀
µ ) is an extension of relative degree `. Then a prime ideal p in

K with p - `α splits completely in the cyclic extension L/K if and only if
(µp ) = 1.

It is clear how to define algebraic integers that are independent modulo
`-th powers, where ` is a prime. The following result due to Kummer occurs
as Satz 152 in Hilbert’s Zahlbericht.

Theorem 8.16 (Kummer’s Density Theorem). Let K be a number field
containing the `th roots of unity.

Exercises

8.1 Assume that K/Q is an extension with D1 = . . . = Dn−1 = 0. Show that
K/Q is normal.

8.2 Show that the set of prime ideals of degree ≥ 2 in a number field K has
Dirichlet density 0.
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Part II

Hilbert Class Fields

109





9. The Hilbert Class Field

The theory of Hilbert class fields, conjectured by Hilbert and worked out by
Furtwängler, is an extremely beautiful part of Takagi’s class field theory, and
is indispensible for any deeper study of class groups of number fields. We will
see that the Hilbert class field of a number field K is its maximal unramified
abelian extension,

9.1 Weber’s Motivation

For proving that lim(s−1)ζK(s) 6= 0 we introduced a “partial zeta function”
ζc(s) attached to an ideal class c ∈ Cl(K), defined as

∑
a∈cNa−s, and showed

that it represents an analytic function in the half plane Re s > 1. Then we
counted the number of ideals of norm ≤ t in each ideal class, showed that
their number grows linearly with t, and that the constant of proportionality
κ is independent of the ideal class c.

It therefore seems natural to ask how the prime ideals are distributed
among the ideal classes c, and it is equally natural to conjecture

Theorem 9.1. The set of prime ideals in a given ideal class c ∈ Cl(K) has
Dirichlet density 1

h , where h = #Cl(K) is the class number.

Although this result seems “natural” at first, a closer look at the problem
at hand might raise a few doubts. First of all, the prime ideals of degree > 1
need not be equidistributed among the ideal classes: in quadratic number
fields, all prime ideals of degree 2 are principal and therefore contained in the
principal class (this does not affect the conjecture above since prime ideals
of degree > 1 have Dirichlet density 0).

Next there are Dedekind domains in which even the prime ideals of degree
1 are not equidistributed among the ideal classes: take a number field K with
class number hK > 1, and let S denote the set of prime ideals in the principal
class. Then the localization OS (the subring of K consisting of all elements
α
β such that β is a product of prime ideals from S) is a Dedekind ring with
class number hK whose principal class does not contain a single prime ideal.

Our only chance of proving a result such as Thm. 9.1 is by characterizing
the set of primes in an ideal class c as a set Spl(L/K) for a suitable extension
L/K:
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An extension L of K is called a Hilbert class field of K if exactly the
prime ideals in the principal class of Cl(K) split completely in L/K.

Guided by wishful thinking, we therefore make the following bold conjec-
ture:

Theorem 9.2 (Existence Theorem). Every number field K has a Hilbert
class field L = K1.

Given the existence of Hilbert class fields, the set of prime ideals in the
principal class coincides with Spl(L/K) and has Dirichlet density 1

(L:K) . Since
we expect the density to be 1

h , we are led to

Theorem 9.3. The Hilbert class field L of K has degree (L : K) = h.

The truth of this conjecture automatically implies that Hilbert class fields
are unique: for if L and L′ are Hilbert class fields, then the prime ideals in
the principal class of K split completely in both L/K and L′/K, hence in
the compositum LL′/K. Since (LL′ : K) = h, this implies that L = L′:

Theorem 9.4 (Uniqueness Theorem). Hilbert class fields are unique.

The whole situation is reminiscent of our proof of Dirichlet’s theorem on
primes in arithmetic progression: the primes p ≡ 1 mod m are exactly those in
Spl(K/Q) for K = Q(ζm). The question of how primes are distributed among
the φ(m) residue classes in (Z/mZ)× is therefore connected to the splitting of
primes in an extension of degree φ(m) = #(Z/mZ)×. The residue class group
(Z/mZ)× plays the role of the class group, and Q(ζm) that of the Hilbert
class field. In this situation, we even know that there is a strong connection
between the “class group” (Z/mZ)× and the “class field” Q(ζm): we have
Gal (Q(ζm)/Q) ' (Z/mZ)×. If we are bold enough to transfer this property
to the situation above, we end up with the next conjecture:

Theorem 9.5 (Reciprocity Law). The Hilbert class field L/K is an abelian
extension, and its Galois group is isomorphic to the ideal class group of K:

Gal (L/K) ' Cl(K).

At this point, the name “reciprocity law” for this isomorphism is com-
pletely mysterious; we will justify this name later.

The existence of Hilbert class fields implies that the prime ideals in the
principal class have Dirichlet density 1

h . In order to prove that the same holds
for the other ideal classes, we introduce characters χ : Cl(K) −→ C× on the
ideal class group, and attach L-series L(s, χ) to them by setting L(s, χ) =∑
χ(a)Na−s. Of course we expect

Theorem 9.6. The L-series L(s, χ) for characters χ of the ideal class group
represent analytic functions in the half plane Re s > 1 − 1

(K:Q) , and satisfy
L(1, χ) 6= 0 whenever χ 6= 1l.
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It is then an easy matter to derive the following result as a corollary:

Theorem 9.7 (Weber’s Density Theorem). Let K be a number field with
class number h. Then the set of prime ideals in an ideal class c ∈ Cl(K) has
Dirichlet density 1

h .

In the cyclotomic case, primes whose residue classes mod m do not lie in
(Z/mZ)× ramify in Q(ζm)/Q); since there are no prime ideals p in K whose
ideal classes do not lie in Cl(K), this suggests

Theorem 9.8 (Ramification Theorem). The Hilbert class field of K is un-
ramified over K.

The most obvious analog of the decomposition law in cyclotomic exten-
sions is

Theorem 9.9 (Decomposition Law). Let p be a prime ideal in K. If f
denotes the smallest positive integer such that pf is principal, then p splits
into prime ideals of degree f in its Hilbert class field.

Finally, there is an analog of the theorem of Kronecker-Weber:

Theorem 9.10 (Maximality of the Hilbert Class Field). The Hilbert class
field K of F contains every unramified abelian extension of: it is the maximal
abelian unramified extension of F .

These theorems constitute the main part of the theory of Hilbert class
fields, with one famous exception: the Principal Ideal Theorem. This result,
which is difficult to motivate in Weber’s approach, was actually the starting
place for Hilbert’s research in class field theory. More exactly, Hilbert proved

Theorem 9.11 (Hilbert’s Satz 94). If L/K is a cyclic unramified extension
of prime degree, then there is an ideal c ∈ Cl(K) with order p that becomes
trivial in L; this means that if c = [a], then aOL = (A) becomes a principal
ideal in L.

The general result that Hilbert conjectured reads

Theorem 9.12 (Principal Ideal Theorem). Every ideal in F becomes prin-
cipal in its class field K.

Note that this does not imply that K has class number 1; in general, only
ideals coming from F are principal, but there might be others. The principal
ideal theorem, by the way, turned out to be the most difficult part of class
field theory. Artin succeeded in reducing it to a purely group theoretical
statement, which Furtwängler could finally prove at the end of the 1920s.
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9.2 The Field Q(
√

−5 )

The Class Group

It is easily checked that F = Q(
√
−5 ) has discriminant ∆ = −20 and class

number 2. In fact, the nontrivial ideal class is generated by the prime ideal
2 = (2, 1+

√
−5 ). We know that 2 and 5 are ramified, and that the unramified

primes split completely if and only if (−20
p ) = +1. A quick calculation shows

that

p is ramified if p = 2, 5
p splits if p ≡ 1, 3, 7, 9 mod 20,
p is inert if p ≡ 11, 13, 17, 19 mod 20

We now will study how these primes are distributed in the ideal classes
of F . It is clear that inert primes are principal; among the ramified primes
2 is not principal, but (5,

√
−5 ) = (

√
−5 ) is. This leaves us with the split

primes.
Assume therefore that p = pp′; if p = (a + b

√
−5 ) is principal, then

p = Np = a2 + 5b2 ≡ a2 + b2 ≡ 1 mod 4. If, on the other hand, p is not
principal, then 2p is, and we have 2p = (a+b

√
−5 ) for odd integers a, b. This

implies 2p = N2p = a2 + 5b2 ≡ 6 mod 8, hence p ≡ 3 mod 4.

Proposition 9.13. Among the split primes in F , exactly the prime ideals
above primes with p ≡ 1 mod 4 are principal.

The prime ideals that are inert in F are of course trivially principal.

The Class Field

Now consider the quadratic extension K = F (
√
−1 ). We claim that K/F is

unramified. Since F is totally complex, no infinite primes can ramify. Let F1 =
Q(
√
−1 ) and F2 = Q(

√
5 ) denote the two other quadratic subfields of K/Q.

We know from the theory of the different that diff (K/F ) | diff (F1/Q) =
(2) and diff (K/F ) | diff (F1/Q) = (

√
5 ); since these ideals are coprime, we

conclude that diff (K/F ) = (1), hence disc (K/F ) = (1) as well. This implies
the claim.

The prime decomposition in K/F is governed by a surprising result:

Theorem 9.14. Let p be a prime ideal in F , and let f ≥ 1 denote the
smallest integer for which pf is principal. Then the primes P in K above p
have relative inertia degree f .

Since K/F is unramified, we have e = 1 for each prime; once we know f ,
we can compute g from efg = fg = (K : F ) = 2.
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Proof. Assume first that p is ramified in F/Q. If p = (
√
−5 ), then f = 1,

hence we have to show that p splits. In fact, 5 splits in Q(i)/Q, hence the
prime p above 5 in F must split in K/F . If p = 2, then f = 2; in fact, 2
is ramified in Q(i)/Q and F/Q, and it is inert in Q(

√
5 )/Q), hence it must

have inertia degree 2 in K.
If p = (p) is an inert prime, then (−4

p )( 5
p ) = (−20

p ) = −1, hence (−4
p ) = 1

or ( 5
p ) = 1; thus p splits in exactly one quadratic subfield and is inert in F

and the third one, and this implies that p must split in K/F .
Finally, assume that p = pp′ splits in F . If p is principal, then p ≡ 1 mod 4

and p ≡ ±1 mod 5, so p splits in all three quadratic subfields, and this implies
that p splits in K/F . If p is not principal, then (−20

p ) = 1 but (−1
p ) = ( 5

p ) =
−1, hence p is inert in Q(i)/Q. Thus p has inertia degree ≥ 2 in K/Q, and
since it splits in F/Q, it must be inert in K/F .

Since the prime decomposition of a prime ideal p in F is determined
completely by the ideal class [p] it represents, K was called a class field of F
(in fact, it is the Hilbert class field of F ).

9.3 The Field Q(
√

3 )

The Class Group of F

The quadratic number field F = Q(
√

3 ) has class number 1. Since the fun-
damental unit 2 +

√
3 of F is totally positive, we have h+(F ) = 2, and the

ideal class group in the strict sense is generated by the class [(
√

3 )].
Next we study which prime ideals are principal in the strict sense and

which are not. If p is inert in F , then clearly p or −p is totally positive, hence
inert primes generate principal ideals in the strict sense.

There are two ramified ideals, namely those above 2 and 3, neither of
which is principal since the elements 1 +

√
3 and

√
3 generating these ideals

both have mixed signature.
Now assume that (p) = pp′ splits in F , where p > 0. This happens

if and only if ( 12
p ) = +1, i.e., if and only if p ≡ ±1 mod 12. When is p

principal in the strict sense? If it is, then p = (a + b
√

3 ) with 0 < p =
Np = a2 − 3b2 ≡ a2 + b2 ≡ 1 mod 4. On the other hand, p is not principal
in the strict sense if and only if a+ b

√
3 has mixed signature, i.e. if and only

if −p = a2 − 3b2 ≡ 1 mod 4, that is, iff p ≡ 3 mod 4 (equivalently, [p]+ is
nontrivial if and only if

√
3p

+∼ (1), and this leads to the same result).

Proposition 9.15. Among the split primes in F , exactly the prime ideals
above primes with p ≡ 1 mod 4 are principal in the strict sense.

Note that p ≡ 1 mod 4 actually means p ≡ 1 mod 4∞ since we assumed
that p > 0.
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The Class Field

Now consider K = F (
√
−1 ) = F (

√
−3 ). The same argument as for Q(

√
−5 )

shows that K/F is unramified at all finite primes. Note, however, that the
two infinite primes in F both ramify in K. We say that K/F is unramified
outside ∞.

The prime decomposition in K/F is now similar to the one we’ve seen
before:

Theorem 9.16. Let p be a prime ideal in F , and let f ≥ 1 denote the
smallest integer for which pf is principal in the strict sense. Then the primes
P in K above p have relative inertia degree f .

For this reason we call K the Hilbert class field of F in the strict sense.
Observe that Gal (K/F ) ' Cl+(F ), and that every ideal in F becomes prin-
cipal in K (since K is totally complex we have Cl+(K) = Cl(K)) because K
has class number 1.

9.4 Hilbert Class Field Theory II

Every result about Hilbert class fields has its analog for class groups in the
strict sense; we start with the definition:

Let K/k be a normal extension of number fields. Then K is called a
class field of F if exactly the prime ideals of degree 1 in the principal
ideal class of k in the strict sense split into prime ideals of degree 1
in K.

Using this definition it is easily checked that e.g. K = Q(i,
√
−3 ) is indeed

the Hilbert class field of F = Q(
√

3 ) in the strict sense.

Theorem 9.17 (Existence Theorem). Every number field F has a unique
Hilbert class field K in the strict sense.

This allows us to talk about “the” (Hilbert) class field of a number field.
In the following, let F 1{∞} denote the Hilbert class field of F in the strict
sense

Theorem 9.18. The extension F 1{∞}/F is unramified at all finite primes:
we have disc (F 1{∞}/F ) = (1).

In particular, abelian extensions of fields with class number 1 in the strict
sense must be ramified at some finite prime.

Theorem 9.19. The Hilbert class field F 1{∞} is abelian over F , and
Gal (F 1{∞}/F ) ' Cl+(F ). In particular, (F 1{∞} : F ) = h+

F .



9.4 Hilbert Class Field Theory II 117

Theorem 9.20 (Decomposition Law). The decomposition law for F 1{∞}/F
is the following: if pf is the smallest positive power of p that is principal in
the strict sense, then p splits into primes of relative inertia degree f in K.

Since F 1{∞}/F is unramified at finite primes, every prime ideal p in F
decomposes as p = P1 · · ·Pg with fg = (K : F ) = h+

F . Thus the decomposi-
tion of p is completely determined by the inertia degree f .

Theorem 9.21. F 1{∞} is the maximal abelian extension of F unramified
outside ∞.

We also have

Theorem 9.22 (Principal Ideal Theorem). Every ideal in F becomes prin-
cipal in the strict sense in F 1{∞}/F .

Note that this “principalization” might happen for trivial reasons: the
ideals in Q(

√
3 ) that are nor principal in the strict sense become so in

Q(i,
√
−3 ) since every element in this field is totally positive for lack of real

infinite primes.

Exercises

9.1 Show directly from the definition that the different of the quadratic extension
Q(
√
m )/Q is (2

√
m) if m ≡ 2, 3 mod 4, and (

√
m ) if m ≡ 1 mod 4.

9.2 Let L/K be an extension of number fields. Show that (discK)(L:K) | discL.

9.3 Let K/k and L/k be Galois extensions of number fields with K∩L = k. Show
that diff (M |L) | diff (K|k) and diff (M |K) | diff (L|k).

9.4 Consider the biquadratic extension M = Q(i,
√

5 ). Use the preceding exercise
to show that M is unramified over Q(

√
−5 ).

9.5 More generally, let K and L be quadratic extensions with coprime discrimi-
nants. Show that the compositumKL is unramified over the quadratic subfield
of KL different from K and L.

9.6 Let K/k be an extension of number fields. Show that the norm map NK/k on
ideals induces a homomorphism NK/k : Cl(K) −→ Cl(k).

9.7 Let K/k be an extension of number fields. The map sending an ideal a in o to
the ideal aO is called the conorm, and is often denoted by jk→K . Show that
the conorm induces a group homomorphism jk→K Cl(k) −→ Cl(K), and that
NK/k ◦ jk→K raises each ideal class to its n-th power, where n = (K : k). The
kernel of this map is called the capitulation kernel.

9.8 Let K/k be an extension of number fields. Show that if a is an ideal in o such
that aO = (α) is principal, then the order of the ideal class c = [a] in Cl(k)
divides n = (K : k).

9.9 Let K/k be an extension of number fields. Show that if gcd(hk, n) = 1 for the
class number hk = #Cl(k) and the degree n = (K : k), then the norm map
NK/k : Cl(K) −→ Cl(k) is surjective, and the conorm jk→K Cl(k) −→ Cl(K)
is injective. Deduce that hk | hK in this case.
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9.10 Show that F = Q(
√

6 ) has Cl+(F ) ' Z/2Z, and find a generator.

9.11 Show that F = Q(
√

34 ) has Cl+(F ) ' Z/4Z, and find a generator.

9.12 Show that Q( 4
√

2 ) has two real infinite primes, and that their restriction to

Q(
√

2 ) is the infinite prime corresponding to the real embedding sending
√

2
to the positive real root of x2 − 2.

9.13 Show that Q(
√
−6 ) has Hilbert class field Q(

√
2,
√
−3 ).

9.14 Show that Q(
√

6 ) has Hilbert class field Q(
√
−2,

√
−3 ) in the strict sense.

9.15 Let d = discF be the discriminant of a quadratic number field F . Show that
d = d1 · · · dt can be written uniquely as a product of prime discriminants
di ∈ {−4,±8, p,−q}, where p and q denote primes ≡ 1 mod 4 and ≡ 3 mod 4,
respectively.

9.16 (continued) Show that the extensions F (
√
di )/F are unramified.

9.17 For a number field F , let Cl∗(F ) denote the group of ideal classes of odd order.
Let K/Q be the compositum of two quadratic extensions, and let k1, k2, k3

denote its three quadratic subfields. Show that

Cl∗(K) ' Cl∗(k1)× Cl∗(k2)× Cl∗(k3).

Hint: Let σ, τ and στ denote the nontrivial automorphisms of K/Q fixing the
elements of k1, k2 and k3, respectively; the identity

2 = 1 + σ + τ + στ − (1 + στ)σ

in Z[Gal (K/Q)] shows P2 = N1P ·N2P · (N3P)−σ for prime ideals P in K,
where the N j denote the relative norms to the quadratic subfields.

9.18 (continued) Construct a quadratic number field F with class number 2 that
possesses an unramified quadratic extension K/F such that Cl(K) has non-
trivial class number.

9.19 Let L be a cubic field with squarefree discriminant d. Show that L/Q is not
normal. Since d ≡ 1 mod 4, d is also the discriminant of a quadratic number
field F . Show that K = LF is an unramified extension of F , and that K/F
is a normal extension with Galois group ' Z/3Z (Hint: a cubic extension of
number fields K/F defined by a root of a polynomial f ∈ F [X] is normal if
and only if the discriminant of f is a square F ).

9.20 Let L be the cubic field generated by a root of f(x) = x3 − x + 1, and let
K = LF denote its normal closure, where F = Q(

√
−23 ). Check by numerical

examples that for primes p = pp′ splitting in F , the following are equivalent:

1. p is principal in F ;

2. 4p = a2 + 23b2 is solvable in integers;

3. f(x) ≡ 0 mod p has three solutions;

4. p splits completely in L/Q.

Here (1) ⇐⇒ (2) and (3) ⇐⇒ (4) are clear, but the equivalence (1) ⇐⇒
(4) is essentially the decomposition law in class fields.

9.21 Let m be a positive integer divisible by some (positive) prime p ≡ 1 mod 3.
Let F = Q( 3

√
m ) and let L be the cubic subfield of Q(ζp). Show that K = LF

is unramified over F .
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9.22 Assume that F/k is a normal extension, and let K be the Hilbert class field
of F . Show that K/k is normal.
Hint: Any conjugate K′ of K is also abelian and unramified over F . Now use
the maximality property of the Hilbert class field.

9.23 Let L/K be an extension of number fields, and assume that L/K does not
contain an unramified subextension. Show that the class number hK of K
divides hL.
Hint: Let F be the Hilbert class field of K. Show that LF/L is abelian,
unramified, and that (LF : L) = hK .

9.24 Let K = F (
√
µ ) be a quadratic extension, where µ ∈ F× is not a square.

Show that K/F is unramified at all primes above 2 if µ ≡ ξ2 mod 4.

Hint: Show that
ξ+
√
µ

2
is an algebraic integer.

9.25 Let F be the cubic field generated by the positive root α of f(x) = x3+4ax−1,
where a ≥ 1 is an integer. Show that K = F (

√
α ) is unramified over F .

Hint: F (
√
α ) = F (

√
α3 ). Observe that K/F could be trivial; in fact it is not

too hard to show that α is a square in Q(α) if and only if a = t4 − t. Here’s
how to do it: the square roots of α are roots of x6 + 4ax2 − 1; if one square
root is a root of x3 +rx2 +sx+1, then the other is a root of x3−rx2 +sx−1.
Thus

√
α ∈ Q(α) if and only if there exist integers r, s with

x6 + 4ax2 − 1 = (x3 + rx2 + sx+ 1)(x3 − rx2 + sx− 1).

Now compare coefficients.

9.26 Let K = F (
√
m ) be a quadratic extension, where m ∈ F× is not a square.

Let µ = a + b
√
m be a nonsquare in K, put L = K(

√
µ ), and let σ denote

the nontrivial automorphism of K/F .
1. L/F is normal if and only if µσ = α2µ for some α ∈ F×.
2. Show that α1+σ = ±1.
3. Show that L/F is cyclic if α1+σ = −1. (Hint: show that the map τ :√

µ 7−→ α
√
µ is an automorphism of L/F with τ2|K = σ).

4. Show that L/F is biquadratic (i.e., Gal (L/F ) is isomorphic to Klein’s
four group) if α1+σ = +1.

9.27 Construct the Hilbert class field in the strict sense of F = Q(
√

34 ).

Hints: The Hilbert class field is a quadratic extension of K = Q(
√

2,
√

17 ).

Solve x2 − 2y2 = 17 and put µ = x + y
√

2; show that the sign of x can be
chosen in such a way that µ becomes a square modulo 4; now use the preceding
exercise.

9.28 Let p ≡ 1 mod 8 be a prime and put F = Q(
√

2p ). Construct a cyclic quartic
extension L/F that is unramified outside infinity. By class field theory, this
implies that Cl+(F ) has a class of order 4 – can you prove this directly?

9.29 Let F be a quadratic number field and K/F a quadratic extension unramified
outside ∞. Show that Gal (K/Q) ' (Z/2Z)2. Now show that K = F (

√
di )

for some prime discriminant di | discF . Deduce that the maximal elementary
abelian 2-extension of F unramified outside ∞ is finite.
Hint: First show that it is normal, and then that it cannot be cyclic (look at
ramification!).

9.30 Let K/F be a finite extension of number fields. Let jF→K : Cl(F ) −→ Cl(K)
be the “conorm” defined by sending [a] ∈ Cl(F ) to [aOK ] ∈ Cl(K). Show that
NK/F ◦ jF→K is exponentiating with (K : F ). Deduce that if an ideal class
c ∈ Cl(F ) becomes trivial in K, then the order of c divides (K : F ).
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9.31 Let K be a number field with r real embeddings σ1, . . . , σr. The signature
map sgn : K× −→ µt2, where µ2 ' Z/2Z is the group {±1}, is defined by

sgn (α) = (sign (σ1(α)), . . . sign (σr(α))).

Show that there is an exact sequence

K×
+ −−−−−→ K× sgn−−−−−→ µr2 −−−−−→ 1

9.32 Show that the following diagram is commutative and exact:

1 −−−−−→ H+
K −−−−−→ DK −−−−−→ Cl+(K) −−−−−→ 1??y ??y ??y

1 −−−−−→ HK −−−−−→ DK −−−−−→ Cl(K) −−−−−→ 1

Apply the snake lemma and conclude that ker(Cl+(K) −→ Cl(K)) '
HK/H

+
K .

9.33 Show that the following diagram is commutative and exact:

1 −−−−−→ E+ −−−−−→ K×
+ −−−−−→ H+

K −−−−−→ 1??y ??y ??y
1 −−−−−→ E −−−−−→ K× −−−−−→ HK −−−−−→ 1

Apply the snake lemma and conclude that (HK : H+
K) = (E:E2)

(E:E+)
= (E+ : E2).

9.34 Show that the kernel of the natural projection Cl+(K) −→ Cl(K) is an ele-
mentary abelian group of order (E+ : E2), where E = O×

K is the unit group
and E+ its subgroup of totally positive units. Conclude that Cl+(K) ' Cl(K)
if and only if every totally positive unit is a square.

9.35 For real quadratic number fields K, show that Cl+(K) ' Cl(K) if and only
if Nε = −1 for the fundamental unit ε.

9.36 Let K/k be a normal extension and suppose that Gal (K/k) is an `-group. If
` | h(K), show that there exists a cyclic unramified extension L/K of degree
` such that L/k is normal.

9.37 Let K be a totally real number field with nontrivial 2-class group, and assume
that E+

K = E2
K . Let c1, . . . , cr be a basis for Cl(K)[2], the group of ideal

classes of order dividing 2, and let ω1, . . . , ωr denote the corresponding singular
numbers, i.e. Kummer generators of the unramified quadratic extensions of
K. Show that there exist prime ideals pi of odd norm in ci such that every
unit in EK is a quadratic residue modulo p. Then pick another prime ideal
p0 of odd norm such that p0p1 · · · pr = (α) is principal with α ≡ ξ2 mod 4
primary. Show that
1. κL/K = 1;

2. E+
L = E2

L;
3. the transfer jK→L maps Cl(K)[2] into Cl(L)2;
4. rank Cl2(L) = rank Cl2(K).
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9.38 Recall that an exact sequence

E : 1 −−−−−→ A −−−−−→ Γ −−−−−→ G −−−−−→ 1

of finite groups is called an extension of G by A. The extension E is called
central if A ⊆ Z(Γ ) is contained in the center of Γ (where we have identified
A and its image in Γ ). A normal tower L/K/k of fields is called central if the
exact sequence

1 −−−−−→ Gal (L/K) −−−−−→ Gal (L/k) −−−−−→ Gal (K/k) −−−−−→ 1

corresponding to the tower is central.
Now prove Hasse’s normality criterion: Let K/k be a normal extension with
G = Gal (K/k), and let L be an unramified abelian extension of K. Put
C = NL/K Cl(L); then L is
a) normal over k if and only if C = Cτ for every τ ∈ G;
b) central over K/k if and only if cτ−1 ∈ C for all c ∈ Cl(K) and all τ ∈ G.

Observe that central extensions of cyclic groups are abelian and give a criterion
for L/k to be abelian if K/k is cyclic.

9.39 (Artin) Let K/k be an extension such that K∩k1 = k, where k1 is the Hilbert
class field of k. Show that h(k) | h(K).
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10. The First Inequality

In this chapter we will study unramified cyclic extensions L/K. To each such
extension we associate its Takagi group

TL/K = NDL ·HK ,

the subgroup of nonzero fractional ideals in DK that can be written as a
product of a norm of an ideal from L and a principal ideal. Since DK ⊆
TL/K ⊆ HK , the index

hL/K = (DK : TL/K)

is finite (it divides the class number h = hK). Our goal is to prove that
hL/K = (L : K); this will be accomplished in two steps:

• The First Inequality: hL/K ≤ (L : K) holds for arbitrary extensions L/K
of number fields.
• The Second Inequality: (L : K) ≤ hL/K holds for cyclic unramified ex-

tensions L/K.

We call L a class field of K (in the sense of Hilbert) if hL/K = (L : K);
the inequalities above then show that cyclic unramified extensions are class
fields. We will later see that the maximal unramified abelian extension of K
is the Hilbert class field of K in the sense of the preceding chapter.

10.1 Weber’s Inequality

Fix an extension L/K of number fields. In the following, we put h = hL/K ;
the class number of K will be denoted by hK .

The First Inequality is a consequence of Kronecker’s density theorem and
the following

Theorem 10.1 (Weber’s Inequality). Let S be a set of prime ideals with
S ⊂ TL/K . If S has a Dirichlet density, then δ(S) ≤ 1

h .

Let χ be a character on the finite abelian group D/H, where D = DK

denotes the group of fractional ideals in K and where H = TL/K is the Takagi
group. We can interpret χ as a character χ : D −→ C1 via χ(a) = χ(aH).
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For L-functions attached to Dirichlet characters χ we have already seen
that L(s, χ) converges for s = 1 and χ 6= 1l; the reason was that the partial
sums

∑
0<a≤m χ(a) of the coefficients of L(s, χ) were bounded for nontrivial

characters. Here the situation is not that easy: the partial sums of the co-
efficients L(s, χ) =

∑
χ(a)Na−1 have the form

∑
Na≤m χ(a). Before we can

talk about L(1, χ) for characters χ 6= 1l on D/H we therefore have to prove

Lemma 10.2. For every character χ 6= 1l on D/H, the function L(s, χ) is
bounded as s→ 1.

Proof. We use the orthogonality relations:

L(s, χ) =
∑

a

χ(a)Na−s =
∑

c∈Cl(K)

∑
a∈c

χ(a)Na−s =
∑

c∈Cl(K)

χ(c)ζc(s),

where we have used that χ(a) only depends on the the coset aH, and where
ζc(s) is the partial zeta function associated to c ∈ D/H. The cosets of D/H
are unions of ideal classes in Cl(K) (each coset in D/H consists of h0 =
(H : HK) ordinary ideal classes), hence their partial zeta functions ζc(s)
have a pole of order 1 at s = 1 with residue h0κ, and can be extended
meromorphically to the half plane Re s > 1− 1

n . In fact, we have lims→1(s−
1)L(s, χ) = h0κ

∑
c χ(c); but the orthogonality relations say that this sum is

0 except for χ = 1l, when it equals h = (D : H). Thus lims→1(s−1)L(s, χ) = 0
if χ 6= 1l, and this implies that L(s, χ) does not have a pole at s = 1, i.e.,
that it is bounded as s→ 1.

Actually, we have proved the following stronger result:

Lemma 10.3. For any character χ 6= 1l on D/H, we have
∑
Na≤m χ(a) =

O(n1− 1
n ), where n = (K : Q). In particular, L(s, χ) is analytic for all s ∈ C

with Re s > 1− 1
n .

Proof of Thm. 10.1. Since χ is multiplicative, the Dirichlet series L(s, χ) =∑
χ(a)Na−s has an Euler factorization, and taking logs we find in the usual

way
logL(s, χ) ∼

∑
χ(p)Np−s,

where f ∼ g means f(s) = g(s) +O(1) as s→ 1.
The orthogonality relations for characters show that

∑
χ∈X(D/H)

χ(p) =

{
h if p ∈ H,
0 if p 6∈ H.

For s > 1 we get ∑
χ

∑
p

χ(p)Np−s = h
∑
p∈H

Np−s,

and the finiteness of the class number allows us to conclude that
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∑
χ

logL(s, χ) ∼ h
∑
p∈H

Np−s.

We know that L-series attached to the principal character 1l behave differently
at s = 1, so we split the sum on the left:

h
∑
p∈H

Np−s =
∑
χ6=1

logL(s, χ) + logL(s, 1l)

=
∑
χ6=1

logL(s, χ) + log(s− 1)L(s, 1l)− log(s− 1).

On the other hand the assumption that S has a Dirichlet density implies∑
p∈S

Np−s ∼ −δ(S) log(s− 1).

Moreover, since S ⊂ H, the function

f(s) =
∑
p∈H

Np−s −
∑
p∈S

Np−s

satisfies f(s) ≥ 0 for all s > 1. We find

f(s) ∼ 1
h

( ∑
χ6=1

logL(s, χ) + log(s− 1)L(s, 1l)− log(s− 1)
)
− δ(S) log(s− 1)

∼ −
( 1
h
− δ(S)

)
log(s− 1) +

1
h

∑
χ6=1

logL(s, χ) +
1
h

log(s− 1)L(s, 1l).

Since L(s, 1l) = ζK(s), the term log(s− 1)L(s, 1l) is bounded as s→ 1, hence

f(s) ∼ −
( 1
h
− δ(S)

)
log(s− 1) +

1
h

∑
χ6=1

logL(s, χ).

Now assume for the moment that L(1, χ) 6= 0 for all χ 6= 1 (which is true,
but out of reach for us at the moment): then logL(s, χ) is bounded as s→ 1,
and from

h
∑
p∈H

Np−s =
∑
χ6=1

logL(s, χ) + log(s− 1)L(s, 1l)− log(s− 1)

we can deduce that the set of primes in H has density 1
h , which immediately

implies that δ(S) ≤ 1
h for any set of primes contained inH that has a Dirichlet

density.
What if L(1, χ) = 0 for some χ 6= 1l? In such a case, the term logL(s, χ)→

−∞ as s→ 1. Since f(s) ≥ 0 for s > 1, such terms must be cancelled by the
first term; since − log(s−1)→∞, this implies that we must have 1

h−δ(S) > 0
in such a case.
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Our proof implies the following

Corollary 10.4. If δ(S) = 1
h for S = Spl(L/K), then L(1, χ) 6= 0 for all

characters χ 6= 1 of the class group Cl(K).

10.2 Proof of the First Inequality

We now prove the First Inequality for normal unramified extensions:

Theorem 10.5 (First Inequality). Let L/K be a normal unramified exten-
sion with associated Takagi group TL/K = NDL ·HK . Then

h = (DK : TL/K) ≤ (L : K) = n.

Proof. The set S = Spl(L/K) is contained in NL/KDL since primes that split
completely in L/K are norms of (prime) ideals from L. Since δ(S) = 1

(L:K)

by Kronecker’s density theorem, Weber’s inequality tells us that 1
(L:K) ≤

1
h ,

where h = (DK : H) = # Cl(K) is the class number of K. Clearing fractions
then gives h ≤ (L : K).

Scholz’s Version

Scholz discovered that one may drop the assumption that L/K be normal:

Theorem 10.6. Let L/K be a nonnormal extension with associated Takagi
group TL/K = NDL ·HK . Then

h = (DK : TL/K) < (L : K) = n.

Proof. Let n = (L : K), and denote by n∗ the degree of the normal closure
of L/K. We know ∑

NP−s = log
1

s− 1
+O(1),

where the sum is over all prime ideals of degree 1 in L. For prime ideals p of
degree 1 in K, let n(p) denote the number of prime ideals P in L of degree
1 over K; then ∑

P

NP−s =
∑

p

n(p)
Nps

+O(1),

where the p run through the unramified prime ideals of degree 1 in K. Now
denote by p∗ those p with n(p) = n, and by p′ those p with n(p) ≤ n − 1
(actually this implies n(p) ≤ n − 2 since if there are n − 1 prime ideals of
degree 1 above p, then there are n of them). Then
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∑
P

NP−s ≤ n
∑
p∗

(Np∗)−s + (n− 1)
∑
p′

(Np′)−s +O(1)

=
∑
p∗

(Np∗)−s + (n− 1)
∑

p

Np−s +O(1).

Thus we find∑
p

Np−s ≥ 1
n− 1

log
1

s− 1
− 1
n− 1

∑
p∗

(Np∗)−s +O(1).

Since prime ideals p split completely in L/K if and only if they split com-
pletely in the normal closure N/K, the set of prime ideals p∗ has Dirichlet
density 1

n∗ , and we find∑
p

Np−s ≥ n∗ − 1
n∗

1
n− 1

log
1

s− 1
+O(1).

Since L/K is not normal, we have n∗ > n, hence n∗−1
n∗ = 1− 1

n∗ > 1− 1
n = n−1

n

and thus n∗−1
n∗

1
n−1 >

1
n .

The same argument as in the normal case now shows that h < n.

Thus if L/K is not normal, then L is not a class field:

Corollary 10.7. Class Fields are normal extensions.

Artin’s Version

Let L/K be an extension of degree n. Let H ⊆ DK be a group of ideals
containing HK and the norms NDL from L. Let χ run through the characters
of the class group DK/H; Artin compares the zeta function ζL(s) with the
product of the L-series L(s, χ). Taking logarithms he finds

log ζL(s) =
∑
P

NP−s +O(1),

where P runs through the prime ideals of degree 1 in L. Let p = P ∩ K
denote the prime ideal below P, and let n(p) denote the number of prime
ideals of degree 1 in L above p. Then

log ζL(s) =
∑

p

n(p)Np−s +O(1).

Since prime ideals p with n(p) > 0 are exactly the prime ideals that can be
written as norms from L, and since DL ⊂ H, we find

log ζL(s) =
∑
p∈H

n(p)Np−s +O(1).
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On the other hand we know∑
χ

L(s, χ) = h
∑
p∈H

Np−s +O(1).

Since n(p) ≤ n, we find

log ζL(s) . n
∑
p∈H

Np−s ∼ n

h

∑
χ

logL(s, χ),

where f . g means that f(s)− g(s) ≤ c for some constant c as s→ 1.
In the product

∏
χ L(s, χ), the factor L(s, 1l) has a pole of order 1 at

s = 1. If L(1, χ) = 0 for at least one of the χ 6= 1, this zero will cancel
against the pole, and the product would be bounded at s = 1. This would
imply that

∑
χ logL(s, χ) is bounded from above (it could go to −∞ if the

product would vanish). But since we know that log ζ(s) −→∞ as s→ 1, this
is impossible, and we deduce that L(1, χ) 6= 0 for χ 6= 1. Dirichlet’s proof
then immediately implies

Theorem 10.8. Let L/K be an extension of number fields and H an ideal
group containing TL/K = NDL · HK . Then L(1, χ) 6= 0 for all characters
χ 6= 1 of DK/H, and the set S of prime ideals in an ideal class c ∈ DK/H
has Dirichlet density δ(S) = 1

h , where h = (DK : H).

In order to show that there are infinitely many prime ideals in the principal
class of Cl(K), we still have to find a number field L such that NDL ⊆ HK ,
that is, a field in which only the principal prime ideals split.

Back to Artin’s proof of the first inequality: from

log ζL(s) .
n

h

∑
χ

logL(s, χ) ∼ n

h
log ζK(s)

and the fact that log ζF (s) ∼ 1
s−1 for any number field n we deduce that

1 ≤ n
h , i.e., h ≤ n.

10.3 Consequences of the First Inequality

Let us now call an extension L/K a class field for the ideal group H if

• H contains TL/K ;
• (DK : H) = n.

The following proposition will allow us to go back and forth between the
two definitions of a class field given by Takagi and Weber.

Proposition 10.9. Let L/K be a normal unramified extension and let H be
an ideal group containing the Takagi group TL/K = NDL · HK attached to
L/K. Then the following conditions are equivalent:
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1. Except possibly for a set of density 0, exactly the prime ideals in H split
completely in L/K.

2. Except possibly for a set of density 0, all prime ideals in H split completely
in L/K.

3. (DK : H) ≥ (L : K).
4. (DK : H) = (L : K).

Proof. Clearly (1) =⇒ (2). The converse follows by observing that prime
ideals outside of H cannot split completely (all the norms of ideals are con-
tained in H). Moreover, (3) and (4) are equivalent by the first inequality.

It remains to show that (2) =⇒ (4) and (4) =⇒ (2). Assume (2) holds.
Then n(p) = n for almost all prime ideals in H, hence n = h. Now assume
that n = h; then n(p) = n for almost all p ∈ H.

Thus we find that L/K is a class field for the ideal group H if H contains
TL/K , and if almost all of the prime ideals in H split completely on L/K.
We will use this alternative definition of a class field repeatedly in the proofs
below.

Let us first make the following simple observation:

Lemma 10.10. If L/K is a class field for the ideal group H, then H = TL/K .

Thus for every class field there is a unique class group H. The Uniqueness
Theorem states the converse, namely that if L/K and L′/K are both class
fields for H, then L = L′.

Proof. By definition, we have TL/K ⊆ H. Since L/K is a class field, we know
(D : H) = (L : K). Now

(L : K) = (D : H) =
(D : TL/K)
(H : TL/K)

≤ (L : K)
(H : TL/K)

,

where we have used the first inequality. This implies (H : TL/K) = 1, and
now the claim follows.

Scholz observed in 1927 that the following result can be proved using only
the first inequality:

Theorem 10.11. Assume that L/K is a class field for TL/K , and let F be
an intermediate field. Then both L/F and F/K are class fields. In particular,
every intermediate field of a class field is normal; equivalently: if L/K is a
class field, then every subgroup of Gal (L/K) is normal.

This almost shows that class fields are abelian. A prominent example of a
nonabelian group all of whose subgroups are normal is the quaternion group
of order 8.
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Proof. We will consider the three groups TL/K , TL/F , TF/K , as well as H =
{b ∈ DF : NF

Kb ∈ TL/K . Clearly NL
KDL ⊆ NF

KDF , hence TL/K ⊆ TF/K .
Moreover, TL/F ⊆ H since taking the norm NF

K of TL/F = NL
FDLHF gives

an ideal in TL/K .
Observe that the norm map NF

K induces an epimorphism DF −→
TF/K/TL/K : given an ideal b(α) ∈ TF/K , where b ∈ NF

KDF , we observe
that it generates the same coset modulo TL/K as b since HK ⊆ TL/K . The
kernel of NF

K : DF −→ TF/K/TL/K consists of all ideals in DF whose norms
land in TL/K , and this is by definition H. Thus DF /H ' TF/K/TL/K .

Now we have

(DF : TL/F ) ≥ (DF : H) = (TF/K : TL/K) =
(DK : TL/K)
(DK : TF/K)

,

hence
(DK : TF/K)(DF : TL/F ) ≥ (DK : TL/K) = (L : K)

since L/K is a class field. By the first inequality, the two indices on the left
hand side are ≤ (F : K)(L : F ) = (L : K). This can only happen if we have
equality everywhere, hence (DK : TF/K) = (F : K) and (DF : TL/F ) = (L :
F ). This implies that L/F and F/K are class fields.

The next result shows that composita of class fields are class fields:

Theorem 10.12 (Composition Theorem). If L1/K and L2/K are class fields
for the ideal groups H1 and H2, then the compositum L = L1L2 is a class
field for the ideal group H1 ∩H2.

Proof. Every norm of an ideal from L is also a norm from both L1 and L2,
hence TL/K ⊆ H1 ∩ H2. On the other hand, every prime ideal in H1 ∩ H2

splits completely in L1/K and L2/K, hence in the compositum L/K. Thus
(DK : TL/K) ≤ (L : K)

Next we prove the

Theorem 10.13 (Ordering Theorem). Let L1/K and L2/K be class fields
for the class groups H1 and H2, respectively. Then L1 ⊆ L2 if and only if
H1 ⊇ H2.

Proof. Assume first that L1 ⊆ L2. On the one hand, L2 is the class field to
H2; on the other hand, L2 = L1L2 is the class field corresponding to the
intersection H1 ∩H2. Thus H2 = H1 ∩H2, hence H2 ⊆ H1.

Now assume that H2 ⊆ H1. Then H2 = H1 ∩H2, hence the compositum
L1L2 is a class field with respect to H2, and we get (L1L2 : K) = (DK :
H2) = (L2 : K). But this implies L1 ⊆ L2.

Corollary 10.14 (Uniqueness Theorem). For every ideal group H there is
at most one class field.
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Corollary 10.15. Class fields are normal.

Proof. The Takagi groups attached to L/K and its conjugate L′/K are the
same. Thus L = L′.

Scholz gave the following simple proof of the

Theorem 10.16 (Translation Theorem). Let L/K be a class field with re-
spect to H, and let F/K be a finite extension. Then LF/F is a class field
with respect to the group H = {A ∈ DF : NF/KA ∈ H}.

Proof. We first have to show that the group H contains the Takagi group
TLF/F . ButNLF

F DLFHF ∈ H sinceNF
K(NLF

F DLFHF ) = NL
KN

LF
F DLN

F
KHF ⊆

NL
KDLHK = TL/K .

The second condition we have to check is that almost all primes in H split
in LF/F . Since primes of degree > 1 have density 0, we only need consider
prime ideals q in F of degree 1. Then p = NF

Kq ∈ H, and since L/K is a class
field for H, p splits completely in L/K. But p also splits completely in F/K,
hence in the compositum LF . But then q must split completely in LF/F ,
and this concludes the proof.

Corollary 10.17. If L/K is a class field and F is an intermediate extension,
then both L/F and F/K are class fields.

What is missing from the theory are the Existence Theorem (there is
a class field for every ideal group H), the Decomposition Law (we know
that almost all prime ideals in H split in the corresponding class field; note
that “almost all” excludes all prime ideals of degree > 2, so this is really
quite a weak result. The Decomposition Law states that all prime ideals in
H without exception split completely in the class field attached to H), and
Artin’s Reciprocity Law, which, in all modern accounts, is used to prove both
the Existence Theorem and the Decomposition Law.

As a consequence of the Existence Theorem and our results so far we give
Scholz’s proof of the

Theorem 10.18 (Norm Limitation Theorem). Let F/K be an extension of
number fields, and assume that L/K is the maximal abelian subextension of
F/K. Then TF/K = TL/K .

Proof.

Exercises

10.1 Show directly from the definition that conjugate field extensions L/K and
L′/K have the same Takagi groups. Use the ordering theorem to deduce that
class fields are normal.
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11. The Second Inequality

In this chapter we will prove the Second Inequality.

11.1 Preliminaries

The proof of the Second Inequality requires a few lemmas from Galois coho-
mology and group theory. While some of them are almost trivial, others –
in particular the snake lemma and Herbrand’s lemma – are less simple but
quite powerful.

Lemma 11.1. If A ⊇ B ⊇ C are abelian groups, then

(A : C) = (A : B)(B : C).

Proof. This is a consequence of the exact sequence

1 −−−−→ B/C −−−−→ A/C −−−−→ A/B −−−−→ 1,

where the map A/C −→ A/B sends aC to aB. This map is clearly surjective
with kernel B/C.

We will only apply this result when the index on the left or the two indices
on the right are finite.

Lemma 11.2. For subgroups A,B of an abelian group we have

AB/B ' A/A ∩B.

Proof. The map sending a ∈ A to the coset aB ∈ AB/B is an epimorphism
with kernel A ∩B.

The work horse in homological algebra is the elementary but important

Lemma 11.3 (Snake Lemma). Given an exact and commuting diagram

A
f−−−−→ B

g−−−−→ C −−−−→ 1

α

y β

y γ

y
1 −−−−→ A′

f ′−−−−→ B′ g′−−−−→ C ′
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of abelian groups, there is an exact sequence

1 −−−−→ ker f −−−−→ kerα −−−−→ kerβ −−−−→ ker γ

δ

y
1 ←−−−− coker g′ ←−−−− coker γ ←−−−− cokerβ ←−−−− cokerα

You can find the proof in almost any text book on homological algebra,
along with the comment that it is best to prove it for yourself.

Next there is the simple but effective

Lemma 11.4. Let f : A −→ G be a homomorphism between abelian groups.
Let B be a subgroup of A, and let g be the restriction of f to B. Set Af =
ker f , Bf = ker g, Af = im f and Bf = im g. Then

(A : B) = (Af : Bf )(Af : Bf ).

If Af ⊆ B, then (Af : Bf ) = 1.

Proof. Apply the snake lemma to the diagram

0 −−−−→ Bf −−−−→ B −−−−→ Bf −−−−→ 0y y y
0 −−−−→ Af −−−−→ A −−−−→ Af −−−−→ 0;

since the vertical maps are injective, we get the exact sequence

0 −−−−→ Af/Bf −−−−→ A/B −−−−→ Af/Bf −−−−→ 0

of cokernels, from which the claim follows by forming the alternating product
of the orders of these groups.

Of course we can easily prove this result directly; it is, however, important
to see the snake lemma in action.

Another useful consequence of the snake lemma is

Lemma 11.5. Given two homomorphisms α : A −→ B and β : B −→ C of
abelian groups, the sequence

1 −−−−→ kerα −−−−→ ker(β ◦ α) −−−−→ kerβy
1 ←−−−− cokerβ ←−−−− coker (β ◦ α) ←−−−− cokerα

is exact.
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Proof. Apply the snake lemma to the diagram

A
α−−−−→ B −−−−→ cokerα −−−−→ 1yβ◦α yβ y

1 −−−−→ C
id−−−−→ C −−−−→ 1

Finally, let us discuss Herbrand’s Lemma. There are various versions of
this result; we will only prove the special case we need, and indicate the
connection to Galois cohomology at the end of this chapter.

Let f, g : A −→ A be endomorphisms of an abelian group A with the
property that f ◦ g = 0 and g ◦ f = 0. This implies that im f ⊆ ker g and
im g ⊆ ker g, so we can define the Herbrand quotient

q(A) =
(ker f : im g)
(ker g : im f)

=
(Af : Ag)
(Ag : Af )

.

This quotient depends on the order of f and g and thus should be denoted
more precisely by qf,g(A); clearly qf,g(A) = 1/qg,f (A).

We now observe

Lemma 11.6. If A is a finite group, then q(A) = 1.

Proof. If A is finite, then

q(A) =
(ker f : im g)
(ker g : im f)

=
# ker f ·#im f

#im g ·# ker g
=

#A
#A

= 1.

The special case of Herbrand’s Lemma that we will use is

Lemma 11.7 (Herbrand’s Lemma). If f, g : A −→ A are as above, and if B
is a subgroup of finite index in A, then q(A) = q(B).

Proof. We find

(A : B) = (Af : Bf )(Af : Bf ) by Lemma 11.4

= (Af : Bf )
(Af : Bg)
(Bf : Bg)

by Lemma 11.1

= (Af : Bf )
(Af : Ag)(Ag : Bg)

(Bf : Bg)
by Lemma 11.1

=
(Af : Ag)
(Bf : Bg)

(Af : Bf )(Ag : Bg).

By symmetry, we also get
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(A : B) =
(Ag : Af )
(Bg : Bf )

(Af : Bf )(Ag : Bg),

and comparing these two equations we see that

(Af : Ag)
(Bf : Bg)

=
(Ag : Af )
(Bg : Bf )

,

which immediately implies the claim.

11.2 The Second Inequality for Unramified Extensions

Let L/K be a cyclic unramified extension. Our goal in this section is to
investigate the index

hL/K = (DK : NDL ·HK).

Clearly

hL/K =
(DK : HK)

(NDL ·HK : HK)
.

The index in the numerator is the class number h of K. Applying (AB : B) =
(A : A ∩B) to the index in the denominator we see

(NDL ·HK : HK) = (NDL : NDL ∩HK).

Now consider the norm map from A = DL to DK , as well as its restriction
to the subgroup GL of DL consisting of ideals with principal norm. Lemma
11.4 shows that

(DL : GL) = (NDL : NDL ∩HK).

We remark in passing that (DL : GL) = (DL/HL : GL/HL); clearly
DL/HL = ClL, andGL/HL = ClL[N ] is the group of ideal classes whose norm
down to K is principal. Thus (DL/HL : GL/HL) = (ClL : ClL[N ]) = N ClL,
hence

hL/K = (ClK : N ClL). (11.1)

Now let σ be a generator of the cyclic group Gal (L/K). Then GL contains
the group D1−σ

L HL, hence

(DL : GL) =
(DL : D1−σ

L HL)
(GL : D1−σ

L HL)
.

Let Am (L/K) = {c ∈ Cl(L) : cσ = c} denote the group of ambiguous ideal
classes in L. Its definition provides us with the exact sequence

1 −−−−→ Am (L/K) −−−−→ ClL −−−−→ Cl1−σL −−−−→ 1,
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which in turn gives

(ClL : Cl1−σL ) = # Am (L/K).

Now

(ClL : Cl1−σL ) = (DL/HL : D1−σ
L HL/HL) = (DL : D1−σ

L HL).

Combining everything so far we find

hL/K =
hK(GL : D1−σ

L HL)
# Am (L/K)

. (11.2)

Now we claim

Theorem 11.8 (Ambiguous Ideal Class Formula). Let L/K be a cyclic un-
ramified extension. Then

# Am (L/K) =
hK

(L : K)(EK : EK ∩NL×)
.

Plugging this into (11.2) we find

hL/K = (L : K)(EK : EK ∩NL×)(GL : D1−σ
L HL).

The first inequality, on the other hand, shows that hL/K ≤ (L : K). Thus we
must have equality, and we have proved that every unramified cyclic extension
L/K is a class field. Since abelian groups are direct products of cyclic groups,
and since we already know that composita of class fields are class fields, we
find

Theorem 11.9. Every unramified abelian extension L/K is a class field.

Next we claim

Theorem 11.10. Let L/K be a cyclic unramified extension. Then

(ClK : N ClL) = (L : K).

In particular, (L : K) | hK .

Theorem 11.11 (Furtwängler’s Principal Genus Theorem). Let L/K be a
cyclic unramified extension, and let σ be a generator of Gal (L/K). Then

ClL[N ] = Cl1−σL .

Proof. The first and second inequalities imply GL = D1−σ
L HL, that is,

ClL[N ] = GL/HL = D1−σ
L HL/HL = Cl1−σL .

The fundamental inequalities also show that the index (EK : EK ∩NL×)
is trivial, so we get
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Theorem 11.12. Let L/K be a cyclic unramified extension. Then every unit
ε ∈ EK is the norm of an element from L:

EK = EK ∩NL×.

The ambiguous ideal class number formula then immediately implies

Corollary 11.13. Let L/K be a cyclic unramified extension. Then

# Am (L/K) =
hK

(L : K)
.

11.3 The Ambiguous Class Number Formula

It remains to prove the ambiguous class number formula for cyclic unramified
extensions L/K. In fact, the proof for arbitrary cyclic extensions is not really
any more difficult, so we will treat the general case right away:

Theorem 11.14 (Ambiguous Class Number Formula). Let L/K be a cyclic
extension. Then

Am (L/K) = hK

∏
e(p)

(L : K)(EK : EK ∩NL×)
,

where the product is over all primes (finite and infinite).

As an example, consider a complex quadratic number field L whose
discriminant is divisible by t distinct primes. Since the infinite prime of
K = Q also ramifies, we have

∏
p e(p) = 2t+1. Moreover, EK = {±1} for

d < −4, and since −1 cannot be the norm of an element, we deduce that
(EK : EK ∩NL×) = 2. Thus # Am(L/Q) = 2t−1. Actually the ideal classes
c ∈ Am (L/Q) have order dividing 2: from c1+σ = 1 (every ideal class is
killed by the norm since Q has class number 1) we deduce that cσ = c−1

for every ideal class, and consequently c = cσ = c−1 for any ambiguous
ideal class. Thus Am (L/Q) is elementary abelian, and we have shown that
Am (L/Q) ' (Z/2Z)t−1.

Proof. Since our proof will not use the language of cohomology, we are forced
to introduce a wealth of groups along the way. Let us start by recalling what
we already know:

# Am (L/K) = (DL : D1−σ
L HL) =

(DL : HL)
(D1−σ

L HL : HL)
.

Applying Lemma 11.4 with f = 1− σ , A = DL, and B = HL we find

(DL : HL) = (D1−σ
L : H1−σ

L )(DG
L : HG

L ),
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where, for G-modules A, we have used the standard notation AG = {a ∈ A :
σ(a) = a for all σ ∈ G} for the fix module of A. Now

(D1−σ
L : H1−σ

L ) = (D1−σ
L : D1−σ

L ∩HL)(D1−σ
L ∩HL : H1−σ

L )

= (D1−σ
L HL : HL)(D1−σ

L ∩HL : H1−σ
L ),

hence we get

# Am (L/K) = (D1−σ
L ∩HL : H1−σ

L )(DG
L : HG

L ).

The group D1−σ
L ∩HL consists of ideals A1−σ with the property A1−σ =

(θ) for some θ ∈ L×. Taking norms in L/K gives us (1) = NA1−σ = (Nθ),
hence Nθ = ε ∈ EK must be a unit. Conversely, assume that ε ∈ EK ∩NL×
is a unit that is a norm from L; then ε = Nθ for some θ ∈ L×, hence
N(θ) = (ε) = (1). Hilbert 90 for ideals tells us that (θ) = A1−σ for some
ideal A in L.

Thus D1−σ
L ∩HL consists of all principal ideals (θ) generated by elements

θ ∈ L× with the property that Nθ ∈ EK . We denote the group of these
elements by Θ.

Now let f be the map sending elements A ∈ L to the principal ideal (A),
and apply Lemma 11.4 with A = Θ and B = (L×)1−σEL. Since ker f =
ker g = EL, we get

(D1−σ
L ∩HL : H1−σ

L ) = (Θ : (L×)1−σEL).

Collecting everything we have obtained so far we find

# Am (L/K) = (D1−σ
L ∩HL : H1−σ

L )(DG
L : HG

L )

= (Θ : (L×)1−σEL)(DG
L : HG

L )

= (Θ : (L×)1−σEL)
(DG

L : HK)
(HG

L : HK)

= (Θ : (L×)1−σEL)
(DG

L : DK)(DK : HK)
(HG

L : HK)

since ideals from K clearly are invariant under G. Clearly (DK : HK) = hK ;
the index (DG

L : DK) is also easily taken care of:

Lemma 11.15. Let L/K be a cyclic extension. Then

(DG
L : DK) =

∏
p-∞

e(p),

where the product of over all finite primes p, and where e(p) is the ramification
index of p in L/K.

This is the only place where the assumption that L/K be unramified
would have simplified the proof of the ambiguous class number formula.
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Proof of Lemma 11.15. Every prime ideal p in K factors as

pOL = (P1 · · ·Pg)e(p)

in L. We claim that every A ∈ DG
L can be written uniquely in the form

A = a
∏
p

(P1 · · ·Pg)a(p) (11.3)

for some ideal a ∈ DK , where 0 ≤ a(p) < e(p); note that a(p) = 0 for all
unramified primes. Since the only ideal of the form

∏
p(P1 · · ·Pg)a(p) lying

in K is the unit ideal (any ideal in K divisibly by some Pj must be divisible
by p = Pj ∩K), these products represent the cosets of DG

L /DK , and since
there are exactly

∏
p-∞ e(p) of them, the claim will follow.

Clearly every ideal of the form (11.3) is invariant under σ ∈ G, since σ
only permutes the Pj . Thus we only have to show that every A ∈ DG

L can be
written in this form. To this end we observe that we can write A uniquely in
the form A = aB for some integral ideal B ∈ DL which is not divisibly by
any ideal 6= (1) from DK . We also observe that B is invariant under G since
A and a are. Thus it remains to show that B =

∏
p(P1 · · ·Pg)a(p).

Let Pj be a prime ideal dividing B. Since Bτ = B for every τ ∈ G, we
find Pτ

j | B. Since G acts transitively on the prime ideals, this implies that
P1 · · ·Pg | B. Thus we can write B = P1 · · ·PgB1 and perform induction
on the norm of B.

The fact that a(p) < e(p) follows from the observation that the ideal
(P1 · · ·Pg)e(p) = p is an ideal 6= (1) in DK , and we have assumed that B is
not divisible by such ideals.

It remains to compute (HG
L : HK); we will do this by reducing it to an

index involving numbers instead of ideals. To this end we introduce the group

∆ = {A ∈ L× : A1−σ ∈ EL}.

Clearly ∆ contains the subgroup K×EL. Let f be the map sending elements
in ∆ to the principal ideals they generate, and let g be its restriction to
K×EL. Then im f = HG

L , im g = HK (viewed as a subgroup of HL), and
ker f = ker g = EL. Thus

(HG
L : HK) = (∆ : K×EL). (11.4)

At this point we know

# Am (L/K) = hK
∏
p-∞

e(p) · (Θ : (L×)1−σEL)
(∆ : K×EL)

.

Applying the norm map f = NL/K to the numerator we find
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(Θ : (L×)1−σEL) = (EK ∩NL× : NEL).

Similarly, applying f = 1− σ to the denominator we get

(∆ : K×EL) = (EL ∩ (L×)1−σ : E1−σ
L ).

Note that EL ∩ (L×)1−σ = EL[N ]: a unit killed by the norm is an element of
(L×)1−σ by Hilbert’s Theorem 90, and the converse is trivial.

Combining everything we arrive at the formula

Am (L/K) = hK
∏
p-∞

e(p)
(EK ∩NL× : NEL)

(EL[N ] : E1−σ
L )

.

Determining the quotient of these indices is a nontrivial task, and the result,
in the classical literature, is called the

Theorem 11.16 (Unit Principal Genus Theorem). For cyclic extensions
L/K we have

(EK : NEL)
(EL[N ] : E1−σ

L )
=

∏
p|∞ e(p)

(L : K)
,

where the product os over all the infinite primes.

Plugging this into our expression for Am (L/K) we get the desired for-
mula.

The Unit Principal Genus Theorem will be proved in the next section. It
contains as a special case

Theorem 11.17 (Hilbert’s Satz 92). Let L/K be a cyclic unramified exten-
sion. Then there exists a unit η ∈ EL ∩ L1−σ \ E1−σ

L .

We now show how Hilbert derived his Satz 94 (Thm. 9.11) from Satz 92.
Assume that L/K is cyclic and unramified of prime degree `, and let σ be a
generator of G = Gal (L/K). Let ε ∈ EL be a unit as in Satz 92, and write
ε = A1−σ for some A ∈ L×. Then (A)σ = (A), hence (A) ∈ DG

L is fixed
by the Galois group. Since L/K is unramified, we have DG

L = DK , hence
(A) = aOL for some ideal a ∈ DK . We claim that a is not principal in K:
in fact, if we had a = (α), then A = αη for some unit η ∈ EL, and applying
1− σ gives ε = A1−σ = ε1−σ ∈ E1−σ

L , which contradicts our choice of ε.
Thus a is a nonprincipal ideal in K that becomes principal in L. Taking

the relative norm of aOL = (A) we find a` = NL/Ka = (NL/KA), hence a` is
principal in K. This shows that the ideal class [a] has order ` in Cl(K).
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11.4 The Herbrand Quotient of the Unit Group

Nowadays the unit principal genus theorem is called computing the Herbrand
quotient of the unit group. In fact, let A = EL, f = 1 − σ, and g = NL/K .
Then ker f consists of all units in EL killed by 1 − σ, and this is EGL = EK
(Galois theory shows that elements fixed by G live in the base field, and if an
α ∈ K× is a unit in L, it is a unit in K). Clearly Af = E1−σ

L and Ag = NEL,
and finally ker g = EL[N ]. Thus

q(EL) =
(Af : Ag)
(Ag : Af )

=
(EK : NEL)

(EL[N ] : E1−σ
L )

.

Minkowski’s unit theorem is strong enough to allow us to compute the
Herbrand quotient of the unit group EL for normal extensions L/Q.

Since we will prove the result later in general, let us now indicate the proof
only in the case where L is totally real. Let n = (L : Q) denote the degree and
G = 〈σ〉 the cyclic Galois group. We choose a unit ε as in Minkowski’s unit
theorem, and set εj = σj(ε) for j = 1, 2, . . . , n− 1. Then UL = 〈ε1, . . . , εn−1〉
is a subgroup of EL with finite index, so by Herbrand’s lemma we know that
q(EL) = q(UL). Now let A = UL, f = 1−σ, and g = N = 1+σ+ . . .+σn−1.
Then Af = 1 since the only units in UL fixed by G are units from Q, and
−1 6∈ UL: in fact, any relation εa1

1 · · · ε
an−1
n−1 = ±1 with not all exponents equal

to 0 would contradict the independence of these units. This already shows
that (Af : Ag) = 1. On the other hand, Ag = UL[N ] = UL and Af = U1−σ

L .
We will now construct an exact sequence

1 −−−−→ U1−σ
L −−−−→ UL −−−−→ Z/nZ −−−−→ 1,

which then shows that (UL : U1−σ
L ) = n.

First observe that UL ' R = Z[X]/(Φ) for Φ(X) = 1 +X + . . .+Xn−1.
In fact, the map Z[X] −→ UL sending F ∈ Z[X] to εF (σ) ∈ UL is a
surjective group homomorphism, and its kernel is the ideal generated by
Φ. Since application of σ corresponds to multiplication by X, we have
UL/U

1−σ
L ' R/(1−X). Thus we have to show that R/(1−X) ' Z/nZ.

To this end we observe that the evaluation map sending F + (Φ) ∈ R to
F (1) + nZ ∈ Z/nZ is well defined because of Φ(1) = n. The kernel of this
homomorphism consists of all cosets F +(Φ) with n | F (1). Write F (1) = kn
for some k ∈ Z; then F1 = F − kΦ satisfies F (1) = 0, hence is a multiple of
1−X. Thus the kernel consists of the ideal (1−X), and the claim follows.

Armed with Herbrand’s Unit Theorem we now can compute the Herbrand
quotient of the unit group EL:

Proof of Thm. 11.16. As before, it is sufficient to compute q(UL) for the sub-
group UL generated by the units εj , ηj , and their conjugates. Set A = UL,
f = 1− σ, and g = N = 1 + σ + . . .+ σn−1 for n = (L : K). Then Af = EK
since the only units in UL fixed by G are the units from K, and there are
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no roots of unity contained in UL. Moreover, NL/KUL = 〈εn1 , . . . , εnρ 〉, hence
(Af : Ag) = (UGL : NUL) = (EK : EnK) = nρ.

On the other hand, Ag = UL[N ] is the group U0 generated by the ηj and
their conjugates, Af = U1−σ

L . Thus we have to compute (U0 : U1−σ
L ).

Let Uj denote the G-module generated by ηj , that is, the subgroup of
U0 generated by ηj and its conjugates. Then U0 =

⊕ρ+1
j=1 Uj as a G-module,

hence

U0/U
1−σ
0 =

ρ+1⊕
j=1

Uj/U
1−σ
j .

We have already seen that Uj ' Rj = Z[X]/(Φj) for the polynomials
Φj(X) = 1 +X + . . . +Xnj−1, and that Uj/U1−σ

j ' Rj/(1 −X) ' Z/njZ.
Thus

(U0 : U1−σ
0 ) =

∏
(Uj : U1−σ

j ) =
∏

nj =
nρ+1∏
e(∞j)

,

and we find

q(EL) = q(UL) =
(UGL : NUL)
(U0 : U1−σ

0 )
=
nρ

∏
e(∞j)

nρ+1
=

∏
e(∞j)
n

as claimed.

Notes

The proofs of the first and second inequalities given in this chapter are taken
(with minor simplifications) from Artin’s three lectures on class field theory
given in 1932 in Göttingen; an English translation of these lectures can be
found in the appendix to Cohn’s book [Co1978]. In his Marburg lectures from
1933, Hasse chose essentially the same proof.

Let me point out that there were essentially two results on which our
proofs of the fundamental inequalities were based:

• The first inequality follows from the fact that the Dedekind zeta function
ζK(s) has a pole of order 1 at s = 1.
• The second inequality is a consequence of the computation of the Her-

brand quotient of the unit group EL, hence of Herbrand’s unit theorem.

Note that the Herbrand quotient of the unit group was also an ingredient for
the proof of the ambiguous class number formula or the fact that units in
cyclic unramified extensions are norms.

Exercises

11.1 Let f : A −→ A be an endomorphism of an abelian group A, and let B be a
subgroup of A. Explain why, in general, f does not induce a homomorphism
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A/B −→ A/B on the quotient groups. Show that if f induces an endomor-

phism g : B −→ B, then we get an induced homomorphism f : A/B −→ A/B

with im f = AfB/B and ker f = (A ∩ f−1(B))B/B.

11.2 Let K = Q, L = Q(
√

3 ), and G = Gal (L/K). Show that the principal ideal

(1 +
√

3 ) is an element of HG
L \HK .

11.3 Show that the diagram

1 −−−−−→ K×EL −−−−−→ ∆ −−−−−→ ∆/K×EL −−−−−→ 1??y ??y ??y
1 −−−−−→ HK −−−−−→ HG

L −−−−−→ HG
L /HK −−−−−→ 1

is exact and commutative, where the vertical maps send elements to the prin-
cipal ideal they generate. Now use the snake lemma to deduce (11.4) directly.

11.4 Let A,B,C be G-modules (abelian groups on which the group G acts), and
assume that

0 −−−−−→ A −−−−−→ B −−−−−→ C −−−−−→ 0

is an exact sequence of G-modules (this means that the homomorphisms com-
mute with the action of G, i.e., f(aσ) = f(a)σ). Show that taking fix modules
is left exact: there is an exact sequence

0 −−−−−→ AG −−−−−→ BG −−−−−→ CG

of abelian groups (the action of G on these fix modules is of course trivial),
but the map BG −→ CG is not surjective in general. (Hint: for cyclic groups,
this follows immediately by applying the snake lemma to a suitably chosen
commutative diagram. Observe that, in this case, AG is the kernel of the map
1− σ : A −→ A.)

11.5 Let A be a finitely generated abelian group (this implies that the index (B :
nB) is finite for every n ∈ N and every subgroup B of A), on which a finite
cyclic group G = 〈σ〉 of order n acts. Set f = 1−σ and g = 1+σ+ . . .+σn−1.
Show that the Herbrand quotient qf, g(A) exists by verifying
• nAf ⊆ Ag ⊆ Af ;
• nAg ⊆ Af ⊆ Ag.

11.6 Let G be a finite group, and let G act trivially on Z (σ(a) = a for all a ∈ Z).
Show that qf,g(Z) = #G, where f = N and g = 1− σ.

11.7 Let G = {1, σ} be a group of order 2, and let G act on Z via σ(a) = −a.
Compute q(Z).

11.8 Let G = {1, σ} be a group of order 2, and let G act on A = Z ⊕ Z via
σ(a, b) = (b, a). Compute q(A). What is q(A) if you let G act trivially?

11.9 Compute q(EL) directly for quadratic extensions L = Q(
√
m ).

1. If m < 0, show that q(EL) = 1 by verifying the following claims: (EK :
NEL) = 2, EL[N ] = EL, E1−σ

L = E2
L, and (EL[N ] : E1−σ

L ) = 2.
2. If m > 0, show that q(EL) = 1

2
by verifying the following claims: let

EL = 〈−1, ε〉, where ε is the fundamental unit.
• If Nε = +1, then (EK : NEL) = 2, EL[N ] = EL, E1−σ

L = E2
L, and

(EL[N ] : E1−σ
L ) = 4.
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• IfNε = −1, then (EK : NEL) = 1, EL[N ] = 〈−1, ε2〉, E1−σ
L = 〈−ε2〉,

and (EL[N ] : E1−σ
L ) = 2.

11.10 Prove the First Inequality for class groups in the strict sense: let L/K be
a normal extension, and set TL/K = NDL · H+

K , where H+
K is the group

of principal ideals generated by totally positive elements. Show that (DK :
TL/K) ≤ (L : K).

11.11 Prove the Second Inequality for class groups in the strict sense: let L/K be
a cyclic extension unramified outside ∞ (only infinite primes are allowed to
ramify). With TL/K = NDL · H+

K as in the preceding exercise, show that
(DK : TL/K) ≥ (L : K).

11.12 Let A ' B⊕C be the direct sum of two G-modules, where G = 〈σ〉 is a finite
cyclic group. Show that

A/A1−σ ' B/B1−σ ⊕ C/C1−σ.

One possible way of proving this is by applying the snake lemma to the exact
diagram

0 −−−−−→ B −−−−−→ A −−−−−→ C −−−−−→ 0??y ??y ??y
0 −−−−−→ B −−−−−→ A −−−−−→ C −−−−−→ 0

where the vertical maps are induced by 1− σ. Then deduce from A ' B ⊕C
that the map AG −→ BG is the natural projection, hence surjective, and
deduce the two exact sequences

0 −−−−−→ BG −−−−−→ AG −−−−−→ CG −−−−−→ 0

0 −−−−−→ B/B1−σ −−−−−→ A/A1−σ −−−−−→ C/C1−σ −−−−−→ 0.

Now switch the roles of B and C to see that the last sequence splits.

11.13 Consider the field K = Q( 3
√

2 ) and its normal closure L = K(
√
−3 ). The unit

group of K is given by EK = 〈−1, 1− 3
√

2 〉, and ε = 1− 3
√

2 and ε′ = 1−ρ 3
√

2
(where ρ is a primitive cube root of unity) generate a subgroup of finite index
in EL.
Show that the units ε1 = ε and η1 = (ε′)2/ε have the properties listed in
Herbrand’s unit theorem.

11.14 Let L/K be a cyclic unramified extension of prime power degree `m. Show
that the following assertions are equivalent:

i) ` - hL;
ii) Cl`(K) ' Z/`mZ.

Also show that if these conditions are satisfied, then EK = NL/KEL. (Hint:
If ` | hL, then there exists a central unramified extension M/L of degree `
by the theory of p-groups; moreover, central extensions of cyclic groups are
abelian. For proving the last claim, use the ambiguous class number formula.



146 11. The Second Inequality



12. Examples of Hilbert Class Fields



148 12. Examples of Hilbert Class Fields



13. The Artin Symbol

Our goal in this chapter is to define the Artin symbol and to show how it
induces an isomorphism between the class group DK/TL/K attached to an
unramified abelian extension L/K and the Galois group Gal (L/K).

13.1 Inertia Groups

Now fix a σ ∈ Z(P|p); then we can map a residue class α + P to ασ + P
(note that Pσ = P); this automorphism of κ(P) will fix the subfield κ(p)
elementwise, hence is an element of the Galois group Gal (κ(P)/κ(p)). This
gives us a homomorphism Z(P|p) −→ Gal (κ(P)/κ(/p)). Its kernel is easily
seen to be

T (P|p) = {σ ∈ Z(P|p) : ασ ≡ α mod P for all α ∈ O},

which is called the inertia subgroup of P|p; its fixed field is called the inertia
field of P|p. Since T is the kernel of a homomorphism, it is necessarily a
normal subgroup of Z. Moreover, Z/T is isomorphic to a subgroup of the
Galois group of κ(P)/κ(p); since Galois groups of extensions of finite fields
are cyclic, this implies that Z/T is also a cyclic group, and in fact must have
order dividing f .

Proposition 13.1. The homomorphism Z(P|p) −→ Gal (κ(P)/κ(p)) is sur-
jective; in particular, Z/T ' Gal (κ(P)/κ(p)) is cyclic of order f .

Since (G : Z) = g and efg = n = (G : 1) = (G : Z)(Z : T )(T : 1), this
implies that #T = e. In particular we have T = 1 whenever P is unramified,
and in this case Z is a cyclic group of order f isomorphic to the Galois group
Gal (κ(P)/κ(p)).

Also observe that we now know that (KT : KZ) = f and (K : KT ) = e.

Proof of Prop. 13.1. We know f(PZ |p) = 1, hence OZ/PZ ' o/p. For α ∈ O
let α = α+ P denote its residue class modulo P. Pick α in such a way that
α generates O/P over o/p. The characteristic polynomial of α over KZ is
ψ(X) =

∏
σ∈Z(X − ασ). The reduction ψ of ψ modulo P has coefficients in

OZ/PZ ' o/p. Its roots have the form ασ. Thus every conjugate of α has
this form, and this implies the claim.
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We now can determine a few more relative indices and degrees:

Lemma 13.2. We have e(P|PT ) = e and f(P|PT ) = 1, as well as
e(PT |p) = 1 and f(PT |p) = f .

Proof. The inertia group T (P|p) is equal to the inertia group T (P|PT ); ap-
plying Prop. 13.1 to the extension K/KT shows that Gal (κ(P)/κ(PT )) '
Z/T = 1 since Z(P|PT ) = 1. Thus κ(P) = κ(PT ).

This implies f(P|PT ) = 1 and thus f(PT |pZ) = f . Finally, using efg = n
for the extension K/KT shows that e(P|PT ) = (K : KT ) = e.

Thus the primes below P pick up their inertia degrees as we go from KZ

to KT . This implies that κ(P) ' κ(PT ); in other words: every prime ideal
has a system of representatives in its inertia field:

Corollary 13.3. For every element α ∈ O there is a β ∈ OT such that
α ≡ β mod P.

13.2 The Symbols of Frobenius and Artin

Let K/k be a Galois extension of number fields, and assume that the prime
ideal P in O above p is unramified. Then T = 1 and the decomposition group
Z = Z(P|p) is isomorphic to the Galois group of κ(P)/κ(p). This Galois
group is generated by a distinguished automorphism called the Frobenius
σP, which sends a residue class α + P to σP(α) ≡ αNp mod P. Under the
isomorphism Z ' Gal (κ(P)/κ(p)), the Frobenius automorphism corresponds
to a well defined element in Z that we also denote by σP =

[K/k
P

]
. The symbol

on the right is called the Frobenius symbol, and we will now derive its basic
properties.

Proposition 13.4. Let K/k be a normal extension with Galois group G, and
let P denote a prime ideal in O that is unramified over p.

1.
[K/k

P

]
∈ G has order f = f(P|p).

2.
[K/k

Pσ

]
= σ−1

[K/k
P

]
σ for all σ ∈ G.

3. Let F be an intermediate field of K/k; then
[K/F

P

]
=

[K/k
P

]f(PF |p).

4. Assume in addition that F/k is normal. Then
[F/k

PF

]
=

[K/k
P

]∣∣∣
F
, where

σ|F denotes the restriction of σ ∈ G to F .

Proof. The Frobenius automorphism φ =
[K/k

P

]
generates Z/T , hence has

order f .
Moreover, αφ ≡ αNp mod P; this implies αφσ = (ασ)σ

−1φσ ≡ (ασ)Np mod
Pσ, and this congruence shows that the Frobenius automorphism of Pσ is
σ−1φσ.
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Now let κ(p) = Fq; then κ(P) = Fqf and κ(PF ) = Fqf′ , where f ′ =
f · f(PF |p). Let φ be the Frobenius automorphism of κ(P)/κ(p); it maps
elements to their q-th power. The Frobenius automorphism φ of κ(P)/κ(PF )
is the one mapping elements to their qf

′
-th power, hence is equal to φf

′
. This

proves the third claim.
The Frobenius automorphism for P is characterized by the congruence

αφ ≡ αNp mod P for all α ∈ OK . The same congruence therefore holds for
all elements α ∈ OF , hence the Frobenius for PF is just the restriction of φ
to F .

The Artin Symbol

If K/k is an abelian extension and p a prime ideal in k that is unramified in
K, the symbols [K/kPσ ] all coincide, and we can write (K/kp ) = [K/kP ], where

P is any prime ideal in K above p. This symbol (K/kp ) is called the Artin
symbol. Since the difference between the Frobenius symbol and the Artin
symbol is only a notational one, we immediately get the following

Proposition 13.5. Let K/k be an abelian extension, and let p be a prime
ideal in o that is unramified in O.

1. A prime ideal p splits completely in K/k if and only if
(K/k

p

)
= 1.

2. Let F be an intermediate field of K/k; then
(K/k

P

)f(PF |p) =
(K/F

P

)
.

3. We have
(F/k

PF

)
=

(K/k
P

)∣∣∣
F
.

The Artin Symbol for Quadratic Extensions

Let K/Q be a quadratic extension with discriminant d, let σ denote the
nontrivial automorphism of K/Q, and let p be a prime not dividing d. Then
there are two cases:

1. (dp ) = +1; then pO = pp′ splits;
2. (dp ) = −1; then pO = p is inert.

Since a prime splits completely if and only if its Artin symbol is trivial, we
see that

(K/Q
p ) = 1 ⇐⇒ (dp ) = 1, and

(K/Q
p ) = σ ⇐⇒ (dp ) = −1.

Thus if we identify the Galois group G = {1, σ} with the value group
{+1,−1} of the Kronecker symbol, we find that

(K/Q
p ) = (dp ).

In this sense, the Artin symbol generalizes the Legendre symbol.

The Artin Symbol for Cyclotomic Extensions

Let K = Q(ζ) be the field generated by a primitive m-th root of unity ζ. It
has degree φ(m) and Galois group Gal (K/Q) ' (Z/mZ)×; its automorphisms
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are determined by their action on ζ, and they have the form σa : ζ 7−→ ζa

for a ∈ (Z/mZ)×.
Assume that p - m; then p is unramified. Let φ =

(K/Q
p ) be the Frobenius

of p. The definition of the Frobenius automorphism implies that ζφ = ζp. If
we write pOK = p1 · · · pg with fg = φ(m), then we know that φ has order f .
But if φf is the identity map, then ζp

f

= φf (ζ) = ζ, which holds if and only
if pf ≡ 1 mod m. Thus f is also the order of p mod m. We have proved:

Proposition 13.6. In the field Q(ζ − m) of m-th roots of unity, a prime
p - m splits as pOK = p1 · · · pg, where fg = φ(m) and f is the order of the
residue class p mod m.

The Quadratic Reciprocity Law

Let p and q be distinct odd primes. Consider the field K = Q(ζq); its Galois
group is cyclic of order q−1, hence K has a quadratic subfield F . Since K/Q
only ramifies at q (we will often say that K/Q is unramified outside of q; note
that we are neglecting the ramification at infinite primes here), so does F/Q.
But the only quadratic number field unramified outside q is F = Q(

√
q∗ ),

where q∗ = (−1)(q−1)/2q.
We also know that G = Gal (K/Q) ' (Z/qZ)× =: G, where the isomor-

phism maps σa : ζ 7−→ ζa to the residue class a mod q. Since G is cyclic,
it has a unique subgroup H of index 2, which corresponds to the subgroup
H = {a mod q : a ≡ x2 mod q} of squares. By Galois theory, the fixed field
of H is F , and we have Gal (F/Q) ' G/H.

Now we get(q∗
p

)
= +1 ⇐⇒ p splits in F/Q ⇐⇒

(F/Q
p

)
= 1

⇐⇒
(K/Q

p

)∣∣∣
F

= 1 ⇐⇒
(K/Q

p

)
∈ H

⇐⇒ p ≡ x2 mod q ⇐⇒
( p

q∗

)
= +1.

This is the quadratic reciprocity law, which we derived completely without
calculation just by comparing the splitting of primes in quadratic and cyclo-
tomic extensions.

Let me emphasize again how this proof flows very naturally from the
application of Galois theory to algebraic number theory, in particularly from
the theory of the Artin symbol, whose properties in turn follow quite easily
from the fundamental ismorphism between Z/T and the Galois group of the
residue class field extension.
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13.3 The Artin Isomorphism

Let K/F be an unramified abelian extension. In order to make the Artin
symbol

(K/F
·

)
from a map on the set of prime ideals into a homomorphism

from the group DK of ideals in OK we set
(K/F

a

)
=

∏
p|a

(K/F
p

)
. (You should

see this is as a definition analogous to the Jacobi symbol.) Now the Artin
symbol gives us a homomorphism

recK/F : DK −→ Gal (K/F )

(recall that K/F is unramified and abelian). Artin’s reciprocity law identifies
the kernel and the image of this map:

Theorem 13.7 (Artin’s Reciprocity Law). Let K/F be an unramified abelian
extension of number fields. Then the Artin map recK/F is surjective, and its
kernel consists of the group of principal ideals. In particular, the Artin symbol(K/F

p

)
only depends on the ideal class [p] of p, and induces an isomorphism

Cl(F ) ' Gal (K/F ).

Surjectivity of the Artin Map

Let us now give a first application of the density theorem of Frobenius to class
field theory. Let L/K be an abelian extension, and S a set of prime ideals in
K that contains all the ramified prime ideals. Then the Artin symbol

(L/K
·

)
induces a homomorphism from the group ISK of fractional ideals in K coprime
to all the prime ideals in S to the Galois group Gal (L/K). The Frobenius
density theorem for abelian extensions immediately implies

Theorem 13.8. Let L/K be an abelian extension, and let S denote a finite
set of prime ideals in K containing all the ramified primes. Then the Artin
map

(L/K
·

)
: ISK −→ Gal (L/K) is surjective.

Proof. Take a σ ∈ G = Gal (L/K). By the Frobenius density theorem, there
are infinitely many prime ideals p for which

(L/K
p

)
generates 〈σ〉. Since there

are only finitely many ramified primes, there is a prime ideal p ∈ ISK such
that

(L/K
p

)
generates 〈σ〉. But then σ is in the image of the Artin map.

The main content of Artin’s reciprocity law is the description of the kernel.
Artin’s reciprocity law, coupled with our knowledge about Artin symbols,
immediately implies the decomposition law.

Exercises

13.1 Let K/k be an extension of number fields. Show that the norm map NK/k on
ideals induces a homomorphism NK/k : Cl(K) −→ Cl(k).
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13.2 Let K/k be an extension of number fields. The map sending an ideal a in o to
the ideal aO is called the conorm, and is often denoted by jk→K . Show that
the conorm induces a group homomorphism jk→K Cl(k) −→ Cl(K), and that
NK/k ◦ jk→K raises each ideal class to its n-th power, where n = (K : k). The
kernel of this map is called the capitulation kernel.

13.3 Let K/k be an extension of number fields. Show that if a is an ideal in o such
that aO = (α) is principal, then the order of the ideal class c = [a] in Cl(k)
divides n = (K : k).

13.4 Let K/k be an extension of number fields. Show that if gcd(hk, n) = 1 for the
class number hk = #Cl(k) and the degree n = (K : k), then the norm map
NK/k : Cl(K) −→ Cl(k) is surjective, and the conorm jk→K Cl(k) −→ Cl(K)
is injective. Deduce that hk | hK in this case.

13.5 Let L/K/k be a tower of normal extensions of number fields. Let Q be a prime
ideal in OL, and let P = Q∩K and p = Q∩ k denote the prime ideals in OK

and Ok lying below Q. Show that

e(Q|p) = e(Q|P) · e(P|p) and f(Q|p) = f(Q|P) · f(P|p).

13.6 Show that the decomposition group is a group.

13.7 Let p be a nonzero prime ideal in o; show that pO∩ o = p. (Hint: use the fact
that p is maximal in o.)

13.8 Let K/k be a Galois extension, and assume that p is inert in K/k. Show that
K/k is a cyclic extension. (Hint: look at Z/T .)

13.9 Abhyankar’s Lemma: Let K1/k and K2/K be disjoint abelian extensions with
Galois group Gal (Ki/k) ' Z/`Z. Show that if a prime ideal p is ramified in
both extensions, then the primes above p are unramified in K1K2/K1 and
K1K2/K2. Hint: Look at the ramification groups.

13.10 Consider the pure extension K = Q(
√̀
m ), and assume that there is a prime

p ≡ 1 mod ` with p | m. Let F be the subfield of Q(ζp) with degree `. Show
that FK/K is an unramified abelian extension. Hint: Abhyankar’s Lemma.

13.11 Show that the decomposition and inertia groups of the prime ideal Pσ for some
σ ∈ G are given by Z(Pσ|p) = σ−1Z(P|p)σ and T (Pσ|p) = σ−1T (P|p)σ.
Similar results hold for the higher ramification groups. Here it is important
to let G act from the right.

13.12 Let p ≡ 2 mod 3 be a prime not dividing m, and consider the normal closure
K = Q(

√
−3, 3

√
m ) of F = Q( 3

√
m ).

1. Show that the congruence x3 ≡ m mod p has a unique solution.
2. Deduce from Thus Thm. 5.5 that p splits as pOF = p1p2, where p2 is a

prime ideal of norm p2.
3. Show that p is inert in k = Q(

√
−3 ).

4. Show that g ≥ 2 and f ≥ 2 in K/Q. Show that this implies pOK =
P1P2P3

5. Let p1 = P1 ∩OF . Show that the decomposition field of P1 is K.

13.13 Let H be a subgroup of G, and let KH be the fixed field of H. Then Pi and
Pj divide the same prime ideal in KH if and only if Pj = Pσ

i for some σ ∈ H.

13.14 Determine the ramification subgroups for the prime above p in Q(ζp)
1. directly from the definition;
2. from the theory.
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13.15 Let K = Q(ζ) for ζ = ζm; show that F = Q(ζ + ζ−1) is a subfield of F with
(K : F ) = 2, and that is is the fixed field of the subgroup H of Gal (K/Q)

corresponding to the group H = {±1 mod m}.
Also show that a prime splits completely in F/Q if and only if p ≡ ±1 mod m.

13.16 Let K/k be a normal extension, and let ∞ be an infinite prime in k below
∞. Define decomposition and inertia subgroups for these infinite primes, and
show that ∞ is ramified in K/k if and only if #T = 2. Also show that Z = T ,
so infinite primes do not have a nontrivial inertia degree.

13.17 Show that the extension K = Q(
p

2 +
√

2 ) is a quartic cyclic extension of

Q, and that its Galois group is generated by σ :
p

2 +
√

2 7−→
p

2−
√

2.
Show that primes p ≡ 3, 5 mod 8 are inert, and compute their Frobenius
automorphism (it must be σ or σ3, but which?).
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14. Frobenius Density

The first “density theorem” in number theory was Dirichlet’s theorem that
primes p ≡ a mod m, where gcd(a,m) = 1, have “Dirichlet density” 1

φ(m) .
Dirichlet also showed that primes represented by a quadratic form Ax2 +
Bxy + Cy2 with nonsquare discriminant B2 − 4AC have a positive density.
Kronecker later conjectured that, in modern language, primes splitting com-
pletely in an extension K/Q have Dirichlet density 1

(N :Q) , where N is the
normal closure of K/Q.

In this chapter we will explain how Chebotarev’s density theorem contains
Dirichlet’s and Kronecker’s theorems as special cases, but we will prove a
weaker version only, namely the density theorem of Frobenius.

14.1 Frobenius and his Density Theorem

Kronecker’s conjectures on the existence of the Dirichlet densities Dj were
proved by Frobenius. Actually Frobenius proved something slightly stronger:
he did not just count the number of linear factors, but studied the splitting
type of a polynomial. A polynomial of degree 5 with exactly one root modulo
p splits either into a linear factor and an irreducible quartic, or into a linear
and two irreducible quadratic polynomials over Fp. We denote these types of
splitting by (1, 4) and (1, 2, 2), respectively, and will call them decomposition
types

As examples, consider the polynomials f(X) = X4−X2−1 with discrim-
inant disc f = −400, and g(X) = X4 −X2 + 1 with disc g = 144. Factoring
them over a few finite fields Fp produces the following results:
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p X4 −X2 − 1 X4 −X2 + 1

2 (X2 +X + 1)2 (X2 +X + 1)2

3 X4 −X2 − 1 (X2 + 1)2

5 (X2 + 2)2 (X2 + 2X − 1)(X2 − 2X − 1)

7 X4 −X2 − 1 (X2 + 2)(X2 + 4)

11 (X + 2)(X − 2)(X2 + 3) (X2 + 5X + 1)(X2 − 5X + 1)

13 (X2 + 2X + 8)(X2 − 2X + 8) (X + 2)(X + 6)(X + 7)(X + 11)

The reduction modulo 7 shows that f is irreducible in Z[X]. On the other
hand, no matter how far we extend the calculations for g, we will not find
any prime p for which g is irreducible modulo p. What is going on?

It is easy to see that the decomposition type (1, 3) cannot occur for f or
g. In fact, assume that F (X) = r(X)s(X) splits into a linear factor r and a
cubic factor s in Fp[X]; writing r(X) = X − a we see that F (a) = 0 in Fp.
But F (X) = F (−X) for F = f, g, hence if they have a linear factor modulo
p, then they actually must have two.

In order to show that the decomposition type (4) cannot occur for g
we recall Dedekind’s Theorem 5.5; since the splitting field of g is Q(ζ12) =
Q(i,
√
−3 ), and since there are no inert primes in biquadratic extensions, the

decomposition type (4) cannot occur for g.
Our discussion so far suggests that decomposition types for a polynomial

f are connected with the Galois group of f , which by definition is the Galois
group of its splitting field. Numerical experiments suggest that primes with
given decomposition type have a Dirichlet density, and that these densities
do not depend on f but only on its Galois group.

For polynomials of degree 4, these experiments lead to the results in Table
14.1. The symbols in the left column of Table 14.1 denote the symmetric group
of order 24, the alternating group of order 12, the dihedral group of order 8,
Klein’s four group and the cyclic group of order 4, respectively, and the other
columns give the conjectured densities.

Gal (N/Q) (4) (1, 3) (2, 2) (1, 1, 2) (1, 1, 1, 1)

S4
1
4

1
3

1
8

1
4

1
24

A4 0 2
3

1
4

0 1
12

D4
1
4

0 3
8

1
4

1
8

V4 0 0 3
4

0 1
4

C4
1
2

0 1
4

0 1
4

Table 14.1. Densities of Decomposition Types for Quartic Polynomials
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Density of Primes

Is there a simple formula for these densities? Clearly the table suggests that
the density of primes that split completely is the inverse of the order of the
Galois group: 1

#G . But this is just Kronecker’s density theorem, or rather its
Corollary 8.3.

The entries for the abelian groups can be proved using Dirichlet’s theorem,
but the non-abelian cases seem quite mysterious. Since the densities seem to
depend on the Galois group of f , it is quite natural to look for such a formula
in invariants attached to this group.
The Classical Point of View. Let us first briefly discuss the classical ap-
proach. In Frobenius’ times, Galois theory was a theory of Galois groups
attached to polynomials; nowadays we think of Galois groups as being at-
tached to field extensions. The connection is this: for a polynomial f ∈ Q[X]
of degree n, let N denote its splitting field. The Galois group of f is, by def-
inition, G = Gal (N/Q). This group G permutes the roots of the polynomial
f , and thus can be interpreted as a subgroup of the permutation group Sn.
Now permutations can be written as products of disjoint cycles: if n = 4,
the permutation (12)(34) switches the first and second, as well as the third
and the fourth root, and is the product of two cycles of lenght 2; to this
permutation we therefore attach the cycle pattern (2, 2).

These cycle patterns attached to elements of G are, however, not the right
ones: for understanding the decomposition types of polynomials mod p we
have to consider the Galois group of the polynomial f ∈ Fp[X], where f
denotes the reduction of f mod p. The Frobenius automorphism permutes
the roots of f , and so each pair (f, p) determines a cycle pattern. Galois
theory for finite fields predicts that the cycle pattern attached to (f, p) is the
same as the decomposition type of f mod p.

Here comes

Theorem 14.1 (Frobenius Density Theorem I). The set of primes p for
which an irreducible polynomial with Galois group G has a given decompo-
sition type (f1, . . . , fg) has Dirichlet density t

n , where t is the number of
elements σ ∈ G with cycle pattern (f1, . . . , fg).

As an example, consider the cyclic group C4. It is generated by the
permutation σ = (1234), and we have σ2 = (13)(24), σ3 = (1432), and
σ4 = (1)(2)(3)(4). Thus there are two elements (namely σ and σ3) with cycle
pattern (4), and one for each of the patterns (2, 2) and (1, 1, 1, 1).
The Modern Point of View. Now let us discuss the modern approach.
Let f be an irreducible polynomial in Z[X], with splitting field N and Galois
group G = Gal (N/Q). Any root α of the polynomial f determines a quartic
number field K = Q(α); let N/Q be the normal closure of K/Q. Let H denote
the subgroup of G whose fixed field is K.

Thus the polynomial f provides us with the fields K and N , and with the
subgroup H of G. How do the primes p fit in? For every prime p that does
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not ramify in N , let P denote a prime ideal in N above p, and let φ =
[N/Q

P

]
denote the associated Frobenius automorphism. The prime p determines φ
only up to conjugates; in other words: p determines the conjugacy class [φ],
which consists of all elements in G that are conjugate to φ, i.e., that have the
form σ−1φσ for σ ∈ G.

We will now construct a cycle pattern attached to these purely group
theoretical data. To this end we consider the coset decomposition

G = σ1H ∪ · · · ∪ σkH

of G into disjoint left cosets modulo H. The Frobenius φ ∈ G permutes this
decomposition by sending σjH to φσjH. Each coset σH determines an orbit,
which consists of the cosets

σH, φσH, . . . , φt−1σH,

where t is the smallest positive integer for which φtσH = σH. Clearly the
cycle length t divides the order of the Frobenius.

Finally we partition G into orbits of cosets, and the lengths tj of these
orbits define a cycle pattern (t1, . . . , tg).

Example. Consider a normal extension L/Q with Galois group G ' S3 =
〈ρ, τ : ρ3 = τ2 = 1, τρτ = σ2〉. This group has order 6, and every element
can be written uniquely in the form ρaτ b with a ∈ {0, 1, 2} and b ∈ {0, 1}.
The subgroup H = 〈τ〉 fixes a nonnormal cubic subfield K of L, and the
corresponding coset decomposition is G = H ∪ ρH ∪ ρ2H.

If σ = 1, each cycle contains exactly one coset. If σ = ρ of σ = ρ2,
there is one cycle consisting of all three cosets. If σ = τ , then τH = H,
τρH = {τρ, τρτ} = {ρ2τ, ρ2} = ρ2H and τρ2H = ρH. Thus the action of
τ produces an orbit {H} of cycle lenght 1, and an orbit {ρH, ρ2H} of cycle
length 2.

We next address the question how the cycle pattern depends on φ.

Lemma 14.2. The automorphisms φ and φk determine the same cycle pat-
tern if gcd(k, n) = 1, where n is the order of φ.

Proof. If φtσH = σH, then (φk)tσH = σH (just apply φt repeatedly). Thus
the cycle length of φk is ≤ t. But since φ is also a power of φk (this follows
from gcd(k, n) = 1 and Bezout), we also have the opposite inequality.

Now we can show

Proposition 14.3. Let n denote the order of φ. Then every automorphism
of the form τ−1φkτ with gcd(k, n) = 1 produces the same cycle pattern.

Proof. By Lemma 14.2, we may assume that k = 1, and claim that the cycle
pattern produced by τ−1φτ is a permutation of the cycle pattern attached to
φ. In fact, let t denote the cycle length of the cycle to which τσH belongs;
then φtτσH = τσH, hence (τ−1φτ)σH = τ−1φtτσH = σH.
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This proposition suggests introducing the division Div(φ) of an element
φ ∈ G: it is the set of all σ ∈ G with the property that σ = τ−1φkτ for some
τ ∈ G and an exponent k coprime to the order of σ.

Example 1. If G = 〈φ〉 has order 8, then

• Div(1) = {1};
• Div(σ) = {σ, σ3, σ5, σ7};
• Div(σ2) = {σ2, σ6};
• Div(σ4) = {σ4}.

Example 2. If G = 〈φ〉 is cyclic of p2, then

• Div(1) = {1};
• Div(σ) = {σk : gcd(k, p) = 1};
• Div /(σp) = {σkp : gcd(k, p) = 1}.

These are exactly the sets we came across in the proof of Cor. 8.8.

At this point it is not difficult to conjecture the following

Theorem 14.4 (Frobenius Density Theorem). Let L/K be a normal exten-
sion, and let D be a division in G = Gal (L/K). Let S denote the set of
unramified prime ideals p in K with the property that the prime ideals P

above p in L satisfy
[L/K

P

]
∈ D. Then S has Dirichlet density

δ(S) =
#D
#G

.

The special case D = Div(1) gives us back Kronecker’s density theorem,
which will in fact be used in the proof of Theorem 14.4.

Corollary 14.5. Let L/K be a cyclic extension of degree n. Then the set S of
prime ideals p in K that are inert in L/K has Dirichlet density δ(S) = φ(n)

n .

Note that φ(n) > 1 for n > 2, so for cyclic extensions of degree > 2 there
are more inert primes than primes that split completely. If n = p is prime,
then φ(p) = p− 1, and we get back Cor. 8.7.

A more general formulation is the following:

Corollary 14.6. Let L/K be an abelian extension, and let σ ∈ G =
Gal (L/K) be an element with order n. Then the set

S =
{

p ∈ OK :
[L/K

P

]
∈ Div(σ)

}
has Dirichlet density δ(S) = φ(n)

#G .

Proof. Since G is abelian, Div(σ) contains only the generators of 〈σ〉, and
there are exactly φ(n) of them.



162 14. Frobenius Density

Is the Frobenius Density Theorem the best we can hope for? Let L/K be
a normal extension with Galois group G = Gal (L/K), and p - disc (L/K)
an unramified prime. For each prime ideal P above p we have the Frobenius
automorphism

[L/K
P

]
∈ G. The question whether there exist infinitely many

prime ideals p with a given Frobenius does not make sense, however, because
the Frobenius automorphism is determined by p only up to conjugacy. We
should therefore ask whether there are infinitely many prime ideals p whose
Frobenius automorphisms lie in some conjugacy class of G.

For σ ∈ G let

[σ] = {τ ∈ G : τ = ρ−1σρ for some ρ ∈ G}

denote the conjugacy class of σ. The conjugacy class [1] of the unit element
only consists of one element, namely the unit element 1; more generally, if
G is abelian, then each conjugacy class only contains one element. If G is
nonabelian, however, some conjugacy classes might be quite large.

The natural conjecture that generalizes Frobenius’ theorem thus is

Theorem 14.7 (Chebotarev’s Density Theorem). Let K/Q be a normal
extension, and fix a σ ∈ G = Gal (K/Q). Let S denote the set of unrami-
fied primes p with the property that the prime ideals p above p in K satisfy[K/Q

p

]
∈ [σ]. Then S has Dirichlet density

δ(S) =
#[σ]
#G

.

Since every division is a union of conjugacy classes, Chebotatev’s result
is stronger than that of Frobenius. It also contains Dirichlet’s theorem as
a special case: for K = Q(ζm), it says that the primes p whose Frobenius
automorphism (K/Q

p ) (we use the Artin symbol since the extension K/Q is
abelian) lies in the conjugacy class of some σa (which consists of just σa),
that is, the primes p ≡ a mod m, have Dirichlet density 1

(K:Q) = 1
φ(m) .

Actually the Chebotarev density theorem can be seen as the common
generalization of the density theorems of Frobenius and Dirichlet.

In this chapter we will prove the Frobenius density theorem; Chebotarev’s
result is most easily derived once we have Artin’s reciprocity law at our
disposal.

14.2 Group Theoretical Preliminaries

Let us start by recalling two basic definitions from group theory. The cen-
tralizer of an element σ ∈ G is the subgroup CG(σ) = {τ ∈ G : στ = τσ}
of all elements that commute with σ; the condition στ = τσ is equivalent to
the vanishing of the commutator [σ, τ ] = σ−1τ−1στ . If H is a subgroup, we
define CG(H) = {τ ∈ G : [τ, σ] = 1 for all σ ∈ H}.
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The normalizer NG(H) of a subgroup H of G is defined as the subgroup
NG(H) = {σ ∈ G : σH = Hσ}. If H = 〈σ〉, then CG(σ) = NG(H). In
general, CG(H) is a normal subgroup of NG(H).

Lemma 14.8. Let H be a subgroup of G; then (G : NG(H)) is the number
of different conjugates of H.

Proof. Let Σ = {τ−1Hτ | τ ∈ G} denote the set of conjugates of H, and
define a map f : G −→ Σ by f(τ) = τ−1Hτ . Then f is onto, and elements
in the same coset modulo NG(H) have the same image:

ρ−1Hρ = τ−1Hτ ⇐⇒ τρ−1Hρτ−1 ∈ H
⇐⇒ ρτ−1 ∈ NG(H)
⇐⇒ ρNG(H) = τNG(H).

Thus f induces a bijection between the cosets of G/NG(H) and the elements
of Σ.

This result allows us to derive a formula for the number of elements in a
division:

Lemma 14.9. Let σ be an element of a group G, and let H = 〈σ〉. Then
# Div(σ) = φ(n)(G : NG(H)).

Proof. Consider the map ψ : (Z/nZ)× × G/NG(H) −→ Div(σ} defined by
ψ(m, τ) = τ−1σmτ . Clearly ψ is surjective; it remains to show that it is
injective. Assume therefore that ψ(m, τ) = ψ(k, ρ); this means τ−1σmτ =
ρ−1σkρ, hence ρτ−1σmτρ−1 = σk. But since both σm and σk generate H,
this implies ρτ−1Hτρ−1 = H, hence ρNG(H) = τNG(H). Thus we may
assume that ρ = τ , and then m = k follows immediately.

Unfortunately, this simple proof does not seem to work since the map ψ
is not well defined.

todo: explain the proof by Janusz.

14.3 Prime Ideal Decomposition in Nonnormal
Extensions

Let K ⊆ F ⊆ L be a tower of number fields such that L/K is normal with
Galois group G. Let H = Gal (L/F ) be the subgroup of G associated to F ,
let P be prime ideal in L, and set q = P ∩ F and p = P ∩K. In this section
we will see how to compute the prime ideal decomposition of p in F by using
information about the Frobenius automorphism

[L/K
P

]
and the subgroup H

of G.
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1 L P

H F q

G K p

Our next theorem will show that primes p with Frobenius
[L/Q

P

]
= τ

(these primes have inertia degree 2 in L, hence split as pOL = PP′P′′) have
decomposition pOK = qq′, where q is a prime ideal of degree 1 and q′ a prime
ideal of degree 2.

Theorem 14.10. Let P be a prime ideal in OL above p in OK , and assume
that P is unramified over p. Let σ =

[L/K
P

]
be the Frobenius automorphism

of P over K, and assume that σ has cycles of length t1, . . . , tg when acting
on the cosets of G/H. Then pOF = q1 · · · qg for prime ideals qj = σj(P)∩F
with inertia degrees fj = tj.

Proof. The qj clearly are prime ideals. We claim that they are distinct. As-
sume therefore that qi = qj ; then σi(P) and σj(P) are two primes in L
above qi. Since H acts transitively on these primes, there is a τ ∈ H such
that Pσjτ = Pσi . But then σjτσ

−1
i ∈ Z(P|p). Since Z/T is cyclic and P is

unramified, we deduce that Z(P|p) is cyclic and generated by the Frobe-
nius φ =

[L/K
P

]
. Thus σjτσ

−1
i = φk for some k, and this implies that

σjH = φkσiH. Thus σjH and σiH are in the same cycle, hence i = j.
Next we claim that fj = f(qj |p) ≥ tj . Assuming this for the moment, let

us see why this implies equality: since tj denotes the number of cosets of H
in the j-th cycle, t1 + . . .+ tg = (G : H); on the other hand, f1 + . . .+ fg =
(F : K), and Galois theory tells us (G : H) = (F : K). But then

∑
tj =

∑
fj

implies that none of the inequalities fj ≥ tj can be strict.
For a proof of fj ≥ tj , we fix q = Pj , and write σ := σj , f = fj , and

t = tj ; then we observe that
[L/F

P

]
= φf , hence

[L/F
Pσ

]
= σ−1

[L/F
P

]
σ =

σ−1φσ = σ−1φfσ. But clearly
[L/F

Pσ

]
∈ H, and so σ−1φfσ ∈ H as well. But

this is equivalent to φfσ = σH, hence the cycle length t of σH divides f .

This theorem immediately implies

Corollary 14.11. The number of primes PF in F above p with f(PF |p) = 1
is equal to the number of cosets Hσj for which σ−1

j Z(P|p)σj ∈ H.

Proof. In the proof of Thm. 14.10, Z(P|p) = 〈φ〉, and f(q|p) = 1 was seen
to be equivalent to σ−1φσ ∈ H. Since φ generates the decomposition group,
the claim follows.

For the proof of the Frobenius density theorem we also will need the
following
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Lemma 14.12. Let L/K be a Galois extension with Galois group G, and
let p be an unramified prime ideal in OK . Then

[L/K
P

]
∈ Div(σ) for some P

above p if and only if there is a prime ideal P′ | p such that
[L/K

P′

]
generates

〈σ〉.

Proof. Assume that
[L/K

P

]
∈ Div(σ); then there is a τ ∈ G such that

τ−1
[L/K

P

]
τ = σm for some m coprime to the order n of σ. Now put P′ = Pτ

and observe that
[L/K

Pτ

]
= τ−1

[L/K
P

]
τ .

Conversely, assume that
[L/K

P′

]
generates 〈σ〉. Then

[L/K
P′

]
= σm for some

m coprime to n, and this implies
[L/K

P′

]
∈ Div(σ).

14.4 The Proof of Frobenius’ Density Theorem

Consider the division D = Div(σ) for some σ ∈ G. We will prove the density
theorem by induction on the order n of σ. If n = 1, then σ = 1, hence S is the
set of primes that split completely in K/Q. By Kronecker’s density theorem,
δ(S) = 1

#G = #[1]
#G .

Now assume that σ has order n > 1, and that the theorem holds for all
elements of order d | n. We introduce the following notation:

• td = # Div(σd);
• Sd is the set of prime ideals p unramified in L such that there is a P | p

in OL for which
[L/K

P

]
generates 〈σ〉.

By induction assumption we know δ(Sd) = td
#G for all divisors d | n with

d > 1.
Now let H = 〈σ〉 and consider the fixed field F of H. Let SF denote the

set of primes PF with f(PF |p) = 1.

Lemma 14.13. We have p ∈ Sd for some d | n if and only if there is a
prime PF ∈ SF above p.

Proof. Let P be a prime above p in L. By Cor 14.11, PF = P∩F has inertia
degree 1 over p if and only if there is a τ ∈ H such that τ−1Z(P|p)τ ⊆ H.
Now τ−1Z(P|p)τ = Z(Pτ |p), so this condition is equivalent to the existence
of a prime P′ above p with Z(P′|p) ⊆ H. Since H is cyclic and generated by
σ, we have Z(P′|p) ⊆ H if and only if Z(P′|p) = σd for some d | n

For p ∈ Sd let n(p) denote the number of q ∈ SF above p. If q is such
a prime, then f(q|p) = 1, hence NF/Kq = p and NF/Qq = NK/Qp. Since∑
Np−s ∼ − log(s − 1) and since

∑
Nq−s is bounded for prime ideals q

outside of SF , we deduce that
∑

q∈SF
Nq−s ∼ − log(s− 1).

Next
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∑
q∈SF

Nq−s ∼
∑
d|n

∑
p∈Sd

∑
q|p,q∈SF

Nq−s =
∑
d|n

∑
p∈Sd

n(p)Np−s.

Here ∼ comes from the fact that we had to throw out the finitely many
ramified prime ideals above p.

Lemma 14.14. Fix a prime ideal p ∈ Sd. Then

n(p) = (NG(〈σd〉) : 〈σ〉).

Proof. We know that n(p) is the number of cosets τH such that σdτH = τH.
This condition is equivalent to τ−1σdτ ∈ H = 〈σ〉, and since H is cyclic, even
to τ−1σdτ ∈ 〈σd〉. But this is equivalent to τ ∈ NG(〈σd〉).

This allows us to write

− log(s− 1) ∼
∑
d|n

∑
p∈Sd

n(p)Np−s =
∑
d|n

(NG(〈σd〉) : 〈σ〉)
∑
p∈Sd

Np−s;

using the induction assumption this becomes

∼ −
( ∑

1 6=d|n

(NG(〈σd〉) : 〈σ〉)td
#G

)
log(s− 1)

+ (NG(H) : H)
∑
p∈S1

Np−s.

But now td = φ(n/d)(G : NG(〈σd〉)) and t = φ(n)(G : NG(H)), hence∑
p∈S1

Np−s ∼
(
− 1 +

1
n

∑
1 6=d|n

φ(n/d)
)

nt

φ(n)#G
log(s− 1).

Since
∑
d|n

φ(d) = n, the claim follows.

Notes

The section on the density of primes for which a polynomial has a given split-
ting behaviour owes much to the article [SL1996] by Lenstra & Stevenhagen.

Exercises

14.1 Derive Corollary 14.5 from the density theorem of Frobenius.

14.2 Generalize Cor. 8.8 to cyclic extensions of prime power degree pn.
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14.3 Prove directly that in a cyclic quartic extension K/Q, inert primes have den-
sity 1

2
. (Hint: consider the inertia subfield).

14.4 Inside of S4, consider the subgroup A4 of even permutations. Show that A4

contains V4 = {(1)(2)(3)(4), (12)(34), (13)(24), (14)(23)} as a (normal) sub-
group, and that A4 \ V4 consist of the 8 elements of the form (abc). Compute
the cycle patterns of these permutations, and use the classical version of the
Frobenius density theorem to explain the entries for A4 in Table 14.1.

14.5 Show that NG(H) = G if G is abelian.

14.6 Compute the divisions of D4 = 〈S, T | S4 = T 2 = 1, TST = S−1〉, the
dihedral group of order 8.

1

"""""

%
%
% e

e
e

bbbbb
〈S2T 〉 〈T 〉 〈S2〉 〈ST 〉 〈S3T 〉

e
e
e %

%
% e

e
e %

%
%

〈S2, T 〉 〈S〉 〈S2, ST 〉

e
e
e %

%
%

〈S, T 〉

L

"""""

%
%
% e

e
e

bbbbb
K′

1 K1 K K2 K′
2

e
e
e %

%
% e

e
e %

%
%

k1 k k2

e
e
e %

%
%

Q

14.7 Let L/Q be a normal extension with Galois group G ' D4. Discuss the pos-
sible factorizations of unramified primes p in L, and deduce how they split in
the non-normal subfields K1 and K2 of degree 4.

14.8 Use Theorem 14.10 to prove that if a prime ideal p splits completely in an
extension L/K, then it also splits completely in the normal closure of L/K.
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Takagi’s Class Field Theory
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15. Ideal Groups

Hilbert class field theory is a theory of abelian unramified extensions. Takagi
showed that Hilbert’s results can be generalized to give a similar description
of all abelian extensions of a number field. In order to reach this goal he had
to replace the ideal class groups in Hilbert’s theory by bigger groups, namely
Weber’s generalized class groups.

We have already seen that the decomposition law in cyclotomic extensions
is very similar to the one for Hilbert class fields; Takagi’s class field theory is
a generalization of both of these to arbitrary number fields.

15.1 Generalized Class Groups

Consider a number field K. A modulus is a formal product m = a∞1 . . .∞t

of an integral ideal a in OK and some real infinite places ∞j corresponding
to real embeddings σj : K −→ R. We call m0 = a the finite, and m∞ =
∞1 . . .∞t the infinite part of m.

Next we introduce congruences modulo m. We write α ≡ 1 mod a if there
exist β, γ ∈ OK with α = β/γ such that (β, a) = (γ, a) = OK and β ≡
γ mod a. For a real infinite prime ∞j we say that α is coprime to ∞j if
α 6= 0, and that

α ≡

{
+1 mod∞j if σj(α) > 0,
−1 mod∞j if σj(α) < 0.

Thus the nonzero elements of OK (or of K) fall into two residue classes
modulo ∞j , and the map α 7−→ sign(σj(α)) induces an isomorphism

(OK/∞j)× ' Z/2Z

for every real infinite prime.
The classical Chinese Remainder Theorem states that if a1, . . . , ar are

coprime ideals, then for all αj ∈ OK the system of linear congruences α ≡
αj mod aj has a unique solution modulo a = a1 · · · ar. This can be extended
to include congruences modulo infinite primes:

Proposition 15.1 (Chinese Remainder Theorem). Let a be an integral ideal
and ε1, . . . , εt ∈ {±1}; then for any β ∈ OK there exists an α ∈ OK such
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that α ≡ β mod a and α ≡ εj mod∞j for all j = 1, 2, . . . , t. In particular,
for m = a∞1 · · ·∞t we have

(OK/m)× = (OK/a)× ×
t∏

j=1

(OK/∞j)×,

and so Euler’s phi function defined by Φ(m) := #(OK/m)× has the value
Φ(m) = 2tΦ(a).

Imitating the classical proofs shows that Φ(pn) = (Np− 1)(Np)n−1, and
the classical Chinese Remainder Theorem shows that Φ(ab) = Φ(a)Φ(b) for
coprime ideals a, b.

For the reduction to the classical Chinese Remainder Theorem we use the
following

Lemma 15.2. Let K be an algebraic number field; let σ1, . . . , σr denote the
r real, and σr+1, . . . , σr+2s the complex embeddings ordered in such a way
that σr+s+j is the complex conjugate of σr+j.

Given some ε > 0 any set of numbers γ1, . . . , γr ∈ R and γr+1, . . . , γr+s ∈
C there exists α ∈ K such that |σj(α)− γj | < ε for all 1 ≤ j ≤ r + s.

Proof. Let α1, . . . , αn be a Q-basis of K. Then the system of linear equations

γj =
n∑
i=1

xiα
(j)
i

has a unique solution since its determinant is the discriminant of the αj , which
is nonzero since they form a basis of K. Taking complex conjugates shows
immediately that the xj are all real. Since linear functions are continuous,
we can find rational numbers ai sufficiently close to xj such that

∣∣∣ n∑
i=1

aiα
(j)
i − γj

∣∣∣ < ε,

hence α =
∑n
i=1 aiα

(j)
i is an element of K with the desired properties.

In particular we can find α ∈ K with given signature (the signature of
α ∈ K is the vector (sign (σ1α), . . . , sign (σrα)) giving the signs of the r real
conjugates of α): given ε1, . . . , εr = ±1, simply put γj = εj for j = 1, . . . , r
and choose the γj with j > r arbitrarily (but nonzero). Since multiplication
by a natrual number n > 0 does not change the signature, this implies

Corollary 15.3. There exist α ∈ OK with given signature.

Now we can give the
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Proof of Prop. 15.1. Choose γ ∈ OK such that γ ≡ εj mod∞j , and let
a = Na denote the norm of a. Then consider α = β + naγ for n ∈ N. If n is
large enough, α and naγ will have the same signature, hence α ≡ εj mod∞j .
Moreover, we clearly have α ≡ β mod a since a ≡ 0 mod a. This implies the
first claim.

The natural projection sending

α mod m 7−→ (α mod m0, α mod∞1, . . . , α mod∞t)

is clearly a group homomorphism, and by what we have shown it is surjective.
The kernel consists of all residue classes α mod m such that α ≡ 1 mod a and
α ≡ 1 mod∞j ; the only such residue class is, by definition(!), the residue
class 1 mod a∞1 · · ·∞t.

Using these congruences we can define the following multiplicative groups
of ideals:

D{m} = {a ∈ IK : a + m0 = OK},
H{m} = {a ∈ D{m} : a = αOK},

H(1){m} = {a ∈ H{m} : a = αOK for some α ≡ 1 mod m}.

Thus D{m} is the group of all ideals coprime to m, H{m} its subgroup of
principal ideals coprime to m, and H(1){m} the group of principal ideals
generated by elements ≡ 1 mod m.

If we need to express the reference to the base field K, we write DK{m}
instead of D{m} etc. The factor group ClK{m} = D{m}/H(1){m} is called
the ray class group modulo m of K. For any group H with H(1){m} ⊆ H ⊆
D{m} we call I = H/H(1){m} a generalized class group.

Some special cases of such groups are well known to us:

• D{(1)} is the group of fractional ideals in K, H{(1)} is the group of all
fractional principal ideals, and ClK{(1)} = Cl(K) is the class group of
K in the usual (wide) sense.

• D{(∞)} = D{(1)}, but H{(∞)} is the subgroup of principal ideals in
the strict sense, and ClK{∞} = Cl+(K) is the class group of K in the
strict (narrow) sense.
• ClQ{(m)} ' (Z/mZ)×/{±1};
• ClQ{m∞} ' (Z/mZ)×.

Our first aim is to show that the usual ideal class group is contained in
ClK{m} as a factor group; to this end we need

Lemma 15.4. Let m be an integral ideal in OK . Then any ideal class in
Cl(K) contains an ideal coprime to m.

Proof. Let c−1 = [a], and let p1, . . . , pt be the prime ideals occurring in the
factorization of am, and write a = pa1

1 · · · p
at
t . Pick elements αi ∈ pai

i \ pai+1
i ,
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and use the Chinese Remainder Theorem to find an α ∈ OK with α ≡
αi mod pai+1

i for i = 1, . . . , t. Then (α) = ac for some integral ideal c coprime
to b (in fact, the exponent of pi in (α) and a is the same, hence no pi can
divide c). Since c ∈ [a]−1 = c, this proves our claim.

Now we get

Proposition 15.5. For every modulus m, there is an exact sequence

1 −−−−→ H{m} −−−−→ D{m} φ−−−−→ Cl(K) −−−−→ 1.

Proof. Let a be an ideal coprime to m, and set φ(a) = [a] ∈ Cl(K). This is a
group homomorphism with kernel H{m}, and it is surjective by Lemma 15.4:
given any ideal class c ∈ Cl(K) there is an ideal b ∈ c coprime to m0; clearly
c = φ(b).

Since φ is trivial on H(1){m} and D{m}/H(1){m} = ClK{m}, the exact
sequence in Proposition 15.5 can be written as

1 −−−−→ H{m}/H(1){m} −−−−→ ClK{m} −−−−→ Cl(K) −−−−→ 1.

In particular this shows that the class group is a factor group of the ray class
group for every choice of m.

Now we turn to the factor group H{m}/H(1){m}; let E denote the unit
group of OK , and E(1)

m its subgroup consisting of all units ε ≡ 1 mod m.

Proposition 15.6. For every modulus m, there is an exact sequence

1 −−−−→ E/E
(1)
m −−−−→ (OK/m)×

ψ−−−−→ H{m}/H(1){m} −−−−→ 1.

Proof. Define ψ by mapping α mod m to the ideal class (α)H(1){m}. Then
kerψ consists of all classes β mod m such that (β) = (α) for some α ≡
1 mod m, that is, of all β for which there is a unit ε ∈ Ek such that βε−1 = α
and α ≡ 1 mod m. In particular, β ≡ ε mod m, and we see that the kernel
consists of residue classes generated by units, that is, of the image of the unit
group E under the homomorphism E −→ (OK/m)× which maps a unit ε
to its residue class modulo m. The other exactness assertions follow just as
easily.

Note that Cl{m} is a group extension of Cl(K) by (OK/m)×/(E/E(1)
m ),

that is, there is an exact sequence

1 −−−−→ (OK/m)×
/
(E/E(1)

m ) −−−−→ Cl{m} −−−−→ Cl(K) −−−−→ 1

found by combining the preceding two exact sequences. Since both (OK/m)×

and Cl(K) are finite, so is the ray class group Cl{m}, and the ray class number
hK{m} := # ClK{m} is given by the formula

hK{m} = h(K)
Φ(m)

(E : E(1)
m )

.

Examples of computations of ray class numbers are given in Exercise 3.
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15.2 Takagi’s Class Field Theory

To any finite extension L/K of number fields and any modulus m in K we
can associate the ideal group

HL/K{m} = {a ∈ DK{m} : a = (α)NL/KA
for A ∈ DL{m} and α ≡ 1 mod m}

= NL/KDL{m} ·H(1){m}.

Thus the ideal group attached to an extension L/K and some modulus m
consists of products of norms from ideals in L coprime to m and principal
ideals generated by elements α ≡ 1 mod m. Clearly

H
(1)
K {m} ⊆ HL/K{m} ⊆ DK{m},

so HL/K{m} is sandwiched between the ideal groups H(1)
K {m} and DK{m};

in particular, it has finite index h{m} = (DK{m} : HL/K{m}). The corre-
sponding class group IL/K{m} = HL/K{m}/H

(1)
K {m} is called the ideal class

group associated to L/K and m.

Examples. Consider any quadratic extension K = Q(
√
d ) of the base field

k = Q, and the modulus m = (4). Then D{m} = {(a) : a ≡ 1 mod 2} =
{(a) : a ≡ 1 mod 4} = H(1){m}, so H(1){m} ⊆ HK/Q{m} ⊆ D{m} implies
in particular that HK/Q{m} = D{m}. In particular, hK/Q{m} = 1 for this
choice of m.

Proposition 15.7. Let K = Q(
√
d ) be a complex quadratic number field

with discriminant d. We claim that hK/Q{m} = 2 for m = d∞.

Proof.

Let us now sketch the main content of Takagi’s class field theory. Using
analytic methods, we will prove

Theorem 15.8 (First Inequality). For every finite extension L/K of number
fields and any modulus m, we have the inequality

hL/K{m} = (ClK{m} : IL/K{m}) ≤ (L : K). (15.1)

Moreover, equality implies that L/K is normal.

An extension L ofK is called a class field ofK to the ideal groupHL/K{m}
if the first inequality is an equality; in this case, m is called a defining modulus
for L/K. If m is a defining modulus for L/K, then so is any multiple of m.
If m1 and m2 are defining moduli for L/K, then so is their greatest common
divisor; hence there always exists a smallest defining modulus fL/K , which
we will call the conductor of L/K.

A few simple examples of class fields over Q can be given right away:
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• Quadratic fields L = Q(
√
d ) with discriminant d are class fields of K =

Q with defining modulus d or |d|∞ according as L is real or complex.
Suppose for simplicity that d > 0; we have to show that IL/Q{d} has
index 2 in (Z/dZ)×, and in view of the first inequality it is sufficient to
prove that this index is at least 2. This will be accomplished by showing
that if (a) is the norm of an ideal in DL{d}, then a ≡ ±x2 mod d for
some x ∈ Z. It is clearly sufficient to prove this for prime values a = p,
and in this case it follows at once from the quadratic reciprocity law and
the fact that p splits if and only if (d/p) = +1.
Note that the occurrence of the quadratic reciprocity law comes as no
surprise since we used the decomposition law for Kummer extensions
L/Q in order to show that L is a class field.
• L = Q(ζm) is a class field with defining modulus m∞: in fact, this follows

if we can prove that IL/Q{m∞} = 1, since ClQ{m∞} ' (Z/mZ)× by
Exercise 1 and hence (ClQ{m∞} : IL/Q{m∞}) = φ(m) = (L : Q).
But NL/Qa is the product of ideals NL/Q p = (pf ), where p > 0 is a prime
and f is defined as the smallest positive integer such that pf ≡ 1 mod m.
In particular, the ideals NL/Q p are generated by integers ≡ 1 mod m∞,
and this shows that NL/QDL{m∞} ⊂ H

(1)
Q {m∞}. Thus HL/Q{m∞} =

NL/QDL{m∞} ·H(1)
Q {m∞} = H

(1)
Q {m∞}, and our claim is proved.

• L = Q(ζm + ζ−1
m ) is a class field with defining modulus (m): a similar

analysis as above immediately shows that NL/QDL{(m)} consists only of
ideals generated by positive integers a ≡ ±1 mod m; replacing a by −a if
necessary we see that NL/QDL{(m)} ⊆ H

(1)
Q {m}, and our claim follows

as above by invoking Exercise 1.
• for a quadratic number field K = Q(

√
d ), its genus field L = K+

gen =
Q(
√
d1, . . . ,

√
dt ) is a class field for defining modulus∞; more exactly we

have IL/K,∞ = Cl+(K)2. Here we have to compute the norms of ideals
in OL to OK . Again it is sufficient to do this for prime ideals; thus let
P be a prime ideal in OL above the prime ideal p in OK . Then we know
that

NL/KP = p ⇐⇒ p splits completely in L/K
⇐⇒ [p] is in the principal genus
⇐⇒ [p] ∈ Cl+(K)2.

This shows that NL/KA = a implies [a] ∈ Cl+(K)2, hence we have the
inclusion IL/K,∞ ⊆ Cl+(K)2, and we can conclude that

(ClK{∞} : IL/K{∞}) = (ClK{∞} : Cl+(K)2)(Cl+(K)2 : IL/K,∞).

Since ClK{∞} = Cl+(K), this implies

(ClK{∞} : IL/K{∞}) ≥ # Cl+gen (K) = (L : K),

and our claim follows from the First Inequality.
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Observe that the First Inequality in this example reduces to the first
inequality of genus theory. The same is true for the Second Inequality
of class field theory mentioned below. What this means is that the fun-
damental inequalities of class field theory have their roots in Gauss’s
Disquisitiones Arithmeticae!

Takagi’s definition of a class field differs slightly from ours since he had
to assume that L/K is normal; Hasse & Scholz have shown that one can
do without the assumption of normality (the proof of the First Inequality
that we have sketched above is theirs), and they also simplified the structure
of Takagi’s proof. In fact they noticed that a completely elementary index
calculation sufficed to deduce the following corollary from Theorem 15.8:

Corollary 15.9. If L is a class field of K, then, for each field F with K ⊆
F ⊆ L, F is a class field of K and L is a class field of F .

Another direct consequence of the First Inequality is

Theorem 15.10 (Uniqueness Theorem). If a class field L to the ideal group
HL/K{m} exists, then L is unique.

A generalization of the Uniqueness Theorem is the following result that
shows that there is a kind of Galois correspondence between ideal groups
defined modulo m and the corresponding class fields:

Theorem 15.11 (Correspondence Theorem). Assume that L and L′ are
class fields for the ideal groups H and H ′ defined modulo some m, respectively.
Then L ⊆ L′ if and only if H ⊇ H ′. Moreover, m is a defining modulus for
LL′ and L ∩ L′, and we have ILL′{m} = IL{m} ∩ IL′{m} and IL∩L′{m} =
IL{m} · IL′{m}.

Here we come across one of the unpleasant drawbacks of Takagi’s class
field theory: if L1 is class field for an ideal group defined modulo m1, and
L2 for a group defined modulo m2, then we can check whether L1 ⊆ L2 only
after realizing L1 and L2 as class groups defined modulo a common defining
modulus m (we can take e.g. m = m1m2; in fact, the lowest common multiple
will do). Moreover, there is no bijection between abelian extensions of K and
generalized class groups unless we identify class groups in the same way as
we identify the subgroup {1 + 8Z, 5 + 8Z} of (Z/8Z)× with the subgroup
{1 + 4Z} of (Z/4Z)×. The technical difficulties connected with the change of
defining moduli vanished into thin air with Chevalley’s introduction of idèles
into class field theory.

After having proved the first inequality, the next step is to show that
abelian fields are class fields. In Takagi’s proof, this is first done only for
cyclic extensions:

Theorem 15.12 (Second Inequality). If L/K is a cyclic extension, then
there exists a modulus m such that (ClK{m} : IL/K{m}) ≥ (L : K).

In particular, cyclic extensions of number fields are class fields.
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Theorem 15.13 (Existence Theorem). Let m be a modulus; then for every
subgroup Im of ClK{m} there exists a unique abelian extension L/K such
that
i) m is a defining modulus for L/K;
ii) Im = IL/K{m}.

The abelian extension L of K with the properties i) and ii) above is called
the class field for the ideal class group Im.

From Corollary 15.9 we can immediately deduce that if L is a class field
of K, then every subgroup of Gal (L/K) is normal. Unfortunately, this does
not suffice to prove that Gal (L/K) is abelian since e.g. the quaternion group
of order 8 shares this property with abelian groups. On the other hand, Hasse
& Scholz have shown that this property, together with the Correspondence
Theorem, is strong enough to imply the desired property:

Theorem 15.14 (Class Fields are Abelian). Let L be the class field for the
subgroup Im of ClK{m}; then L/K is abelian, and

Gal (L/K) ' ClK{m}/IL/K{m} = DK{m}/HL/K{m}.

If IL/K{m} = {1}, then the corresponding class field is called the ray
class field of K modulo m. In the examples of class fields we have given above
we have seen that Q(ζm) and Q(ζm + ζ−1

m ) are ray class fields of Q modulo
m∞ and m, respectively. The ray class fields modulo m = (1) or m = ∞
are called the Hilbert class field of K in the usual (wide) and strict (narrow)
sense, respectively; they will be denoted by K1 and K1

+. The fact that the
ray class field modulo (1) is unramified follows from

Theorem 15.15 (Ramification Theorem). A prime ideal p ramifies in an
abelian extension L/K if and only if p divides the conductor fL/K .

This shows that the ray class field modulo (1) is an abelian and unramified
extension; moreover, it is the maximal extension of K with these properties
because of

Theorem 15.16 (Completeness Theorem). Every finite abelian extension
L/K is contained in the ray class field modulo m for some suitable defining
modulus m. The minimal defining modulus with this property is exactly the
conductor of L/K.

We also note that the Ramification Theorem implies that, for squarefree
m ∈ N, the ray class field Q{m} = Q(ζm+ ζ−1

m ) has conductor m (since each
prime dividing m is ramified) and that Q{m∞} = Q(ζm) has conductor m∞.
Actually, this holds under the weaker assumption that m 6≡ 2 mod 4, but one
has to work harder then.

Theorem 15.17 (Abelian Fields are Class Fields). Every abelian extension
L of a number field K is a class field of K for some suitable ideal group
HL/K{m}.
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This is the theorem that Takagi could hardly believe even after he had
proved it: he spent a long time looking for the mistake before he decided
that his results are correct and published his results. The following theorem
shows how unramified prime ideals split in class fields (and finally proves that
Weber’s and Takagi’s definitions of class fields are equivalent). A slightly more
complicated result holds for ramified prime ideals.

Theorem 15.18 (Decomposition Law). Let L be the class field for the ideal
group HL/K{m} and let p be a prime ideal in OK not dividing m; if pf is
the smallest power of the prime ideal p that is contained in HL/K{m}, then
pOL = P1 · · ·Pg with fg = (L : K).

As an application, consider the field L = Q(ζm + ζ−1
m ); here HL/Q{m} =

{a + mZ : a ≡ 1 mod m}, and according to the Decomposition Law, the
inertia degree f of a prime number p - m is the smallest integer f ≥ 1 such
that pf ≡ ±1 mod m.

Our next result is the “Verschiebungssatz”, sometimes also called elevator
theorem:

Theorem 15.19 (Translation Theorem). Let L/K be a finite abelian exten-
sion of number fields with defining modulus m. Then for any finite extension
F/K, the abelian extension LF/F has defining modulus m, and LF is the
class field of F for the class group

ILF/F {m} = {c ∈ ClF {m} : NL/Kc ∈ IL/K{m}}.

The translation theorem has a very useful corollary:

Corollary 15.20. For any finite extension L/K of number fields, we have

(Cl(K) : NL/K Cl(L)) = (L ∩K1 : K).

Proof. Clearly, K1L/L is an unramified abelian extension, and by Galois
theory it has degree (K1L : L) = (K1 : L∩K1). By the translation theorem,
the extension is the class field to the class group

IK1L/L{(1)} = {c ∈ Cl(L) : NL/Kc = 1} = Cl(L/K),

where the relative class group Cl(L/K) is defined as the kernel of the norm
map NL/K : Cl(L) −→ Cl(K). Thus #NL/K Cl(L) = # Cl(L)/# Cl(L/K),
and since IK1L/L{(1)} has index (K1 : L∩K1) in Cl(L) by the fundamental
inequalities, we find #NL/K Cl(L) = (Cl(L) : IK1L/L{(1)}) = (K1 : L∩K1),
hence (Cl(K) : NL/K Cl(L)) = (K1 : K)/(K1 : L ∩K1) = (L ∩K1 : K) as
claimed.

The results reviewed so far are the main theorems of Takagi’s class field
theory.
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15.3 The Fundamental Inequalities

Exercises

15.1 Show that ClQ{m} ' (Z/mZ)×/{±1} and ClQ{m∞} ' (Z/mZ)×.

15.2 Let K be a number field, and let m and n be moduli such that n | m. Show
that there exists a natural projection Cl{m} −→ Cl{n}. (Hint: Apply the
snake lemma to the diagram

1 −−−−−→ H{m}/H(1){m} −−−−−→ ClK{m} −−−−−→ Cl(K) −−−−−→ 1??y ??y ??y
1 −−−−−→ H{n}/H(1){n} −−−−−→ ClK{n} −−−−−→ Cl(K) −−−−−→ 1

and observe that the maps in the first and the last column are surjective.)
Can you deduce that, for extensions L/K of number fields, (ClK{n} :
IL/K{n}) = (L : K) implies (ClK{m} : IL/K{m}) = (L : K)?

15.3 Verify the following table of ray class numbers for the fields Q(i) and Q(
√

5 ):

m Φ(m) hk{m}
(1) 1 1
(2) 2 1

(2+2i) 4 1
(3) 8 2
(4) 8 2

(3+2i) 12 3
(4+4i) 16 4

(5) 16 4

m Φ(m) hk{m}
∞1∞2 4 1

(2)∞1∞2 12 1
(
√

5 )∞1∞2 16 2
(3) 8 1

(3)∞1 16 1
(3)∞1∞2 32 2

(
√

5 )2 20 1
(
√

5 )3 100 5

Identify the ray class groups in these tables: for K = Q(i), check that K{3} =

K(
√
−3 ), K{4} = K(

√
i ), K{3 + 2i} is the field defined by the polynomial

x3 + (−11 + 10i)x2 + (7 − 4i)x + (3 + 2i), K{4 + 4i} = K(
√
i,
√

1 + i ), and
K{5} = K(ζ5).

For K = Q(
√

5 ), show similarly that the nontrivial ray class fields are given

by K{(
√

5 )∞1∞2} = K(ζ5), K{(3)∞1∞2} = K(ζ3), and K{(5
√

5 )} = KL,
where L is the quintic subfield of Q(ζ25).

15.4 Let p ≡ 1 mod 4 be a prime, and define primary π, π ∈ Z[i] by p = ππ. Put k =
Q(i), L = k{(1 + i)3π} and L′ = k{(1 + i)3π}. Show that LL′ ⊆ k{(1 + i)3p}
and prove equality by computing hk{(1 + i)3p}. Deduce that F = Q(ζ4p) is a
subfield of LL′. Look at how π splits in L and show that LL′/F contains a
cyclic unramified subextension M/F of degree p−1

4
. Generalize this to prime

powers πn.

15.5 Let K/Q be a quadratic extension and fix an integer f ≥ 1. Define the order

Of := {α ∈ OK : α ≡ z mod f for some z ∈ Z, (z, f) = 1}.

Consider the following ideal groups defined modulo f :
• H1

f := H(1){(f)} = {(α) : α ≡ 1 mod f};
• Hf = {(α) : α ∈ Of};
• H = {(α) : (α, f) = 1}; and DK{(f)} = {a : (a, f) = (1)}.
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Now let Ef = Of ∩EK denote the unit group of Of , and put E1
f = {ε ∈ Ef :

ε ≡ 1 mod f}. Show that

(Hf : H1
f ) =

Φ(f)

φ(f) · (E : Ef )
.

The groups Hf/H
1
f are called ring class groups, and the corresponding class

fields are the ring class fields modulo f .
(Hints: Consider the homomorphism ψ : Ef −→ (Z/fZ)× that maps a unit
ε ≡ z mod f to the residue class z·fZ. Conclude that #imψ = (Ef : E1

f ). Next

show the homomorphism π : H/Hf −→ (Z/fZ)×/imπ defined by mapping
an ideal (α) with α ≡ z mod f to the class generated by z · fZ in the quotient
group is a well defined isomorphism. Then use the knowledge about the order
of the ray class group DK{(f)}/H1

f to prove the claim).
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16. Artin’s Reciprocity Law

16.1 Cyclotomic Fields

16.2 Base Change

16.3 Proof of Artin’s Reciprocity Law
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17. The Existence Theorem
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18. Norm Residues and Higher Ramification

18.1 Higher Ramification Groups

One could spend a whole semester studying the constraints the Galois group
puts on the decomposition of primes. The next step now is the introduction
of the higher ramification groups:

Vi(P|p) = {σ ∈ G : ασ ≡ α mod Pi+1 for all α ∈ O}.

Note that V0 = T ; clearly we have the chain of subgroups G ⊇ Z ⊇ T ⊇ V1 ⊇
V2 ⊇ . . . ; it is easy to see that this sequence terminates, i.e., that there is an
index m depending only on K/k such that Vi = 1 for all i ≥ m. Each Vi is a
normal subgroup of Z.

In order to work with these groups, one first shows that if we fix some
π ∈ P \ P2, we have σ ∈ Vm if and only if πσ ≡ π mod pi+1; thus we only
have to check this condition for one element instead of infinitely many.

Proposition 18.1. The factor group T/V1 is isomorphic to a subgroup of
κ(P)×.

Since κ(P) is a finite field, this implies that T/V1 is cyclic and coprime
to Np.

Proposition 18.2. Each factor group Vi/Vi+1 is isomorphic to some sub-
group of κ(P).

This implies that each quotient Vi/Vi+1 is abelian of p-power order. Thus
if we write e = e0p

v for some e0 coprime to p, then (T : V1) = e0 (this is the
tame part of the ramification) and #V1 = pv (the wild part).

In particular, the group Z is solvable, so the part of G that is understood
the least is the piece between Z and G.

The higher ramification groups also determine the exact power of P di-
viding the different. If we put #Vi = pri for all i ≥ 0, then the exponent of
P in the prime ideal factorization of diff (K/k) is given by∑

i≥0

(#Vi − 1) =
∑
i≥0

i(#Vi −#Vi+1).
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Figure 18.1 from Hasse’s lectures displays this information; the exact expo-
nent to which P divides the different of P is the sum of the numbers in the
last column.

Let me also add the following table giving the ramification groups for
quadratic extensions of Q:

decomposition Q KZ KT KV1 KV2 KV3

(d/p) = +1 Q K K K K K

(d/p) = −1 Q Q K K K K

p odd, p | d Q Q Q K K K

p = 2, d ≡ 4 mod 8 Q Q Q Q K K

p = 2, d ≡ 0 mod 8 Q Q Q Q Q K

In the case where p = 2 and 8 | d, we have, in Hasse’s notation, r1 = r2 = 1
and r3 = 0, so the contribution of the prime ideal P above 2 to the different
is P3 (here 3 = 3(2r2 − 2r3)).
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relative
inertia
degree

relative
ramification
index

field
relative

field
degree

contribution
to different

K = KVv+1

KVv

1 prv

• - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - -

•- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

prv (v + 1)(prv − 1)
6

pri+1

?

6

pri

?

6

pr2

?

6

pr1

?

6

e

?

- - - - - - - - - - - - - - KVi+1 • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 pri−ri+1 pri−ri+1 (i+ 1)(pri − pri+1)

- - - - - - - - - - - - - - KVi • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - KV2 • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 pr1−r2 pr1−r2 2(pr1 − pr2)

- - - - - - - - - - - - - - KV1 • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - KT • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 e0 e0 (e− pr1)

- - - - - - - - - - - - - - KZ • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

f 1 f 0

- - - - - - - - - - - - - - F • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 1 g 0

Fig. 18.1. The Prime Ideals below P
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Part IV

Appendix

191





A. Gamma, Theta, and Zeta

A.1 Euler’s Gamma Function

A.2 Jacobi’s Theta Functions

A.3 Riemann’s Zeta Function

A.4 Quadratic Gauss Sums
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B. A Beginner’s Guide to Galois Cohomology

B.1 H1(G, A)

B.2 Ĥ0(G, A)

B.3 Ĥ−1(G, A)

B.4 Galois Cohomology for Cyclic Groups

B.5 Herbrand’s Lemma

B.6 Capitulation

B.7 Ambiguous Ideal Classes
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C. Solutions of Selected Problems

1. Determine (r, s) for pure quartic fields K = Q( 4
√
m ).

Assume that m is not a square (if it is, then (K : Q) | 2, and we know
how to determine (r, s) for these fields). Then the minimal polynomial of
4
√
m is

X4 −m = (X − 4
√
m )(X + 4

√
m )(X − 4

√
m )(X + 4

√
m ).

If m > 0, the first two roots are real, the last two are not, hence (r, s) =
(2, 1). If m < 0, none of the roots are real, and then (r, s) = (0, 2).
We can also determine the splitting of the infinite primes. In fact, let
m < 0, let α be a root of X4 −m, and consider the two real embeddings
σ1 : α 7−→ + 4

√
m and σ2 : α 7−→ − 4

√
m. Then β = α2 is a square root of

m, and σ1(β) = σ1(α)2 =
√
m ), as well as σ2(β) =

√
m. Thus σ1 and σ2

restrict to the real embedding of k = Q(
√
m ) that send β to +

√
m; the

infinite prime ∞1 of k thus splits into two real infinite primes in K.
The complex embeddings of K, on the other hand, restrict to the real
embedding β 7−→ −

√
m of k; the corresponding real infinite prime in k

thus ramifies in K.

2. Show that r and s do not depend on the choice of α or f : if Q(α) = Q(β),
show that the minimal polynomials of α and β have the same number of
real roots.

Assume that K = Q(α) = Q(β); then any embedding of K into C is
determined by its value on α or β since every element ofK is a polynomial
in α or β with rational coefficients.
Now if σ is an embedding with σ(α) ∈ R, then β = a0 + a1α + . . . +
an−1α

n−1 has image σ(β) = a0 + a1σ(α) + . . . + an−1σ(αn−1), which
is also real. Thus the every real root of the minimal polynomial of α
corresponds to a real root of the minimal polynomial of β, and vice versa.
This implies that both polynomials have the same number of real roots,
and since they have the same degree, they must have the same signature.
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3. Let ω = 3
√
m; compute Tr (a + bω + cω2) and N(a + bω). Find a unit

6= ±1 in Q( 3
√

2 ).
Let us first compute trace and norm using the embeddings ofK. There are
three of them, namely σ1(ω) = 3

√
m, σ2(ω) = ρ 3

√
m, and σ3(ω) = ρ2 3

√
m,

where ρ is a primitive cube root of unity, i.e., a root of x2 + x + 1 = 0.
Then Trω =

∑
σj(ω) = (1+ρ+ρ2)ω = 0, and similarly Tr (ω2) = 0. This

implies Tr (a+ bω + cω2) = aTr (1) + bTr (ω) + cTr (ω2) = 3a. Similarly,
N(a+ bω) = (a+ b 3

√
2)(a+ bρ 3

√
2)(a+ bρ2sqrt[3]2) = a3 + 2b3 since the

mixed terms cancel.
Next let us see how to do it using linear algebra. Choose the Q-basis
1, ω, ω2. Multiplication by α = a+ bω + cω2 is a Q-linear map described
by a 3×3-matrix whose columns represent the coordinates of the images
of the basis elements; thus α ·1 = a+bω+cω2 shows that the first column
has the entries a, b, c. Similarly αω = 2c + aω + bω2 etc. show that the
matrix attached describing multiplication by α is given by

Mα =

a 2c 2b
b a 2c
c b a

 .

Thus Trα = TrMα = 3a and Nα = detMα = a3 + 2b3 + 4c3 − 6abc.
From N(a+ bω) = a3 + 2b3 we easily see that 1− ω is a unit.

4. Deduce from Theorem 5.5 how primes p split in quadratic extensions.
Consider α =

√
m; the index j = (OK : Z[α]) is 1 if m ≡ 2, 3 mod 4, and

j = 2 if m ≡ 1 mod 4. Thus for odd primes p, we can simply work with
the polynomial f(x) = x2 −m.
Assume that p is odd. If p | m, then f(x) ≡ x2 mod p, and pOK = p2

for p = (p,
√
m ). If p - m and f splits as f(x) ≡ (x − a)(x + a) mod p,

then a2 ≡ m mod p; conversely, if a2 ≡ m mod p, then f splits. Thus
pOK = pp′ for p = (p, a−

√
m ) and p′ = (p, a+

√
m ) if (mp ) = +1, and

p is inert if (mp ) = −1.
Now let p = 2. If m ≡ 2 mod 4, we find x2−m ≡ x2 mod 2, hence 2OK =
p2 for p = (2,

√
m ). If m ≡ 3 mod 4, we find x2 −m ≡ (x + 1)2 mod 2,

hence 2OK = p2 for p = (2, 1 +
√
m ). Finally, if m = 4n+ 1, we have to

use the minimal polynomial of ω = 1+
√
m

2 , which is f(x) = x2 + x+n. If
n ≡ 1 mod 2 (equivalently, ifm ≡ 5 mod 8), this polynomial is irreducible
over F2, and hence 2 remains inert in K. If n ≡ 0 mod 2 (i.e., m ≡
1 mod 8), however, f(x) ≡ x(x + 1) mod 2, and we find 2OK = pp′ for
p = (2, ω) and p′ = (2, 1 + ω).

5. Compute the differents of quadratic extensions K = Q(
√
m ) directly from

the definition.

Assume first that m ≡ 2, 3 mod 4; we claim that diff (K) = (2
√
m ).
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Let us first show that (2
√
m ) ⊆ diff (K). This means that Tr α

2
√
m
∈ Z

for all α ∈ OK = Z[
√
m ]. Since the trace is Q-linear, it is sufficient to

prove this for an integral basis of OK , that is, for α = 1 and α =
√
m.

But Tr 1
2
√
m

= Tr ( 1
2m

√
m ) = 0 and Tr

√
m

2
√
m

= Tr 1
2 = 1.

Now for the converse (2
√
m ) ⊇ diff (K). We have to show that if Trαω ∈

Z for all ω ∈ OK , then 2
√
mα ∈ OK . We will show that this follows

already by looking only at ω = 1 and ω =
√
m. Write α = a + b

√
m

for a, b ∈ Q; then Trα = 2a ∈ Z and Trα
√
m = Tr (bm + a

√
m ) =

2bm ∈ Z. But since 2
√
mα = 2bm + 2a

√
m, this implies the desired

2
√
mα ∈ Z[

√
m ].

The case m ≡ 1 mod 4 is taken care of similarly; here we find that
diff (K) = (

√
m ).

6. Let L/K/k be a tower of normal extensions of number fields. Let Q be a
prime ideal in OL, and let P = Q ∩K and p = Q ∩ k denote the prime
ideals in OK and Ok lying below Q. Show that

e(Q|p) = e(Q|P) · e(P|p) and f(Q|p) = f(Q|P) · f(P|p).

From the definition of the ramification indices we have Pe(P|p) ‖ pOK

and Qe(Q|p) ‖ pOL, as well as Qe(Q|P) ‖ POL. Thus Qe(Q|P)e(P|p) is the
exact power of Q dividing pOL, and this implies the first claim.
As for the second, we simply observe

(κ(Q) : κ(p) = (κ(Q) : κ(P))(κ(P) : κ(p).

7. Let K/k be a Galois extension, and assume that p is inert in K/k. Show
that K/k is a cyclic extension.

If p is inert in K/k, then its decomposition group Z = G, and T = 1.
Since Z/T is cyclic, this implies the claim.

8. Abhyankar’s Lemma: Let K1/k and K2/K be disjoint abelian extensions
with Galois group Gal (Ki/k) ' Z/`Z, where ` is a prime 6= p. Show that
if a prime ideal p above p is ramified in both extensions, then the primes
above p are unramified in K1K2/K1 and K1K2/K2.

If p is ramified in K1/k, then it must be completely ramified since ` is
prime and the ramification index divides the degree. Also, the ramifica-
tion index e of P in K1K2 divides `2. If e = `2, then P is completely
ramified, and T = G = Gal (K1K2/K). But since p - `, we must have
V1 = 1, hence T/V1 ' G. But T/V1 is always cyclic, and G is not. Thus
e = `, and this means that the primes above p in K1 and K2 cannot
ramifiy in K1K2/K1 and K1K2/K2, resprectively.
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9. Let ` be an odd prime, and consider the pure extension K = Q(
√̀
m );

assume that there is a prime p ≡ 1 mod ` with p | m. Let F be the
subfield of Q(ζp) with degree `. Show that FK/K is an unramified abelian
extension.

The extension K/Q is not normal, so we cannot apply Abhyankar’s
lemma directly. The normal closure of K/Q is the field K ′ = KQ′ for
Q′ = Q(ζ`). Now K ′ and F ′ = FQ′ are cyclic extensions of degree `, and
p is completely ramified in K ′/Q′ and F ′/Q′. Abhyankar’s Lemma then
implies that K ′F/K ′ is unramified and cyclic.
Now

diff (K ′F/K) = diff (K ′F/K ′) diff (K ′/K) = diff (K ′/K)

and

diff (K ′F/K) = diff (K ′F/KF ) diff (KF/K).

Since diff (K ′/K) | diff (Q′/Q) and the latter is coprime to p, we deduce
that diff (KF/K) also must be coprime to p. But this implies the claim.

10. Show that the decomposition and inertia groups of the prime ideal Pσ

for some σ ∈ G are given by Z(Pσ|p) = σ−1Z(P|p)σ and T (Pσ|p) =
σ−1T (P|p)σ. Similar results hold for the higher ramification groups. Here
it is important to let G act from the right.

If τ ∈ Z(P|p), then P = Pτ = (Pσ)σ
−1τ , hence Pσ = (Pσ)σ

−1τσ, and
this shows that σ−1τσ ∈ Z(Pσ|p). Thus σ−1Z(P|p)σ ⊆ Z(Pσ|p), and
by going backwards we see that the inverse inclusion also holds.
Similarly, τ ∈ T (P|p) means ατ ≡ α mod P for all α ∈ OK , hence
(ασ

−1
)τ ≡ ασ−1

mod P. Applying σ now shows that σ−1τσ ∈ T (Pσ|p).

11. Let A and B be abelian groups. Show that X(A⊕B) ' X(A)⊕X(B).

Let χ ∈ X(A⊕ B) be a character defined on A⊕ B; then we can define
characters χ|A and χB by χ|A(a) = χ(a, 0) and χB(b) = χ(0, b), and
the map χ 7−→ (χA, χB) is a group homomorphism ρ : X(A ⊕ B) −→
X(A)⊕X(B).
Conversely, if ψ ∈ X(A) and ω ∈ X(B), then χ(a, b) = ψ(a)ω(b) defines
a character on A⊕B, and the map λ : (ψ, ω) 7−→ χ is a homomorphism
λ : X(A)⊕X(B) −→ X(A⊕B).
Now λ ◦ ρ(χ) = λ(χ|A, χ|B) = χ′, where χ′(a, b) = χ|A(a)χ|B(b) =
χ(a, 0)χ(0, b) = χ(a, b). This λ ◦ ρ = id.
Similarly, (ψ′, ω′) = ρ ◦ λ(ψ, ω) is ρ(χ) for the character χ defined by
χ(a, b) = ψ(a)ω(b). Thus ψ′(a) = χ(a, 0) = ψ(a)ω(0) = ψ(a) and ω′(a) =
χ(0, b) = ψ(0)ω(b) = ω(b), and this shows that ρ ◦ λ is the identity map
on X(A)⊕X(B).
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12. Let
1 −−−−→ A −−−−→ B −−−−→ C −−−−→ 1

be an exact sequence of finite abelian groups. Show that there is an exact
sequence

1 −−−−→ Ĉ −−−−→ B̂ −−−−→ Â −−−−→ 1.

Our first task is to define the maps in the dual sequence. Assume that
f : A −→ B is a homomorphism between abelian groups; we need to
define a map f̂ : B̂ −→ Â. An element in B̂ is a character χ : B −→ C×,
and we need to define a map f̂(χ) =: χ′ : A −→ C× using f : A −→ B.
It is clear that we must put χ′(a) = χ(f(a)). This is clearly a character
since χ(f(ab)) = χ(f(a)f(b)) = χ(f(a))χ(f(b)).
Thus an exact sequence

1 −−−−→ A
f−−−−→ B

g−−−−→ C −−−−→ 1

induces a sequence

1 −−−−→ Ĉ
bg−−−−→ B̂

bf−−−−→ Â −−−−→ 1,

and it remains to show that this sequence is exact.
Let χ ∈ ker ĝ. Then ĝ(χ) = 1l, that is, χ(g(b)) = 1 for all b ∈ B. Since
g : B −→ C is surjective, we have χ(c) = 1 for all c ∈ C, hence χ = 1l,
and thus ker ĝ = 1.
Next we claim that ĝ ◦ f̂ = 0. In fact, let χ ∈ Ĉ; then ĝ ◦ f̂(χ)(a) =
χ(g ◦ f(a)) = χ(0) = 1. Thus im ĝ ⊆ ker f̂ .
Assume conversely that χ ∈ ker f̂ . We need to find a character ψ ∈ Ĉ
such that χ(b) = ψ(g(b)). Since g is surjective, for every c ∈ C there is a
b ∈ B with c = g(b), and we can define ψ(c) = χ(b). This is well defined:
if g(b) = g(b′), then g(b/b′) = 1, hence b/b′ = f(a) for some a ∈ A,
and χ(b/b′) = χ(f(a)) = 1 since χ ∈ ker f̂ ; thus χ(b) = χ(b′). But now
ĝ(ψ)(b) = ψ(g(b))) = χ(b), that is, ĝ(ψ) = χ.
Surjectivity of ĝ follows by counting elements.

13. Let χ and ψ be Dirichlet characters defined modulo m, and with conduc-
tors fχ and fψ. Show that if gcd(fχ, fψ) = 1, then the character χψ has
conductor fχfψ.

Clearly χψ is defined mod fχfψ: χψ(a + fχfψ) = χ(a + fχfψ)ψ(a +
fχfψ) = χ(a)ψ(a) = χψ(a).
Let f denote the conductor of χψ; we have just shown that f | fχfψ. It
remains to show that fχ | f and fψ | f ; the coprimality of fχ and fψ will
then imply the claim.
Assume therefore that χψ(a) = χψ(a+ f) for all a and some f ∈ N; we
need to show that fχ | m. To this end put n = fψf , and use the Chinese



202 C. Solutions of Selected Problems

Remainder Theorem to find b ≡ a mod fχ and b ≡ 1 mod fψ. Then
χψ(b) = χ(b)ψ(b) = χ(a)ψ(1) = χ(a) and χψ(b+n) = χ(b+n)ψ(b+n) =
χ(a + n)ψ(b) = χ(a + n), Thus χ(a) = χ(a + n) for all a, hence fχ | n.
Since gcd(fχ, fψ) = 1, this implies fχ | f .

14. List all Dirichlet characters modulo 24, determine their conductors, and
identify them with Kronecker symbols.

Since (Z/24Z)× ' (Z/2Z)3, there are eight characters, and all of them
are quadratic. On the other hand, the characters χ = (m ) for m =
±1,±2,±3,±6 are all defined mod 24, and therefore form the full char-
acter group. The conductors can be read off the character table, or from
quadratic reciprocity. In general, the character (m· ) has conductor |m| or
4|m| according as m ≡ 1 mod 4 or not.
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[Ta1920] T. Takagi, Über eine Theorie des relativ Abelschen Zahlkörpers,
Journ. Coll. of Science Tokyo 41 (1920), 133 pp.


	Part I. Dirichlet's Analytic Methods
	Dirichlet Series for Quadratic Characters
	Euler
	Basic Properties of the Riemann Zeta Function
	Quadratic Number Fields
	Gauss
	Dirichlet's L-series

	The Nonvanishing of L(1,) for Quadratic Characters
	Dirichlet's Proof for Prime Discriminants
	Nonvanishing of Dirichlet's L-functions
	Computation of L(1,)

	Primes in Arithmetic Progression
	Characters
	Primes in Arithmetic Progression
	Cyclotomic Number Fields

	Dirichlet
	Dirichlet's L-series for Quadratic Forms
	Genus Theory for Quadratic Number Fields
	Primes with Prescribed Residue Characters
	Primes Represented by Binary Quadratic Forms

	Algebraic Number Fields
	Archimedean Valuations of a Number Field
	Arithmetic of Number Fields
	Prime Decomposition in Relative Extensions
	Prime Ideals in Galois Extensions
	Minkowski Bounds

	Dirichlet's Unit Theorem
	Units in Quadratic Number Fields
	Dirichlet's Unit Theorem
	The Unit Theorems of Minkowski and Herbrand

	Dedekind's Zeta Function
	Distribution of Ideals
	Dirichlet's Class Number Formula
	Cyclotomic Fields

	Density Theorems
	Kronecker's Density Theorem
	Frobenius Density Theorem for Abelian Extensions
	Kummer Extensions
	Decomposition Laws in Kummer Extensions
	Density Theorems of Kummer and Hilbert


	Part II. Hilbert Class Fields
	The Hilbert Class Field
	Weber's Motivation
	The Field Q(-5)
	The Field Q(3)
	Hilbert Class Field Theory II

	The First Inequality
	Weber's Inequality
	Proof of the First Inequality
	Consequences of the First Inequality

	The Second Inequality
	Preliminaries
	The Second Inequality for Unramified Extensions
	The Ambiguous Class Number Formula
	The Herbrand Quotient of the Unit Group

	Examples of Hilbert Class Fields
	The Artin Symbol
	Inertia Groups
	The Symbols of Frobenius and Artin
	The Artin Isomorphism

	Frobenius Density
	Frobenius and his Density Theorem
	Group Theoretical Preliminaries
	Prime Ideal Decomposition in Nonnormal Extensions
	The Proof of Frobenius' Density Theorem


	Part III. Takagi's Class Field Theory
	Ideal Groups
	Generalized Class Groups
	Takagi's Class Field Theory
	The Fundamental Inequalities

	Artin's Reciprocity Law
	Cyclotomic Fields
	Base Change
	Proof of Artin's Reciprocity Law

	The Existence Theorem
	Norm Residues and Higher Ramification
	Higher Ramification Groups


	Part IV. Appendix
	Gamma, Theta, and Zeta
	Euler's Gamma Function
	Jacobi's Theta Functions
	Riemann's Zeta Function
	Quadratic Gauss Sums

	A Beginner's Guide to Galois Cohomology
	H1(G,A)
	H"0362H0(G,A)
	H"0362H-1(G,A)
	Galois Cohomology for Cyclic Groups
	Herbrand's Lemma
	Capitulation
	Ambiguous Ideal Classes

	Solutions of Selected Problems
	Bibliography


