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Preface

Class field theory has a reputation of being an extremely beautiful part of
number theory and an extremely difficult subject at the same time. For some-
one with a good background in local fields, Galois cohomology and profinite
groups there exist accounts of class field theory that reach the summit (exis-
tence theorems and Artin reciprocity) quite quickly; in fact Neukirch’s books
show that it is nowadays possible to cover the main theorems of class field
theory in a single semester.

Students who have just finished a standard course on algebraic number
theory, however, rarely have the necessary familiarity with the more advanced
tools of the trade. They are looking for sources that include motivational
material, routine exercises, problems, and applications.

These notes aim at serving this audience. I have chosen the classical ap-
proach to class field theory for the following reasons:

1. Zeta functions and L-series are an important tool not only in algebraic
number theory, but also in algebraic geometry.

2. The analytic proof of the first inequality is very simple once you know
that the Dedekind zeta function has a pole of order 1 at s = 1.

3. The algebraic techniques involved in the classical proof of the second
inequality give us results for free that have to be derived from class field
theory in the idelic approach; among the is the ambiguous class number
formula, Hilbert’s Theorem 94, or Furtwéngler’s principal genus theorem.

4. Many of the central unsolved problems in modern number theory are
directly connected to analytic objects. Let me just mention the Riemann
conjecture for various L-functions, the Stark conjectures, the conjecture
of Birch and Swinnerton-Dyer, and the whole Langlands program.

I also have tried to approach certain central results by first treating special
cases; this is not particularly elegant, but it helps students to see how some
of the more technical proofs evolved from relatively simple considerations.
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Dirichlet’s Analytic Methods






1. Dirichlet Series for Quadratic Characters

Analytic methods occupy a central place in algebraic number theory. In this
chapter we introduce the basic tools of the trade provided by Dirichlet. Most
of the results proved here will be generalized step by step in subsequent
chapters until we finally will have all the techniques required for the proof of
the First Inequality of class field theory.

Most modern accounts of class field theory give an arithmetic proof of
both the First and the Second Inequality. This approach has the additional
advantage of bringing out clearly the local-global aspects of class field the-
ory. On the other hand, class number formulas and the density theorems
of Dirichlet, Kronecker, Frobenius and Chebotarev are central results of al-
gebraic number theory which every serious student specializing in number
theory must be familiar with, in particular since these analytic techniques
are also needed in the theory of elliptic curves (or, more generally, abelian
varieties) and modular forms. In this theory, the analog of the class number
formula of Dirichlet and Dedekind is the conjecture of Birch and Swinnerton-
Dyer, which — together with the Riemann hypothesis — belongs to the most
important open problems in number theory.

1.1 Euler

One of the earliest outstanding results of Euler was the formula

2 1 1 1
— =1+ -4+ =+.... 1.1
6 +4+9+16+ (1.1)

This is the value ((2) of Riemann’s zeta function

1 1 1
=l+—=—4+=—+—=+4....
¢(s) totgtet
Euler’s first “proof” of (1.1]) was full of holes, but very beautiful. In a nutshell,
here’s what he did.
Fix some o € R with sin a # 0, and consider the function f(z) = 1—
This function has a Taylor expansion

sin x
sina”
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€T .’ES [IJ5

flz)=1-

- + - + - — ...
sina  3!sina  Hlsina

The real roots of this function are z = 2nm + @ and © = (2n + 1)7 — a.

Euler knew that two polynomials of degree n with equal roots and equal
constant term (the value at = 0) must be the same. Regarding f(z) as a
polynomial of infinite degree, he concluded that

- H (1 B 2n7rx+oz)(1 B (2n+f)7rfoz)

n=-—oo

=D g (e ea)

T T
1— )@ ).
( 2nm 4+ « +27’L7T—Oz

Expanding the right hand side and comparing coefficients yields

[z

~

1 1| <« 1
sin «v _a+;((2nl)ﬂ'a

1 n 1 1 ) (1.2)
Cn—Dr+a 2nm+a  2nw—a/’ '

sin“ «v

~(2n - D7+ )2 * (2nm+ )2 (2nm — a)z)' (1.3)

Putting a = 7 in (1.2) gives Leibniz’s series

1
o142+
4 3 + )
For a = 7, (1.2) produces
T, 0 1,1
2v2 3 5 79 ’

which Euler credits to Newton; in fact, this formula appears in a letter from
Newton to Oldenberg from October 24, 1676.

Plugging a = § into (1.3)) gives

iyl
wtmt =3
Euler then observes that
1 1 1
d%z(kﬁg+§+~)+id% (1.4)
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and this then implies ((2) = %2.
Euler’s arguments for the product expansion of f(z) are not convincing
for two reasons: first, he only considered real roots of f; second, the functions
f(z) and e f(x) have the same roots and the same constant term, so these
properties do not determine f.
Euler found the formula ((2) = %2 by comparing the coefficients of z2 in
the expansions of f(z); by comparing the coefficients of 22*, he was able to

come up with the formula

k—1 (27")%

C(2k) = (-1) 2(%)!321@7

where the Bernoulli numbers By, are defined by

0 k

xe® x
v —1 ZBkE'

k=0

Euler also found that {(s) has a product decomposition, which he wrote in
the form

25.35.55.75.115...
(25 —1)(35 — 1)(55 — 1)(7s — 1)(115 — 1) - -~

((s) =
Let us now introduce the functions
G(s)=1—-2"54375 4754 .. ;
and

0(s) =143 °+57+7°+..;

then 2175¢(s) = 2(27° +47°+67° +...) shows that (a(s) +217°((s) = ((s),
and similarly we find 6(s) = (1 — 27%)((s). Euler “computed” the values of
C2(s) at the negative integers as follows. He started with the geometric series

1
7:1+x+x2+x3+x4+...;
1—=x

applying the operator a:j—m he found

ﬁ:$+2$2+3$3+4{1}4+,

and similarly

1
w=x+22x2+32x2+42x4+....
(1—x)?
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These expansions converge for |z| < 1; boldly evaluating them at z = —1,
Euler finds
1
§2(O):1—1+1—1+...:§,
1
(2(—1):1—2+3—4+...:1,
G(=2)=1-224+32-42+... =0,
1
gz(—3)=1—23+33—43+...:—§,
1
@(—5):1—25+35—45+...:—Z,
17
gg(—7)=1—27+37—47+...:—T6

etc. Comparing the formulas above with the values of 6(2k) resulting from

(1.4), Euler found

oy =2toe),  ars=-22y _2-5!

6

we remark in passing that expressing (2(s) and 6(s) in terms of ((s), these
formulas lead to the beautiful formula

By 1
—k)=— . 1.5
(k) = (1.5
Since B3 = Bs = By = ... = 0, the zeta function has zeros at the even

negative integers; these are called the trivial zeros of the zeta function.
Euler’s observations led him to the general result

12 (2k - 1)!

0(1 — 2k) = (—1) s G2(2k)

™

for all k£ € N; Euler also saw that (—2k) = 0 for integers k > 1. Expressing
these formulas in terms of the function (3(s) alone, Euler found

(2% —1)(2k - 1)!
Co(1 —2k) = (—1)F~ ((22k_1)£ 1)7r2k) Co(2K).

Euler then made the even bolder conjecture that this formula can be “inter-
polated”:
2% —1 TS
Cg(l — S) = —F(S)m COS ?CQ(S)

for all s. Here I'(s) denotes the gamma function

I'(s) :/ e dx
0
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defined for s > 0, which satisfies the functional equation I'(s + 1) = sI'(s),
and which has the property that I'(n+1) = n! for integers n > 0. We remark
in passing that the gamma function was found by EulerE|

Rewriting Euler’s conjecture in terms of the Riemann zeta function shows
that this equation is equivalent to

C(1—s)=m"°2""5I(s) cos %C(s).

This functional equation was first proved by Riemann.

Euler used the product decomposition of the zeta function to improve
Euclid’s theorem concerning the infinitude of prime numbers by showing that
Zp% = % + % + % + % + % + ... diverges. In the next section, we will give
rigorous proofs for some of Euler’s results on the zeta function.

1.2 Basic Properties of the Riemann Zeta Function

The integral test immediately shows that ((s) converges (pointwise) for all
s > 1. If s = o +it is a complex number, then |n®| = n|n*=7| = n?|n'| = n°
shows that if a Dirichlet series f(s) = > a,n~° converges absolutely for all
real s > o, then it converges absolutely for all s € C with Res > o.

The most important property from a number theorists point of view is
FEuler’s product formula:

Theorem 1.1. For all s > 1 we have

where the product is over all primes p.
Proof. For s > 1 and a fixed natural number N we have
1 )
Zn(s) = H Ty H Zp_ks = Z n’,
p<N p<N k=0 neN

where N* denotes the set of natural numbers without prime factors > N.

Thus
0<((s)—Zn(s) < > n%,
n>N
and the right hand side goes to 0 as N — oo. O

! In a lecture by Serre called “How to write mathematics badly” which you can
find on youtube, Serre stressed that it is important to choose a title that says
as little as possible about the content of the manuscript, and suggested “On a
theorem of Euler” as an example.
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Since the harmonic series 1 + % + % + ... diverges, the function ((s) goes
to oo as s — 1. In fact, the behaviour of {(s) in a vicinity of s = 1 can be
described quite precisely:

Proposition 1.2. We have 0 < ((s) —

Proof. For all n > 2 we have

o 1 " dx
e S < oy
n xz n n—1 %

* dx 1 > dx
= <N <1 i
/1 = <D +/1 =

hence

and therefore

1 1
P <<()<1+—1

This proves the claim. O

Together with Euler’s product formula this immediately implies that there
must be infinitely many primes: if there only were finitely many, there would
be only finitely many products in Euler’s formula, and this would clearly
converge at s = 1. As Euler showed, however, the product formula implies a
lot more:

Theorem 1.3. The series Z diverges.

Thus not only are there 1nﬁn1tely many primes, there are so many that
the sum over all their inverses diverges; in particular, there are “more” primes
than squares.

Proof. Since ((s) diverges for s — 1, so does log ((s). We find

:z:lo,gl_lzrS z—ZIOg(l—p s
ZZZ;p —2r DI

p n>1 p n>2

log (s

We now claim that the second sum converges; in fact,

DD DETRIED B) BIRAE I

p n>2 p n>2 P D

1 > 1
SZp(p—l)i;n(n—n:l

p

p—l
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Thus pr_s — o0 as s — 1. One might be tempted to think that this

implies the claim, but 11111_1|r0 Zp p° = Z% can only be derived using the
s—

continuity of ((s) at s = 1, i.e., at a place where the series for {(s) is not

even converging. A more careful approach is the following: replace ((s) by

Zn(s) in the proof above. Then we can form the limit for s — 1 and get

1
0 < log Zn (1) 725 <1
p

Now letting N go to co and observing that limy_.., Zn(1) = oo implies the
Claim. D

A different way of making the estimate above exact is the following: we
have found

0 < log((s) —Zp_s <1

for s > 1. This shows that log((s) — > p~° is bounded, i.e., that > p~° =
log ¢(s) + O(1), where we have used Landau’s big-O notation (we say that
f =g+ O(h) is there is a constant ¢ such that |f(z) — g(z)| < ¢- h(z) for all
z under consideration). The inequalitites —= < ((s) < <25 for s > 1 imply
log((s) =log 15 + O(1) for all s € (1,2), say. Thus we get

Proposition 1.4. For all real s with 1 < s < 2 we have

1
—f =1 o(1).
Y v =log —=+0(1)
We will also show that the zeta function can be extended meromorphically
to the half plane Re s > 0. By Lemmabelow7 (2(s) is analytic for Re s > 0.
Similarly we can show (3(s) + (1 — 317%)((s) for
1 2 1 1 2
S T e
These formulas give an analytic continuation of {(s) for all s with Res > 0,
except possibly where 1 — 217% = 1 — 31=% = 0. This happens if and only if
(1 —s)log2 = 2mim and (1 — s)log3 = 2min for integers m, n, which in turn
implies 2" = 3™ and hence m = n = 0. We have proved:

Proposition 1.5. The Riemann zeta function ((s) can be extended to a
meromorphic function in the half plane Re s > 0, with a simple pole at s = 1.

We next prove a couple of results concerning the convergence of Dirichlet
series f(s) = Yoo, apyn~*. These proofs use the concept of uniform conver-
gence. Recall that if a sequence of real-valued functions fi, fo,... converges
pointwise to a function f, then f need not be continuous even if the f; are
infinitely often differentiable. If we want to transfer properties like continuity
and differentiability from the f,, to the limit function f, we need something
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stronger than pointwise convergence. We say that a sequence of complex-

valued functions f,, : D — C converges uniformly to f on D (and write

fn = f) if for every € > 0 there is an N € N such that for all x € D and all

n > N we have |f,(z) — f(z)| < e. Thus uniform convergence means that the

difference fy,(z) — f(z) can be made small for all z € D at the same time.
In real analysis, we have the following classical results:

1. If f,, = f and the f,, are continuous, then so is f.
2. If f, = f, the f,, are differentiable, and if f] = ¢, then f is differen-
tiable and f’ = g.

In complex analysis, things are as usual a little bit simpler: If the f,
converge uniformly to f on all compacta inside a domain D, and if the f,
are analytic, then so is f. This result justifies the introduction of the term
“converges almost uniformly” for a sequence of functions on a domain D that
converges uniformly on each compact subset of D.

Proposition 1.6. If the partial sums of a Dirichlet series f(s) are bounded
for a specific value sg € C, then the series converges almost uniformly for
Res > Resp.

Proof. Consider the partial sums f,(s) = Y., a,n~°. By assumption,
there is a constant ¢ > 0 such that |f,,(so)| < ¢ for all n. Let o9 = Re sg, and
pick a § > 0. On the half plane Res = o > gy + 6§, we have

m+N m+N m+N
Z apn”® = Z apn~*0n*0"% = Z (fr(s0) = fn—1(s0))n®0~°
n=m-+1 n=m-+1 n=m-+1
m+N m+N-—1
= > falsn® ™ = D7 falso)(n+ 1)
n=m-+1 n=m
= fmtn(s0)(m + N)*7% — fr(s0)(m +1)%77
m+N-—1
Y0 Talso) (n = (o 1)),
n=m-+1

Taking absolute values and using | f,,(so)| < ¢ we find

m—+N
Z ann” % <e(m—+ N)7°77 4+ ¢(m + 1)7°7°
n=m++1
m+N—1
+c Z [n*0=° — (n41)*~°|.
n=m-+1
In order to give a bound for the last sum, observe that [z~ '"'dz = —fz~"

for t # 0, hence =% = —t [ z~""1dz. Now we find
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n+1
(s — s0) / %0y
n
n+1
<|s-— so|/ |0 dx
n
n+1
<|s-— so|/ 10
n
|s —

< 768(” [(Tl+ 1)7° — n*‘s}.

n®~% — (n+ 1)SO*S| =

For all s with |s — sg| < C this then implies

m—+N CC m+N-—1
> ann gc((m+N)*5+(N+1)*5)+T Yo T =(n+1)7).
n=m+1 n=m+1

The last sum is a telescope sum and equals (m 4+ 1)7% — (m + N)~°, and we
see

m—+N
C c
Z ann”%| < 2en7% + %n*‘s = c(2 + E)n*‘s.
n=m-41

The last expression does not depend on N and tends to 0 for n — oo; this
proves our claim. O

A Dirichlet series f(s) need not converge anywhere; if it does converge
for some sg € C, then we have just seen that it converges for all s € C
with Res > 0 = Resp. The minimal ¢ € R with this property is called the
abscissa of convergence; f(s) converges for Res > o, and does not converge
for Res < 0.

Lemma 1.7. Consider the Dirichlet series f(s) = Y ann~*. If the partial
sums A(m) = 3" | an of the coefficients have the property that |A(m)| <
em?° for some constants ¢,09 > 0, then f(s) is an analytic function in the
half plane Re s > oy.

Proof. Let Res = o > ogp; then

m—+N
> g™ = A(m+ N)(m+N)™* = A(n)(n+ 1)~
A m+N-—1
+ Z apn *An)(n™° — (n+1)7°).
n=m-+1

The estimate involving the integral in the proof of Prop. [I.6] shows
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m+N m+N—1 n+1

n=m-+1 n=m+1
n+1
< 2em®°77 4 ¢ls| E n?° / r 7 Yz

n
n+1

< 2em?°77 + ¢|s] / 707y
2.
m+N-—1
< 2em° "7 4 ¢ls|(og — o)t Z (n+1)7°77 —=n777)
n=m-+1

< 2em°° 77 4 ¢|s|(og — o) M (n 4 1)707°

< 0(2 + ﬁ)m”“_”.
g — 0o

This tends to 0 independently of N as m — oo. O

1.3 Quadratic Number Fields

A quadratic number field is a quadratic extension K of Q. They all have the
form K = Q(y/m) for some squarefree integer m € Z. The elements of K
are a + by/m with a,b € Q. The conjugate of @ = a + by/m is @ = a — b\/m,
and the map o : K — K;a —— o(a) = o/ is the nontrivial automorphism
of K/Q. The rational numbers Noa = aa’ and Tra = a + o are called the
norm and the trace of «, respectively.

The ring of integers O has the form O = Z & Zw, where

Y % if m =1 mod 4,
-\ vm if m = 2,3 mod 4.

The set {1,w} is called an integral basis of K, and

=(w-w)

1 w
1 W

is called the discriminant of K. We find

disc K — m %fmzlmodll,
4m if m = 2,3 mod 4.

The prime ideal decomposition is governed by the Kronecker symbol (%) for
d = disc K; this is the usual Legendre symbol if p is an odd prime, and is
defined by
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y +1 ifd=1modS8§,
(§> =<¢ -1 ifd=5modS§,
0 if d =0 mod 4.

Every prime ideal p # (0) in Ok contains a unique rational prime p, and
we say that p lies above p. The prime p splits, is inert, or ramifies in K
according as pO g = pp’ for distinct prime ideals p # p’, pO g remains prime,
or pOx = p? becomes a square.

Theorem 1.8 (Decomposition Law in Quadratic Number Fields). Let K be
a quadratic number field with discriminant d. Then a prime number p

e splits if and only if (%) =+1;
e is inert if and only if (%) =—1;
e ramifies if and only if p | d.

The norm Na of an ideal a is by definition the cardinality of the residue
class group O /a. For prime ideals we have Np = p/, where f = 1 if p splits
or ramifies, and f = 2 if p is inert. Note that in Dedekind rings such as O g,
all nonzero prime ideals are maximal, hence the Ok /p is a finite field. It is
easily seen to contain F,,, and we have (Ox/p: Fp) = f.

1.4 Gauss

Riemann’s zeta function can be interpreted as the sum of Na™% over all
(principal) ideals a = (n) of Z; recall that N(n) = #Z/nZ = |n|, and that
summation over ideals means that n and —n (for n € N) only contribute n~%.

If we do the same in K = Q(¢) and the ring of Gaussian integers Z[i], and
if we observe that each ideal (z 4 iy) has a unique representative in the first

quadrant, then we find

1
Gl =2 Nat= D @A

a#0 z,y20,(2,y)#(0,0)

Unique Factorization in Z[i] implies that the zeta function of Z[i] admits the

Euler factorization )
=5

™

where the product is over all primes 7 in the first quadrant. For m = 1 + 4
we get Nm = 2; there are exactly two primes m above primes p = 1 mod 4,

and their contribution to the Euler product is  [] m Finally, the
p=1 mod 4
primes p = 3 mod 4 remain inert in Z[i] and have norm p?, so they contribute
—1 . Thus we have

1—
p=3 mod 4 P
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1 1 1
Ck(8) = 775 I1 A—p )2 I1 =]

p=1 mod 4 p=3 mod 4 -p
= I —= I
p=1 mod 4 a p_s p=3 mod 4 1+ p_s
= ((s)L(s,x)-

Here Dirichlet’s L-series L(s, x) for the character x = (=2) is defined, for all
s > 1, via its Euler product

t00 = Il =i

Since x is a multiplicative function, it is easily shown that

x(n
Lis.) = 3 A2,
n
n>1
In particular,
1 1 1 T

L(1 =l—-4+-—==4...=—

(1, %) 3TE 7 1
since

1 1

s dx 1 1 1
— = —_ = 1— 2?2 oSt Ve =1—=+Z—Z+....
1 /0 P /o( 4zt - )dx 3+5 -

Thus not only does L(s, x) converge for s = 1, it converges to some nonzero

limit. Multiplying (x (s) = ((s)L(s, x) through by s — 1 and taking limits we

see . -
li (s = 1)Gi(s) =

for K = Q(3).

The pole of the zeta function of K at s = 1 immediately implies that
there are infinitely many prime ideals in Z[i], but this is of course a trivial
consequence of the infinitude of primes in Z since there is at least one prime
ideal above every rational prime.

But we can also, exactly as before, deduce that the sum > ﬁ over all
primes 7 in Z[i] diverges; since the sum for primes = = 3 mod 4 obviously
converges (it is majorized by Y., -qn"?), we deduce that Y ﬁ diverges,
where the sum is over all odd primes of degree 1. Since there are exactly two
primes of norm p = 1 mod 4, we find

1 1
N2 X o
p=1 mod 4

and thus we conclude
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Y oi-w

p=1 mod 4 p

That the divergence of . Np~—! implies a stronger result is a consequence
of the fact that the divergence must result from primes of degree 1; primes of
degree > 2 contribute only a finite amount to Y Np~!. Generalizing Dirich-
let’s technique to arbitrary number fields will therefore imply that each num-
ber field has infinitely many prime ideals of degree 1.

1.5 Dirichlet’s L-series

Let us now see how Dirichlet generalized this to quadratic number fields.
To be precise, Dirichlet worked not with quadratic number fields, but with
binary quadratic forms. Dedekind later showed that these two languages were
essentially isomorphic, and gave the defnition of the zeta function of a general

number field K:
(k(s)= > Na™*
a#(0)

for all s € C with Re s > 1. Unique factorization into prime ideals implies

(i (s) = H %Np*s’

p

where the product is over all prime ideals p # (0).
Now let K = Q(v/d) be a quadratic number field with discriminant d,
and let xy = (2) be its associated quadratic character; recall that x(n) = 0 if

ged(d,n) # 1). Define Dirichlet’s L-series L(s, x) = Y % for all s > 1.
Lemma 1.9. Let ¥ be a multiplicative function defined on N. Then

n 1
L) = = =

wherever L(s, 1)) converges.
Proof. Exactly as for Riemann’s zeta function. O

Now we claim
Theorem 1.10. The Dirichlet L-series has an Euler factorization
x(n 1
Lis) = X ]

ns o 1= x(pp*

Moreover, we have

Cre(s) = C(s) L(s, x)- (1.7)
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Note that L(s, x) = ng((ss)) is the quotient of the zeta functions of K and
its subfield Q. It can be shown that these zeta functions can be extended
to meromorphic functions on the whole complex plane, and that their only
singularity is a simple pole at s = 1. Thus their quotient L(s, x) is an entire

function on the whole complex plane.

Proof. Exactly as for disc K = —4; just use the decomposition law in quad-
ratic number fields. O

It remains to show that L(1,x) converges to a nonzero limit. This can
be done easily with a little bit of complex analysis, and there are also quite
elementary proofs using only real analysis. Our goal is a lot bigger: not only
will we show that L(1,x) # 0, we will compute its exact value. In the next
section we will present an elementary proof of L(1,x) # 0, then show how
Dirichlet succeeded in computing the exact value of L(1,x), and finally ex-
plain how to derive the classical class number formulas for quadratic number
fields.

Consequences of the Nonvanishing of L(1,x)

Assume now that L(1,x) # 0 for x(n) = (£), where d is the discriminant
of a quadratic number field. Imitating FEuler’s proof in the case K = Q, we
easily find

log Cxe(s) =Y  Np~* +O0(1)
for s > 1. On the other hand, taking the log of the fundamental equation

(1.7) shows that
log Ck (s) = log ((s) + log L(s, x)-

If L(1, x) # 0, then we can bound log L(s, x) on some interval like (1,2), and
get
log Cx (s) = log ((s) + O(1),

which in turn implies

log Ck (s) = log +0(1).

s—1

Finally, the contribution of primes of degree 2 to the sum Y Np~* is bounded,
and since there are two prime ideals above every prime p that splits in K we

have
S Np =2 pt+0(1)
(4)=1

which implies

1 1

=5 =] o(1).
(d% 1p 5 log — +0(1)
i
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Let P be a set of positive integers such that Zpe P% diverges. Then a
subset S of P is said to have Dirichlet density ¢ if

Zpespis _
s=140 ) cpP~* o

The following properties are easy to prove:

e Finite sets have Dirichlet density 0.

e P has Dirichlet density 1.

e If S and S’ are disjoint sets with Dirichlet densities  and §’, respectively,
then S U S’ has Dirichlet density § + ¢’.

e If S and S’ have Dirichlet density § and &', respectively, and if S C 5’,
then § < §'.

e If S has Dirichlet density J, then P\ S has Dirichlet density 1 — 4.

If P is the set of all primes in N, then a subset S will have Dirichlet density

0 if and only if
1
Zp_s ~ Jlog 1
peS 5

as s — 1+ 0. Here f(s) ~ g(s) if liﬂof(s)/g(s) =1
These properties then imply the following

Theorem 1.11. Let d be the discriminant of a quadratic number fields. Then
the sets of primes p with (%) =+1 and (%) = —1 have Dirichlet density % .

Notes

Observe that we have not used the quadratic reciprocity law for the proof of
Theorem thus this result may be used to prove quadratic reciprocity if
the nonvanishing of L(1, x) also can be proved without quadratic reciprocity.
In the next chapter we will give three proofs for L(1,x) # 0; the one that
is only valid for prime discriminants uses the reciprocity law, the other two
do not. This has some relevance for the history of mathematics: Legendre’s
attempt at proving the reciprocity law was incomplete since he had to assume
the existence of certain primes p with (%) = —1 for suitable values of d.

The proof given in Section [1.4] can be found in [Gal889, 655-677].

I would also like to say a few things about the distinction between analytic
and algebraic number theory. Nontrivial results about the distribution of
primes are encoded in the behavior of the zeta function:
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.1
C(s)hasapoleats-1:>§p:p p—
C(s) #0 for Res =1 = m(z) ~ lozx
¢(s) # 0 for Res > % = m(z) = lozx +O0(x%%) for all £ > 0.

Here 7(x) denotes the number of primes p < z. For me, the watershed be-
tween algebraic and analytic number theory lies between the first and the
second statement, and the last two statements are analytic because they
deal with the distribution of zeros (more exactly they require knowledge
about zero-free regions of zeta functions). Of course zeta functions and L-
series are analytic objects, but they encode unique factorization into prime
ideals (Euler product) and decomposition laws of prime ideals in extensions
(equation ), which are algebraic objects, and their residues at poles are
connected with arithmetic invariants (class numbers, units, discriminants).

Let me also remark that the convergence of the Euler product of {(s) for
Res > 1 implies that ((s) # 0 for all s € C with Res > 1. In particular,
1/¢(s) is an entire function on this halfplane, and in fact Euler (who else?)
found that 1/¢(s) = > pu(n)n~°, where u is the Moebius function.

Equation is a special case of a conjecture of Dedekind, according to
which the zeta function (x(s) divides (x(s) for any extension K/k of number
fields; by this we mean that the quotient (x(s)/Cx(s) should be an entire
function on the whole complex plane. This was proved for normal extensions
K/k by Aramata and Brauer, and for extensions whose normal closure is
solvable by Uchida and van der Waall.

The algebraic number theory that we need in this course can be found
in Marcus [Mal977]; this is an excellent book with lots of exercises. A mod-
ern and very concise introduction to algebraic number theory is Swinnerton-
Dyer’s [Sw2001]; it also presents the main theorems of class field theory and
discusses local fields. The best introduction to local fields is probably Cas-
sels’ [Cal986]; he also develops the theory of algebraic number fields, and
studying [Cal986] may be followed up by looking at more advanced texts
like Serre’s excellent [Se1980]. Finally, Davenport’s [Dal980] contains a good
introduction to Dirichlet series.

Exercises

1.1 Plug o = 3 and o = ¥ into Euler’s formula (1.2), and simplify the results as

much as possible.
1.2 Show that liIIIJer cos 55¢(s) = —% (Hint: you know what happens for (s —

1)((s)). Show that the functional equation then implies that ((0) = —3.
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1.3 Every factor on the right hand side of the Euler product (1.6) has a pole at
s = 0, whereas the functional equation predicts ¢(0) = f%. Explain.

1.4 Show that if f(s) =Y ann™°, where an, € R, converges absolutely for some
real number o, then it converges absolutely for all s € C with Res > o.

1.5 Let ¥ be a multiplicative function such that [1)(n)| < C for some constant

C' > 0. Show that o) )
n
> ns 1;[ 1 —4(p)p—s

n>1
for all s € C with Res > 1.

1.6 Let K be a number field. Show that the number of integral ideals of norm
< n is O(n), and deduce that the Dedekind zeta function (x(s) = > Na™°
converges for all s € C with Res > 1.

1.7 Let K be a number field. Use unique factorization into prime ideals to show
that Dedekind’s zeta function admits an Euler factorization:

() = 3N = [T s

P

1.8 Let K be a quadratic number field with discriminant d. Let x be the associated
character defined by

(&) if ged(d,n) =1,
x(n) = {0 if ged(d,n) # 1.

Use the decomposition law in K to show that

Cre(s) = C(s)L(s,x)
for all s € C with Res > 1.

1.9 For this exercise you need some knowledge about the decomposition of
prime ideals in normal extensions. Consider the biquadratic number field
K = Q(v/d1,V/dz). It contains three quadratic subfields k; = Q(y/d; ) with
discriminants di, dz2, and ds.

1. Show that dida = dsm? for some integer m.

2. Show that p splits completely if and only if (di/p) = (d2/p) = +1.

3. Show that primes p { d1dz have inertia degree 2 if and only if (d;/p) = +1
for exactly one index j.

4. Show that no prime can remain inert in K/Q.

5. Show that if p | d; for every j, then p = 2. Deduce that if p ramifies
completely, then p = 2.

6. Discuss the possible decompositions pOx = P, B2, P2P2 in terms of
the Kronecker symbols (d;/p).

1.10 (continued) Let x; = (d;/-) be the quadratic character attached to the quad-
ratic number field k;. Show that

Cre(s) = C(s)L(s, x1) L(s, x2) L(s, x3)

for all s > 1, and that the right hand side represents an analytic function for
all s € C with Res > 0, with a simple pole of order 1 at s = 1.
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1.11 (continued) Show that the primes p with (d1/p) = (d2/p) = +1 have Dirichlet
density %, and then deduce the same thing for primes with (di/p) = +1,
(d2/p) = —1, as well as for primes with (d1/p) = (d2/p) = —1.

1.12 (continued) Show that there are infinitely many primes in each of the residue
classes a = 1,3,5,7 mod 8. Do the same for a = 1,5,7,11 mod 12.

1.13 (continued) Sketch a proof for the existence of infinitely many primes p with
(d1/p) = (d2/p) = (ds/p) = +1, where di1,ds2, ds are independent (i.e., do not
differ just by square factors) quadratic discriminants.

1.14 Show that (|1.7)) implies the decomposition law in quadratic extensions.



2. The Nonvanishing of L(1,x) for Quadratic
Characters

In this chapter I will present various techniques for showing that L(1,y) > 0
for quadratic characters y = (). Since L(s,x) > 0 for all s > 0, this is
equivalent to showing L(1,x) # 0.

2.1 Dirichlet’s Proof for Prime Discriminants

Let d = disc K be the discriminant of a quadratic number field, and let y =
(2) be the corresponding character. In his attempts to prove that L(1,x) # 0,
Dirichlet computed L(1,x) more or less explicitly. For doing so he observed

that (¢) is periodic with period m = |d| since (%) = (afm) for all positive

a
integers a. This follows easily from the quadratic reciprocity law (see Exercise

8.
' The computation of L(1, x) will allow us to prove that L(1,x) # 0 only in
special cases; the calculation is, however, also indispensible for the derivation
of Dirichlet’s class number formula. We will now give a simplified approach
to Dirichlet’s calculations, and will discuss Dirichlet’s original proof in the
Notes.

Let us now deal with the problem of computing L(z,x) for a general
character y = (%) with period m = |d|. The periodicity implies

L(1,x) = Zx(n)nfl
= x() +x(227 " + ...+ x(m)m ™
+x(M)(m+1) "+ xm)2m) T+

=Y x(k) Y, ol
k=1

n=k mod m

m—1 m ifm|r
Let ¢ denote a primitive m-th root of unity. Since . (™ = ) ™
a=0 0 ifmir,

m—1
we can write Y. n~l=2L1 3 ¢(=ka and find

n=k mod m a=0
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m—1

L= 3 xla) Y ¢t

k mod m a=0
k)<ak> Z Cfnanfl
n=1

Y (x
= k mod m

The sum 74(x) = Y1 od m X (£)C?F is called a quadratic Gauss sum for the
character x. A simple calculatlorﬂ shows that 7,(x) = x(a)71(x), and we put
7 = 71(X). Another straightforward computation reveals that 72 = p* for
p* = (%)p; in particular, 7 # 0.

The sum Y 7, z"n~' converges for all z # 1 inside the unit disc to
—log(1 — z), where we have to choose the principal branch of the logarithm
(the one that vanishes at z = 0); thus > >, (""%n~! = —log(1 — (%), and

we get
m—1

L(Lx) = == 3~ x(a)log(1 = ¢*). (2.1)

Evaluation of (2.1))

It remains to evaluate Y x(a)log(l — (~*). As a runs through a coprime
system of residue classes, so does —a, hence

m—1 m—1

x(a)log(l —¢™*) =x(-1) »  x(a)log(l —¢").

a=1 a=1

For evaluating the expression log(l — (%), we fix the primitive m-th root
of unity by setting ¢ = exp(2m) With & = exp(%) we find ¢2 = ¢ and
1-(* = =£9(£* =€) = —2i€" sin 72, This implies log(1—(¢*) = log(—2i{")+
1ogs1n— Thus for 0 < a < m we get log(1 — (%) = log2 + (£ — L)mi +
logsin %2 (observe that —i = e*”/Q). Collecting everything we see

L(1,x) = —x(—l)% >~ x(a)(logsin = + %)
a=1

where we have used Y x(a) = 0 (see Exercise [1)).

Let us pause for a moment to discuss a subtle point. The complex log
function is, as you know, multivalued since exp(z) = exp(z + 27i). On the
positive real axis, however, we can fix the value of log by demanding that
Im logz = 0 for real z > 0; this is also the value that is produced by the
Taylor expansion of log(1 — z) for real z with |z] < 1.

In order to select a well defined value log z for complex values of z we
remove the negative real axis (including the origin); if we write log(1l — 2) =

1 1 will provide proofs for these basic facts in an appendix.
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x + iy for such z with |z| <1 and z # £1, then —7 < y < 7. These values of
log(1 — z) are said to form the principal branch of the complex log function,
and by analytic continuation this holds for all z outside the negative axis. In
our case, the value of log(1 — (%) came from an integration, that is, from the
Taylor expansion of log(1—z), hence we have to take the principal value. The
imaginary part of log(1 — ¢*) computed above is (2 — )7, and this is the
principal value if we choose 0 < a < m. Thus everything involving log(1— (%)
below is only valid for this particular choice of representatives of @ mod m.
Next we invoke the following

Lemma 2.1. Let x be a quadratic character modulo m. Then

> x(a)a=0 if x(=1) =1,
> x(a)logsin 48 =0 if x(—-1) = -1,

where the sums are over all a € (Z/mZ)*.

Proof. Tf x(=1) =1, then >_ x(a)a = > x(m—a)(m—a) = = x(a)a since
>~ x(a) = 0; this implies > x(a)a = 0.
If x(—1) = —1, then )" x(a)logsin & = }" x(m — a)logsin (m;a)”

o

— > X(a)logsin 97, hence this sum vanishes.
A character x is called odd or even according as x(—1) = —1 or x(—1) =
+1. Using this lemma, our expression for L(1, x) simplifies to
. om—1
= > X(a)a if x is odd,
L(1,x) = =1 (22)

m—1
— > x(a)logsin 9% if x is even.
a=1

With this equation we have expressed L(1,x) as a finite sum that can be
computed for a given character x. In the special case where d = p = 3 mod 4 is
prime, the first formula immediately implies that L(1, x) # 0: this is because
in this case, > x(a)a = Y a = @ = 1mod 2 is an odd integer and
therefore # 0.

Theorem 2.2. Let p = 3mod4 be an odd prime and x = (5) Then
L(1,x) > 0.

Simplifying @D for Odd Characters

In the special case d = —3, we have 7 = ( — (% = _1_2“/?’ - _1'5“/5 = iV/3,
hence L(1,x) = %(1 —-2)= 33 ~ 0.604599788. Here is a table with the
partial sums L, = > /" | x(n)n™* for a few values of m:



24 2. The Nonvanishing of L(1, x) for Quadratic Characters

m ‘ L., m ‘ L,
10 | 0.66785 11 | 0.57694
100 | 0.61123 101 | 0.60133
1000 | 0.60526 1001 | 0.60426
10000 | 0.60466 10001 | 0.60456

If d = —4, then 7 =i — i® = 24, hence L(1,x) = %
Now consider discriminants d < —4; we would like to simplify the expres-

sion 1
h=——
L3 @

where the sum is over all 1 < a < m = |d| with ged(a,d) = 1. We have to
distinguish a few cases:

1. m = |d] is even. Then x(a + %) = —x(a) (see Exercise @ Then

hm=— % x(@a— Y x(a+%)(a+%)

0<a<m/2 0<a<m/2
=— > x@a+ Y x@a+%)
0<a<m/2 0<a<m/2
m
= 5 Z X(a)a
0<a<m/2

hence h = % ZO<a<m/2 X(a’)'
2. m = |d| is odd. Then m = 3 mod 4, hence x(—1) = —1 by Exercise
This time we find

hm=— Y x@a— >  x(m—a)(m-a)

0<a<m/2 0<a<m/2
=-2 > x(@at+m > x(a)
0<a<m/2 0<a<m/2
as well as
hm = =" x(@)a— 3 x(m - a)(m — a)
2la 2la
=—4 Z x(2a)a +m Z x(2a)
0<a<m/2 0<a<m/2
=—4x(2) Y x(@a+mx(2 > xa)
0<a<m/2 0<a<m/2

Combining these formulas shows
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2-x@)h= > xla).

0<a<m/2

Thus, in both cases, we have proved the following formula:

Theorem 2.3. Let d < —4 denote the discriminant of a complex quadratic
number field. Then

b= Yo = g Y ),

0<a<m/2

The value of the quadratic Gauss sum can be determined explicitly:

Theorem 2.4 (Gauss). For x = (%), the value of the Gauss sum T = 71(x)

is given by
Vid ifd >0,
T {i\/—d ifd < 0.

In particular, we have

Theorem 2.5. Let d be the discriminant of a complex quadratic number

field. Then
™

L(l,x) = —h.

Vdl

Since h > 1, this gives us the lower bound L(1,x) > \/ﬂ@ for the values

of L(1,x). If we could show that there is an ¢ > 0 such that L(1,x) > ¢ for
all quadratic characters x, we could deduce that there are only finitely many
complex quadratic number fields with given class number.

Specializing Theorem to fields Q(v/—p) for odd primes p > 3 we
immediately get

Corollary 2.6. Let p =3 mod 4 be prime > 3, and let R and N denote the
sum of the quadratic residues and nonresidues in the interval [1, 25%]. Then

- R-—N if p =7 mod 8,
B #(R—N) ifp=3modS8.

Computing these numbers for a few small primes produces the following
table:

d|-3 -4 -7 -8 —11 —-15 —-19 —-20 -23
A1 1 1 1 1 2 1 2 3

Dirichlet knew this numbers h: these are the class numbers of the quadratic
forms with discriminant d. In fact, Jacobi had earlier conjectured (in connec-
tion with calculations involving Jacobi sums) that the class number of the
complex quadratic number field Q(y/—p) is given by the formula in Cor.



26 2. The Nonvanishing of L(1, x) for Quadratic Characters

This surprising connection between the values L(1, x) and the class numbers
of complex quadratic fields made Dirichlet look for a proof that would explain
this mystery. Eventually, Dirichlet found such a proof, and we will present it
in Section 2.3] below.

Note that Cor. implies that R > N (since h has the same sign as
L(1, x), hence is positive), i.e., that there are more residues than nonresidues
in the interval [1, %] The only known proofs of this elementary fact are
analytic.

Simplifying @D for Even Characters

The case of even characters y is a great deal more complicated. For showing
that L(1,x) # 0 we have to show that the expression

Z x(a)logsin ™
m

(a,d)=1

does not vanish. Since x(a) = x(m — a) and sinx = sin(7w — ), this sum can

also be written in the form
a
Z x(a) log sin ™
m

1<a<m/2
Now we observe that
[]sin 22
ZX logsm— logn for n= HSln”T’
where n and r run through the integers from 1 to % with x(n) = —1 and

x(r) = 1. Clearly L(1,x) # 0 if and only if n # 1.

We will now study n using Galois theory applied to cyclotomic fields.
Dirichlet was able to do this using Gauss’s results on cyclotomy (in modern
terms, Gauss developed the Galois theory of cyclotomic extensions in Chapter
VII of his Disquisitiones; general Galois theory had not yet been invented).

Lemma 2.7. 7 is a unit in Q(v/d).

Proof. n is a product of terms of the form %, where £ = exp(%i)7 and
where n and r satisfy x(n) = —1 and x(r) = 1. We will show first that each

such factor is a unit in Q(€), and then show that 7 lies in Q(v/d ).
NOW%& 75”T1CT
let o5 denote the automorphism of Q(¢) with o4(¢) = ¢*. Then 05(

Let s be an integer with rs = 1 mod m, and

—n

Y
—C
71_14 Cm which clearly is an algebraic integer in Q(C ). Thus % is integral,

and a similar argument shows that so is 1=¢""+ thus this element is a unit in

< 71-7
Q(¢).



2.2 Nonvanishing of Dirichlet’s L-functions 27

The root of unity £~ " also lies in Q(¢): if d is even, then n and r must
be odd, hence "~ = ¢("=")/2_1f d is odd, then & € Q(¢).

The equation 72 = d shows that &k = Q(7) = Q(v/d) is a subfield of
K = Q(¢). The Galois group of K/Q consists of all automorphisms o, with
ged(a,m) = 1. In order to show that k& is the fixed field of the group of all o,
with x(a) = +1, we only need to show that these o, fix k. But this follows
immediately from o,(7) = 7, = x(a)7.

Thus 7 will be a unit in k if we can show that o,(n) = n for all a with
x(a) = +1. The proof involves a variant of Gauss’s lemma from the elemen-
tary theory of quadratic reciprocity and will be added soon. O

Lemma 2.8. Let d be a positive discriminant, x the corresponding character,
and € > 1 the fundamental unit of Q(v/d). Then there is an integer h > 0
such that n = &".

Proof. This follows immediately from the fact that n > 1, i.e., that logn > 0,
which in turn is a consequence of L(1,x) > 0. O

Lemma 2.9. assume that d =p =1 mod 4 s prime. Then Nn = —1, hence
the fundamental unit € of Q(\/p) has negative norm, and the integer h in
Lemma 2.8 is odd.

Proof. To be added soon. O

We have proved:

Theorem 2.10. Let p be an odd prime and x = (;). Then L(1,x) > 0.

In Section below we will show that Z(%)a = hp for all primes p =
3 mod 4 with p > 3, where h is the class number of Q(1/=p), and that the
unit 7 is equal to n = 2", where ¢ is the fundamental unit and h the class
number of Q(\/p ).

The miracle that the explicit value L(1,x) of Dirichlet’s L-function for
the characters (5) at s = 1 is connected to deep arithmetic invariants of
the fields Q(1/p*) such as their class number and fundamental unit will be
explained in Section [2.3] below.

2.2 Nonvanishing of Dirichlet’s L-functions

In this section I will present an elementary proof that L(1,x) # 0 for quad-
ratic Dirichlet characters x. The idea behind it is due to Gelfond [GL1965|
pp. 47-49], with some simplifications thrown in by Monsky [Mo1993].

We start by putting

tn = cx(n) =Y x(d).
d|n

The function c,, has the following properties:
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Lemma 2.11. We have

1. ¢y(m)ey(n) = ey (mn) whenever ged(m,n) = 1;

2. ¢, (p*) > 0 for all prime powers p®;

3. c X(n) >0 for all integers n > 1;

4 ex(n?) =
Proof. 1. We have ¢, (mn) = > x(d) = > Y x(ef) = ¢ (m)cy(n).

d|lmn elm fln
2. Clearly ¢, (p*) = x(1) + x(p) + x(p*) + ... + x(p*) > 0 since x(r?) = 1.
3. This follows immediately from (1) and (2).
4. Observe that ¢, (p*) = 0 or = 1 according as k is odd or even. Now use

multiplicativity.
O
The series f(t) = > X(t)l%n converges absolutely in [0, 1).
n>1
Lemma 2.12. 1. We have f(t) = 3 ¢, (n)t".
n>1
2. 1i t) =
. 1) = o0
Proof. 1. f(t) = 3 x(t)75m = X X(O) Ty 17" = 3 e (NN,
n>1 n>1 N=1
2. Clearly f(t) > > t"*, and the right hand side diverges as t — 1~
n=1
O

Now let us see why L(1,x) # 0 for quadratic characters xy # 1. Assume
that 0= L(1,x) = > @; then

R CIE *t)—lil»::zwm

n>1 n>1

Lemma 2.13. We have by(t) > bo(t) > bs(t) > ... for allt € [0,1).

Proof. Observe that

YT T n el Tt bt Tt bt
T+l (Tt A t (A ht +tm)
1 1

:07

Z nin+1) nn+1)

where we have used the inequality between arithmetic and geometric means:
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Tht4 .. +t" >t /2 > /2,
T4t+... 4+t > (n+1)t"2
The claim now follows. [
Observe that y is defined modulo d, and that 22:1 x(d) = 0. Now we
use a trick called Abel summation: we have

k
D x(m)by = x(1)(br — b2) + (x(1) +x(2)) (b2 — bs)

n=1

+ (x(1) +x(2) + x(3)) (b3 — ba) + . ..

+ (xX(1) + -+ x(k) (b — brt1) + (X(1) + . + x(K))bregr.
Taking absolute values, applying the triangle inequality and observing that
Ix(1) + ...+ x(m)| <d and b, — by—1 > 0 yields

k

’ > x(n)b,

n=1

<d(by —bg) +d(by —b—3)+ ... +d(bp — bpg1) + d|brpi1]

= dby + d(|bgy1| — br+1)-

Since limb,, = 0, the last term is bounded, hence —f(t) = > x(n)b, is
bounded as well, and this contradiction proves the claim.

2.3 Computation of L(1,x)

Our starting point is the basic equation

CK(S) = C(S)L(Sa X)v

where x(n) = (£) and d = disc K is the discriminant of the quadratic number
field K. Multiplying through by s — 1 and taking limits we see that

Jim (s = 1)Cx(s) = lim (s —1)¢(s)L(s, x) = L(L, x)-

Thus if we can show that limg_10(s— 1)k (s) exists and is nonzero, we will

have proved that L(1,x) # 0.

Gaussian Integers

In order to understand the basic idea, let us first consider the case K = Q(3).
Let a,, denote the number of ideals of norm m; then (x(s) = > a,n"*. Put
A,, =ai+...+ an,; then A,, is the number of nonzero ideals of norm < m.
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Since K has class number 1, every ideal is principal, and since the unit
group has 4 elements, a,, = ibm, where b, is the number of elements with
norm m. Similarly, B,, = b1 + ... + by, is the number of nonzero elements
with norm < m.

If we represent Z[i] as a lattice in C, then B,, + 1 is the number of
lattice points inside a circle of radius y/m. If m is large, this number can be
approximated by the area mm of the circle (put a unit square around each
lattice point), and in fact we will show below that |B,, — mn| = O(y/m).
Dividing through by 4 gives [A,, — m§| = O(y/m).

Now define a Dirichlet function

£(5) = Cre() = F¢() = D an = T )n™.

n7

Since the partial sums of the coefficients are O(n'/?), f(s) converges for
s> %7 and we get

Jim (5= DGels) = lim (s = Df(s) + 7 T (s = 1)C(s) =

N

Thus we have proved that L(1, x) = 7 is a consequence of unique factorization
of Z[i].

Remark. Let N; denote the number of lattice points inside a circle of radius
t; we have shown above that |N; — 7t?| = O(t). It is believed that the error
term can be improved to O(t%“) for any € > 0; the result is known to be
false for € = 0. The best known result in this direction is due to Iwaniec
(1989), who proved |N; — 7t?| = O(t7/'1).

Complex Quadratic Number Fields

Let K be a complex quadratic number field with discriminant d < 0, and let
w denote the number of roots of unity in K (thus w = 6,4,2 according as
d = —-3,—4, or d < —4). As before, let a,, denote the number of ideals of
norm m, and put A,, = a1 + ...+ a,,; then A,, is the number of nonzero
ideals of norm < m.

For an ideal class ¢ € CI(K), let a;,,(c) denote the number of ideals of
norm m in ¢, and put A, (c) = a1(c) + ...+ am(c). Pick an integral ideal
b € ¢71; then for any ideal a € ¢ with norm m, the ideal ab = («) is principal
and has norm mNb. Conversely, if o € b has norm mNb, then (a) = ab for
some a € ¢ with norm m. Thus ideals of norm m in ¢ correspond bijectively
to principal ideals («) of norm mNb with « € b.

Let b, denote the number of elements of b with norm mNb, and put
By, = by + ... + by, as before; then Ap,(c) = - Bp,. The elements of b form

a lattice in C, and B, is the number of lattice points a with || < vVmNb.
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A (full) lattice A in C is an additive subgroup of C of the form Za & Z;
the fundamental parallelogram P, is the parallelogram with vertices 0, «, 3,
and a + (. The area of P4 does not depend on the choice of the basis.

For counting the number of lattice points inside some circle we use the
following

Lemma 2.14. Let A be a lattice in C, and let A denote the area of its
fundamental parallelogram. Let C; denote the circle with radius t around the
origin. Then there is a constant C > 0 such that the number N(t) of lattice
points inside Cy satisfies

w2

\Nm_jﬂgm

for allt > 1.

Proof. For each A € A let Py denote the parallelogram you get by shifting
the fundamental parallelogram by A. We introduce the following numbers:

e N;(t) denotes the number of lattice points such that Py lies inside C;.
e N,(t) denotes the number of lattice points such that Py intersects Cy.

Then we obviously have
Ni(t) < N(t) < Nat).
Since the circle contains Ny (t) parallelograms Py, we clearly have
Ny(t) - A < mt?,

and since the parallelograms counted by Na(t) cover the circle, it is also clear
that

Ny (t) > 72
This gives
mt? mt?
Ni(t) < —, No(t) > —.
1( ) — A ’ 2( ) — A

Unfortunately, these inequalities go in the wrong direction. Luckily, we can
turn things around as follows.

Let § denote the length of the long diagonal of the fundamental paral-
lelogram (this does depend on the choice of the basis). Then for any lattice
point A inside C} we see that Py C Cyys, which gives

7(t+ )32
—a

Similarly, if Py intersects C;_g, then Py C C%, hence

N(t) < Ny(t+6) <

m(t —9)?

- < Ny(t - 6) < N(1).
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Combining these inequalities we see

,@t+L62<N(t),Lt2<2iét+L62
A A — - '

Thus for all £ > 1 we get

for C = Z(26 + 62). O

It remains to compute the area A of the fundamental parallelogram.
Clearly A = 1 for the lattice A = Z[i], and, more generally, A = /m for
A =Z[\/-m].

To deal with the general case, observe first that we may choose b primitive,
i.e., not divisible by a rational prime (b was chosen as an integral ideal in
c~1; but if b = nc for some n € N with ¢ primitive, then ¢ is an integral
ideal in the same class). Let {1,w} denote the standard integral basis of O g
and recall that if &y = a + bw and as = ¢ + dw form a basis of b, then the
area of the triangle spanned by 0, a; and as is |‘;g| = ad — bc times the
area of the triangle spanned by 0, 1 and w. Since every primitive integral
ideal has the form b = aZ & (b + w)Z for a = Nb, we find that the area of
its fundamental parallelogram is |’g(1)’ = a = Nb times the volume of the
parallelogram spanned by 0, 1 and w; the latter is easily seen to be 1v/—d,
and this shows

Lemma 2.15. The area of the fundamental parallelogram of A is A = % |d].

This shows that Lf = \2/7%;]]\\7[: = % for a circle with radius t = vVmNb;
thus B,, = % + O(y/m) and |A,,(c) — jy_id\ < k.y/m for a constant k.

depending on ¢ (and the choice of b and its basis). Now we set k = max k. as

¢ runs through the finitely many ideal classes; then |A,, — w%m| < ky/m.

Imitating the argument from d = —4 we now set

2mh 27h s
7= o) = =50 = 3 (o0 = o)

Since the partial sums of the coefficients are O(n'/?), f(s) converges for
s> %7 and we get

onh 2mh
(Ao~ D0(6) =l (o= D7) + 75 i (o~ 10600) = L=

Thus we have proved
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Theorem 2.16. Let d < 0 be the discriminant of a complex quadratic number
field K ; let w denote the number of roots of unity in K, and h the class number
of K. Then

2mh
L(l,x) = —— 2.3
(1) = (23)
for x = (2). In particular, we have L(1,x) # 0.
In the special cases d = —4 and d = —8 give us back the series of Leibniz

and Newton we have come across in Chapter 1.
Dirichlet’s computation of L(1, ) for characters x = (;) easily extends

to all quadratic Dirichlet characters y = (¢) and shows

Theorem 2.17. Letd < 0 be the discriminant of a complex quadratic number
field K, and let T = Zx(a)qﬁll be the corresponding Gauss sum. Then

. |d[-1
L) = 5 Y x(aa. (2.4)

a=1

Comparing (2.3)) and (2.4]) yields the following class number formula:
um'w/ d|
h = | Z x(a

Thus in our case we get

Theorem 2.18 (Dirichlet’s Class Number Formula). Let d < 0 be the dis-
criminant of a compler quadratic number field K, let w denote the number
of roots of unity in K, and h its class number. Then

w9
h= 24 x(a)a
a=1
For d = —3 we have w = 6, hence h = —3(1 —2) = 1; for d = —4 we
have w = 4, hence h = —7(1 — 3) = 1. For all other quadratic fields, we have
w = 2 and therefore
Ll
h=- x(a)a
d a=1

Although this is a very beautiful formula, its practical value is small: for
computing the class number of a field whose discriminant has 10 digits, you
already need to compute 10'° Legendre symbols.

Real Quadratic Number Fields

For real quadratic number fields there is an additional difficulty coming from
the existence of infinitely many units. Fortunately this problem is easily dealt
with:
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Lemma 2.19. Let K be a real quadratic number field with fundamental unit
e > 1. Then every a € K* has a unique associate 3 with the properties 8 > 0
and e72 < |3'/B| < 1.

Proof. Every associate of a has the form § = taeg™ for some m € Z. The
condition 3 > 0 determines the sign. Now Ne = e¢’ = +1 shows that |¢/| =
1/|e|, hence |3 /8| = e~2™|a’ /al; this clearly implies that there is a unique
choice of m for which this expression lies between £2 and 1. O

Next we embed K into R? by sending o € K to the point (a,a’) € R%
Since Na = ac’, elements of norm n will lie on the hyperbola zy = n in R2.
The elements [ satisfying the conditions of Lemma lie inside a domain
in the right half plane (8 > 0), and those in the first quadrant lie between
the lines through (1,1) and (e, 1).

As before, pick a primitive ideal b in the inverse of the ideal class ¢; then
every integral ideal a in ¢ with norm m corresponds to a unique principal
ideal (a) with o € b and |[Na] = mNb. Each such principal ideal has a
unique representative in the domain D constructed above.

This shows that N(m) = A,,(c) + 1 is the number of lattice points inside
the domain D,, = {mP € R?* : m > 1,P € D}. For real t > 1, the domain
D; is bounded and has a “nice” (piecewise differentiable) boundary; thus we
can argue as before and find that the number N (¢) of lattice points inside Dy
is approximately equal to % times the area of D;, where A denotes the area
of the fundamental parallelogram of the lattice Ay attached to b. Clearly D,
is 2 times the area of D; = D, hence it remains to compute A and the area
of D.

The fundamental parallelogram P of Ay is spanned by the vectors pointing
from (0,0) to (1,1) and (w, w’), respectively. If w = \/m, then P is a rectangle
with sides v/2 and v/2m, hence has area 2y/m = Vd. Ifw = 1+\/ﬁ, recall that

2
the area T of a triangle with (positively oriented) vertices (z;,v;) is given by

1 1 1 Y
Tzfl X9 yg,
2
T3 Y3

so in our case we find that the area of the fundamental parallelogram is

1 0
1 W=w—uw = vm.
1 1

— & o

Since A is Nb times this area, we find A = (disc K)Nb.

The area of the part of D lying in the first quadrant consists of the triangle
with vertices (0,0), (1,1), and (1,£72), as well as of the area bounded by the
lines z = 1, x = ¢, the line y = e =22 from below and y = % from above. Thus
we find
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1 1 pz e rl/z
—area(D) :/ / dyd:rJr/ dydx
2 0 Jx/e? 1 Jx/e?

1 €

:/0 (1—5_2)xdx+/1 (%—%)wdw

= loge.

In exactly the same way as for negative discriminant we now get

Theorem 2.20. Let d > 0 be the discriminant of a real quadratic number
field K; let € > 1 denote the fundamental unit, and h the class number of K.

Then
2hloge

Vd
for x = (2). In particular, we have L(1,x) # 0.

L(1,x) = (2.5)

Dirichlet’s direct evaluation of L(1, ) shows

Theorem 2.21. Let d > 0 be the discriminant of a real quadratic number
field K. Then

1 ma
L(l,x) =—— a) log sin —. 2.6
(1,%) \/3@,%:_1)(( ) logsin — (2.6)

Comparing (2.5) and (2.6]) yields the following class number formula:

1 Ta
= E log sin —.
h x(a) log sin

2loge (ed)et

Since (¢) = (7%-) and sinz = sin(r — z), this formula can be simplified

slightly: ‘
1 Ta
h=——— E log sin —.
x(a) log sin pi

10g < 1<a<d/2
Notes
Dirichlet originally only considered prime discriminants d (these are discrim-

inants of the form d = p (p =1 mod 4) or d = —p (p = 3 mod 4)). He started
with the simple observationP]

1
n~! :/ " tda. (2.7)
0

Plugging this into L(1, x) and exchanging integration and summation, we get

2 Actually this is how Dedekind presented Dirichlet’s proof in his edition of Dirich-
let’s lectures on number theory.
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L(1,y) = /01 g:l (%)x"‘ldac. (2.8)

Now (%) is a periodic function of n; this implies that

Z (%)‘fkl =(1+a"+ 2P+ . )pil (%)flil - 7_73{)(?)1

n>1 a=1

p—1

for f(a) = 3 (2)a"1.

a=1
f(z)

xP—1
¢ = €2™/P denote a primitive p-th root of unity; then we try to determine
complex numbers h, such that

f(x) _ ha
xp—l_zx—ca'

Multiplying through by z? — 1 and setting x = ¢* we find f(¢%) = hbip_—_cg o

In order to compute the integral we split into partial fractions. Let

Now
P —1
x— (P

p—1
Vo [T =)= [[a-¢) =
"j#b j=1
since [[1 —¢) =[[(z — ¢y =1+x+ 2%+ ...+ 2P, = p. Thus
f@) 1R, ()
152

p_1 a’
x 1 A ¢

Substituting this into (2.8]) we find

p—1 1
L0 =53¢ [
a=1

0o T—¢%

The integral is computed easily:

U de 1
/o rcn o oelr - Ca)’o = log(1 — ¢*) — log(—¢*) =log(1 — (™%).

The expression
1

(@) =1 =3 (

3
|

) cak

k
1P
is a quadratic Gauss sum, and with 7,(p) = ()7 we get

>
Il

p—1

L0x) = =3 () 1o =), (2.9)

a=1
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This is a special case of (2.1]).

Remark. Instead of using (2.7), Dirichlet actually used the definition of the
Gamma function

I'(s) z/ e .
0

The substitution = — nlog % then shows that

1 1ys-1
I'(s) = ns/ (log 7> "z,
0 T

1 1 1ys—1
s = n=l 7) dx.
n (s) /0 x ( 0og x

Plugging this into L(s, x) we get

I'(s)L(s,x) = /01 (10g é)s_l i (g)x”*dx.

1=1

hence

This formula can then be used to extend L(s, x) to an entire function in the
whole complex plane.

Just as the Riemann zeta function, the L-series L(s, x) satisfy a functional
equation connecting its values at s and 1 — s; putting s = 1 in the functional
equation shows that
0 ifd>0,

L(0,y) =
0,%) {h ifd < 0.

Thus the value of L(s, x) is a lot “simpler” than that at s = 0, and it seems
that, once the L-series is extended to the left of Res = 0, it is even easier to
derive (see Stark [St1993]). On the other hand, it seems that we have lost all
information in the real case; this is, however, not true: if d > 0, then L(s, x)
has a zero of order 1 at s = 0, and the information on the class number
and the fundamental unit of Q(v/d) is contained in the derivative L/(0, x).
Explanations for the values of L-functions and their derivatives at s = 0 are
provided by the Stark conjectures (which can be proved in the abelian case,
but are wide open in general).

Exercises

p—1
2.1 Show that - (3) = 0.
a=1

2.2 For primes p = 1 mod 4, show that the sum of the quadratic residues is equal
to the sum of the quadratic nonresidues modulo p.
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2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2. The Nonvanishing of L(1, x) for Quadratic Characters

Compute the Gauss sums attached to the quadratic characters (2) directly
from the definition for d = -3, d = —4, d = —8, and d = 8.

Use pari or a pocket calculator to compute 1 (or rather its real approximation)
and compare it with €2, where £ = 1+T\/5 is the fundamental unit of Q(v/5).

In the proof of Theorem we have used that the class number of a com-
plex quadratic number field is finite. The following idea allows us to actually
prove the finiteness of the class number using this approach. As a first step,
show that, for an arbitrary number field K, the Dedekind zeta function (x (s)
converges for Res > 1.

Hints: start with the Euler product T, (1 — Np~*)~! and show that this

converges for Res > 1. To this end, observe that #‘7,5 < ﬁ, and that

P
there are at most n = (K : Q) primes p above p. Thus (x(s) < ¢(s)".

(continued) Let C = {c1,...,¢ -} be a set of ideal classes, and let b, denote
the number of ideals with norm n from one of the classes in C. Let (c(s) =
> b,n~° and show that (x(s) > (c(s). Multiply through by s — 1; conclude
that (s — 1){x (s) — oo if there are infinitely many ideal classes, and derive a
contradiction.

Is it possible to give an analytic proof of the finiteness of the class number and
the solvability of the Pell equation for real discriminants in a way analogous
to that of the preceding exercises?

We have defined the Kronecker symbol x = (%) for all positive primes, and
therefore for all n € N coprime to m = |d|. Show that the quadratic reciprocity
law implies that, for positive a coprime to d, we always have x(a) = x(a+m).
Use this relation to extend x to all integers coprime to d, and then show that

+1 ifd>o0,
—1) =
x(=1) {1 if d <0,

by observing x(—1) = (5:45).
Let d < 0 be an even discriminant and put x = (¢) and m = |d|. Show that
x(a+ %) = —x(a) for all positive a coprime to d.

Hints: First write d = 8k for some odd k£ < 0; then (af4k) (ﬁ)(ﬁ) and

(g) = (%)(g) Now show that (ﬁ)(%) = —1land (?’Zk)(s) (here you should

multiply and invert the Jacobi symbol, observing that a(a 4+ 4k) = 1 mod 4).
Now consider the case d = 4k for kK = 3 mod 4.

This is an exercise from an old trigonometry textbook by Hobson (A treatise
on plane geometry, Chap. XV, Ex. 22; 7th ed. CUP 1928; the first edition
appeared in 1891): show that

V3 2+\/§:3(1_1+i_i+i—...).

™
T Ve
1T %R 7713197 25

Actually, the problem also asked you to show that this sum equals

tan"'a  tan”!B  tan"lny
+ -
o B ¥

where «, 8,7 denote the three cube roots of unity.

I
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2.11 Use the class number formula to show that the class number h(p) of Q(v/=p),
where p = 1 mod 4 is prime, is even, and that in fact h(p) = prl mod 4.

2.12 Use the class number formula to show that the class number h(pq) of Q(,/pq ),
where p = ¢ = 3 mod 4 primes, is odd.
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3. Primes in Arithmetic Progression

We have seen so far how to prove the existence of infinitely many primes of
the form (%) = +1 using L-series of quadratic characters. These techniques,
however, do not seem to allow us to “separate” the residue classes £2 mod 5
and prove that there are e.g. infinitely many primes p = 2 mod 5. The reason
for this failure is that (2) = (2), so quadratic characters cannot see the
difference between these classes. In order to make progress, we have to define
more general characters. Consider e.g. the map v : (Z/5Z)* — C* defined
by ¥(a mod 5) = 1,4, —1, —i according as a = 1,2, 3,4 mod 5. Such characters
1 can distinguish between the residue classes 2 mod 5 and 3 mod 5 since
(2 mod 5) = ¢ and (3 mod 5) = —1. Dirichlet’s approach to the Theorem
on primes in arithmetic progression was to show that the L-series L(s, x)
defined with these more general characters also satisfy L(1,x) # 0. In this
chapter, we will present his proof.

In order to motivate the following discussion, let us briefly go through
Dirichlet’s proof that there are infinitely many primes in each of the residue
classes 1 mod 4 and 3 mod 4. Consider the Dirichlet characters on (Z/4Z)*
defined by x4(n) = (=) and the unit character x;. Then

o) = [T

1= x(p
Lis,xa) = (1 =27°)¢(s),

because x1(n) = 0 for even integers n. Taking logs we find

logL(s,xa) = Y p "= Y p"+0(1),

p=1 (4) p=3 (4)
log L(s,x1) = Y. p*+ Y p "+0(1),
p=1 (4) p=3 (4)

hence

1
p~° = 5 (log L(s, x1) +log L(s, xa)) + O(1),

b = log L(s,xa) ~ log (s, xa)) + O(1).
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Since log L(s, x4) remains bounded as s — 1, we find that the primes in each
residue class have Dirichlet density %

Thus the two characters x; and x4 on (Z/4Z)* allow us to seperate the
residue classes p = 1 mod 4 and p = 3 mod 4. This example is not typical
in the sense that it was sufficient to look at quadratic characters, that is,
characters with values 1. The reason for this is the fact that the group
(Z/AZ)* has exponent 2. In the next few sections, we will introduce general
Dirichlet characters, study their L-series, and give a full proof of Dirichlet’s
theorem on primes in arithmetic progressions.

3.1 Characters

A Dirichlet character defined mod m is a homomorphism (Z/mZ)* — C*;
more generally, a character on a finite abelian group G is a homomorphism
G — C*. If g € G has order f, then x(g9)" = x(¢/) = x(1) = 1, hence
the image of ¢ consists of roots of unity. The characters of an abelian group
G form a group G with respect to the multiplication of values; this group
X(G) = G is called the character group of G.

Dirichlet’s Lemma

The principal character 1 is the character that sends every element of G to
1. Examples for nontrivial characters modulo m for odd integers m are given
by Legendre symbols x = (). These are Dirichlet characters mod m since
X(a) only depends on a mod m, and since x(ab) = x(a)x(b).

The only nontrivial Dirichlet character x defined modulo 4 must satsify
x(3) = —1; thus we have x(a) = (%4) for a > 0. More generally, for any
discriminant d = disc K of a quadratic number field, the map x(a) = (%)
for a > 0 defines a Dirichlet character defined mod |d| since the quadratic
reciprocity law implies x(a) = x(a + |d|).

We can also define a character ) modulo 5 by demanding x(2) = 4; then
x(4) = x(2)? = -1, x(3) = x(2)3 = —i, and of course x(1) = x(2)* = 1.
This is of course not a character induced by a Kronecker symbol since it has
nonreal values. Dirichlet’s Lemma now characterizes all Dirichlet characters
coming from Kronecker symbols:

Lemma 3.1 (Dirichlet’s Lemma). Let m > 1 be an integer, and x a non-
trivial Dirichlet character defined modulo m. Then there is a discriminant d
with x(a) = (g) for all a > 0 if and only if x is a quadratic character.

Proof. Let us first prove this for prime powers m = p”. If p is odd, this is a
cyclic group; every quadratic character y is trivial on squares since x(a?) =
x(a)? = 1. Thus ker y has index < 2; since x # 1, the kernel ker y must
consist only of the squares mod p”, and we must have x(n) = —1 for all
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nonsquares n. Now a € (Z/p"Z)* is a square if and only if a is a square mod
p: this is due to the fact that (Z/p"Z)* ~ (Z/pZ)* x Z/p"~'7Z, and that
every element in the second component is a square since this group has odd
order. Thus x(a) = (2) for all a € (Z/p"Z)*.

The case p = 2 ispdiﬂerent, since the group (Z/2"Z)* is, in general, not
cyclic; in fact, (Z/2"Z)* ~ (=1) x (5) ~ Z/2Z x Z/2"~2Z for r > 3. Since
X is determined by its images on —1 and 5, there are exactly four quadratic
characters mod 2". One of them is the trivial character, the other three are
given by the formulas x4(a) = (=2), xs(a) = (2), and xaxs(a) = (=2) for
a > 0.

The claim now follows from the Chinese Remainder Theorem. O

Basic Properties of the Character Group

The set of characters X (G) = G (we will use both notations) of G is an
abelian group with respect to the multiplication (¢x)(a) = ¥(a)x(a). If A and
B are finite abelian groups, then we obviously have X (A®B) ~ X (A)® X B).
Now we claim

Proposition 3.2. IfG is a finite abelian group, then G ~ X (G) (non-canon-
ically) and G ~ X (X (Q)) (canonically).

Proof. Since G is the direct sum of cyclic groups, and since X(A @ B) ~
X(A) @ X(B), it is sufficient to prove G ~ X(G) for cyclic groups G. Let
G = (g); then any character x € G is determined by the value of x(g), since
we have x(g9%) = x(9)* Now x(g) must be a #G-th root of unity; there are
exactly #G of them, and they are all powers of a primitive #G-th root of
unity. Therefore, each character € X(G) is a power of the character y which
maps ¢ to a primitive #G-th root of unity. This shows that Gis a cyclic
group of order #G, and in particular, we find G ~ X (G).

In order to prove that G ~ X (X (G)) we observe that every g € G induces
a map g : G — C* : Y9(x) = x(g9). The map ¢ : g — 7, defines a

homomorphism G — G with kerty = 1; it must be onto since #G =
#X(G) = #X(X(G)). -
An important property of characters are the orthogonality relations:

Proposition 3.3. Let G be a finite abelian group with character group X.
Then

[ #G if x=1 [ #G if z=1
;X@”)_{ 0 if xA1 9 ZX(Q”)—{ 0 if x#1
x XEX

Proof. The first assertion is clear if y = 1. If x # 1, then there must be a
y € G such that x(y) # 1. But now
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X)) > x(@) = xley) = > x(@),

zeG zelG zeG

proving our claim. The ‘dual’ assertion is reduced to the first case by identi-
fying G and X (X (G)). O

Primitive Characters and Conductors
Let x be a Dirichlet character on (Z/nZ)*; every integer m € N such that
a =bmod m = x(a) = x(b)

whenever a, b are prime to n is called a defining modulus for x.

Consider e.g. the character x modulo 8 which has values +1 for the residue
classes 1,5 mod 8 and —1 for 3,7 mod 8. Then this character is also de-
fined modulo 4 since it agrees with the character sending the residue classes
+1mod 4 to +1. It is, however, not defined modulo 2 since 1 = 3 mod 2,
whereas x(1 mod 8) = 1 and x(3 mod 8) = —1.

If m; and my are defining moduli, then so is their greatest common divisor
(this is easily seen by using a Bezout representation d = miz + maoy of
d = ged(my,ma)), hence there exists a smallest defining modulus f, which is
called the conductor of x. A Dirichlet character y defined modulo m is called
primitive if m is the conductor of x.

Let us now compute the conductors of the Dirichlet characters defined
mod 15. Since (Z/15Z)* ~ (—1) x (2), such characters are defined by their
values on the residue classes —1 and 2 mod 15.

Define x by x(=1) =1, x(2) =4, and ¢ by ¥(—1) = —1 and ¥(2) = 2.
It is then easily checked that the eight characters x"° for 0 < r < 3 and
0 < s <1 are pairwise distinct; thus we have found all 8 = ¢(15) characters
mod 15. Here is a table with all these characters, their values, and their
conductors :

1 2 4 7 8 11 13 14| f
+1 +1 +1 +1 +1 +1 +1 +1] 1
+1 44 -1 —i —i —1 4+i +1]15
+1 -1 +1 -1 -1 41 -1 +1]| 5
3 l+1 —i -1 4+i +i -1 —i +1|15
+1 +1 +1 -1 +1 -1 -1 -1]15
XY |+l +i -1 i —i 1 —i 1| 5
X | +1 -1 41 41 -1 -1 41 —-1] 3
XY |+l —i -1 —i +i +1 +i —-1| 5

T X XX =
&)

The table also shows that the three quadratic characters are induced by
Legendre symbols: ¢ = (5), X2 = (), and 2 = (3)-
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3.2 Primes in Arithmetic Progression

For each character x on (Z/mZ)* we now can define its L-series in the usual
way, and observe that the multiplicativity of y implies that we have an Euler
factorization for all s with Res > 1:

I |

1—x(pp=

If X # 1, this L-series actually converges for Res > 0: in fact, we have
Z Xx(a) = 0, and this implies that Z x(a) = Z x(a) for p = v mod m for
a= =1

=1
some v < m. Thus

[A(N)| =

> x(a)

a=1

v
<> Ix(a)=v<m,
a=1

and so the partial sums of the coefficients of L(s, x) are bounded. Lemma

then implies that L(s, x) converges to an analytic function for Re s > 0.
Assuming for the moment that L(1, ) # 1 whenever y # 1, we can prove

Dirichlet’s theorem as follows. For a Dirichlet character x we have

log L(s, x) Zlog

=> > 5x(p”)p’”5

p n>1

-+ T

P n>2

:ZXP;D*“rO 1)
p

by a now standard argument. Setting fy(s) = >_ x(p)p~°, we therefore have

log L(s, x) = fx(s) + O(1).
Next we fix an integer a coprime to n, set G = (Z/m)*, and compute
2=, X(a) fx(s) in two different ways. On the one hand, we have

@ S %@ fi(s) = # S %@ Y xp
- # S S x@)x ()
= Zp*# > x(p/a).
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The inner sum here is 0 unless p = a mod m, when it equals #G; thus we get
1 = —s
mZX(a)fx(s): Z p .
X p=a mod m
On the other hand we know
1 1 1
— ) x(a)fy(s) = ——1log—— + O(1

for small s > 1. Combining these equations we get

Z p = ﬁlog S—% +0(1),

and this shows

Theorem 3.4 (Dirichlet’s Theorem). For any integer m > 1 and any a
coprime to m, the set of primes p = a mod m has Dirichlet density ﬁ In
particular, there are infinitely many such primes.

To complete the proof, we have to show that L(1, x) # 0 for every Dirichlet
character modulo m different from the trivial character.

The Nonvanishing of L(1, )

Next we will give the first of two proofs for fact that L(1, x) # 0 for nonprin-
cipal Dirichlet characters x. We start with the following simple observation:

Lemma 3.5. Fiz an integer m > 1 and let G = (Z/mZ)*. Then

Z log L(s,x) >0
x€G

for all s < 1.

Proof. This is a straightforward calculation:

1
D logL(s,x) = log]] 1—x(p)p—

xE(A}
DI I) BN

p n>1

SDIFD D) SRt}

n>1 P

The last sum is 0 unless p™ = 1 mod m; thus
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> logL(s,x) = Z% > p >0

xe@ n>1  prn=1
as claimed. O

Now recall that log L(s, 1) = —log(s—1)+O(1) for small s > 1. If x # 1,
then L(s, x) is analytic in a vicinity of s = 1, and there are two cases.

1. If L(1,x) # 0, then log L(s, x) = O(1) in some vicinity of 1.

2. If L(1,x) = 0, then L(s,x) = (s — 1)*X) f(s) for some integer a(x) > 1
and a function f that is analytic around s = 1 with f(s) # 0. Thus
log L(s, x) = a(x) log(s — 1) + O(1).

This implies

Z log L(s,x) = —log(s — 1) + Z a(x)log(s — 1) + O(1) (3.1)

Xeé x#1

for s > 1. If Zx a(x) > 2, then the right hand side of (3.1) goes to —oo for
s — 1; but the left hand side is > 0 by Lemma [3.5] and this contradiction
shows that > a(x) < 1.

Thus there is at most one character xy # 1 with L(1,x) = 0 (and if
there is one, the order of the zero is 1). This immediately implies that y
must be real: for if y is a nonreal character, then so is ¥ = x~'; but then
L(1,%) = L(1,x) = 0, so there would be at least two characters for which
L(1, x) vanishes.

So if there is any character x at all for which L(1,x) = 0, then y must be
a real character. By Dirichlet’s Lemma, we have x = (2) for some quadratic
discriminant d; but for such characters we have already seen in Chapter 2
that L(1,x) # 0.

We have proved:

Theorem 3.6. If x # 1 is a Dirichlet character modulo m, then L(1,x) # 0.

3.3 Cyclotomic Number Fields

The second proof of Dirichlet’s Theorem, or rather of the nonvanishing of the
L-series, will employ the arithmetic of K = Q((,,). This is quite a natural
field to look at in this connection since the decomposition of a prime p in
K/Q only depends on the residue class p mod m. In the following, we will
briefly recall the basic properties of these cyclotomic fields.

For any m € N, let ( = (;, denote a primitive m-th root of unity. The
cyclotomic field K = Q((,,) has degree n = ¢(m); it is an abelian extension
of Q with Galois group G ~ (Z/mZ)*; the residue class a mod m corresponds
to the automorphism o, : p — (2.
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The following result will eventually turn out to be a special case of a
general theorem in class field theory, and can be proved by quite elementary
means:

Theorem 3.7 (Kronecker-Weber). Every abelian extension of Q is contained
in some cyclotomic extension Q(().

The ring of integers of K is O i = Z[(], and the elements 1, ¢, ¢?, . .. ¢om—1
form an integral basis.

Theorem 3.8 (Decomposition Law in Cyclotomic fields). Let ¢ be a prim-
itive m-th root of unity, and let K = Q(C) denote the field of m-th roots of
unity. If p f m is a prime, then pOg = p1---pg for prime ideals p; with
inertia degree f, where f is the smallest integer f > 0 with p/ = 1 mod m,
and g is determined by fg = (K : Q) = ¢(m).

Thus the decomposition type of a prime p only depends on its residue
class modulo m; we will later see that such fields are class fields, and that
cyclotomic fields are the simplest examples.

For example, primes p = 1 mod 3 split completely in Q((3), and primes
p = 2mod 3 have inertia degree 2 (that is, they are inert since Q((3) =
Q(v/—3) is a quadratic extension). The decomposition law for quadratic ex-
tensions, on the other hand, tells us that p will split completely in Q(v/—3)
if and only if (_73) = +1; comparing the two statements implies that

(_73) = (%), and this is a special case of the quadratic reciprocity law. In
fact, the general reciprocity laws (not just the quadratic ones) can be derived
by comparing the decomposition law in class fields and Kummer extensions.

Recall that the fundamental equation (x(s) = ((s)L(s, x) for quadratic
Dirichlet characters was basically equivalent to the decomposition law for
primes in quadratic extensions K/Q. We will now prove the following cyclo-

tomic analog:

Theorem 3.9. Let K = Q((,,) be the field of m-th roots of unity, and let G ~
(Z/mZ)* denote its Galois group. The decomposition law in cyclotomic fields
implies that the Euler factors for primes p { m in (k(s) and ][, .5 L(s, x)
are the same.

Proof. We have pOg = p1...pg for fg = ¢(m), where f is the order of the
residue class p mod m in (Z/mZ)*. Since Np,; = p/, the Euler factor for each
prime above p in the product expansion of (x(s) is (1 — p~#%)~!, and since
there are g of them, we find that p contributes the factor

()"
1—p7s

to the product expansion of (x(s).
From the factorization
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f—1
1—af = H(l — (k)
j=0
we deduce
me-¢
1_p_fS: (]-_T)a
=0 P

where ( is a primitive f-th root of unity.

Let (p) denote the subgroup of G = (Z/mZ)* generated by p. Since p has
order f, the quotient G/(p) has order g. Since X ((p)) is isomorphic to the
group of f-th roots of unity, we have

-1
II a-—xwx) =][0a-¢x),
XEX((P) =0

since x(p) runs through the f-th roots of unity as x runs through X ((p)).
The dual of the exact sequence

1 () G G/(p) — 1
is the exact sequence
I —— X(G/(p)) —— X(G) —— X((p)) —— L

This shows that each character on (p) lifts to exactly g characters on G, hence
we have

-1
II a—xwx)=]]a-¢dx),
XEX(G) j=0
and this implies the claim. O

In the next chapter we will prove that the Dedekind zeta function (x(s)
has a pole of order 1 at s = 1 for any number field K, and compute its
residue. Taking this for granted and using the fact that (x(s) and [, L(s, x)
differ only by finitely many Euler factors, we see that Hx L(s,x) has a pole
of order 1 at s = 1. But this pole comes from the factor L(s, 1), since this
is, up to finitely many Euler factors, just the Riemann zeta function. This
implies that L(1,x) # 0 for all characters x # 1.

The statement in Theorem can be given a slightly more satisfying
form. In fact, consider a character x defined modulo m, and let f be its
conductor. Then there is a unique (primitive) character ¥ defined modulo
f such that x(a) = X(a) for all a coprime to m. The L-series L(s,x) and
L(s,X) differ by at most the Euler factors for the primes dividing m/f. For
example, the unit character y modulo 4 and Y have L-series
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L(s,x)=14+3"°4+57°+7°+...,
L(s,X)=1427°+37°+474+ ... =((s).

We now claim

Theorem 3.10. Let K = Q((,) be the field of m-th roots of unity, and let
G ~ (Z/mZ)* denote its Galois group. The decomposition law in cyclotomic
fields implies

Cre(s) = [ Ls:%).

xeé

Proof. There are two things to show: first, that the Euler factors for the prime
pin L(s,x) and L(s,X) are the same if p is unramified, and second that the
Euler factors for all primes p | m in (x(s) and [, L(s, X) are the same.

For the first point, consider Dirichlet characters as homomorphisms y :
G — C* for G = Gal (K/Q); then G, = ker x is a subgroup of G, and we
say that x is unramified at p if p is unramified in the fixed field of G,. Clearly
every x is unramified at the primes p { m, and the principal character 1 is
unramified everywhere since its fixed field is Q. The key to the proof is the
observation that x is ramified at p if and only of X¥(p) = 0.

Details will be added later. O

Notes

The conjecture that every arithmetic progression a +mb for coprime integers
a and m contains infinitely many primes goes back to Euler. Legendre needed
such a result in his proof of the quadratic reciprocity law; he eventually even
sketched a proof of his conjecture, but its key lemma later turned out to be
false. Dirichlet tried to repair Legendre’s arguments, but succeeded in proving
his theorem only by using Euler’s techniques.

Some cases of Dirichlet’s theorem can be proved by elementary techniques
a la Euclid; it can even be shown that Euclidean proofs for the infinitude of
primes in the arithmetic progression a+mb exist if and only if a> = 1 mod m.
In particular, there are such proofs for the residue classes a = 1 mod m and
a = —1 mod m.

Exercises

3.1 Let A and B be abelian groups. Show that X (A & B) ~ X(A) ® X (B).

3.2 Let
1 A B C 1

be an exact sequence of finite abelian groups. Show that there is an exact
sequence
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1 c B A 1.

3.3 Let x and v be Dirichlet characters defined modulo m, and with conductors
fx and fy. Show that if ged(fy, fy) = 1, then the character 1 has conductor
IxJu-

3.4 List all Dirichlet characters modulo 24, determine their conductors, and iden-
tify them with Kronecker symbols.
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4. Dirichlet

This chapter is devoted to other results that Dirichlet obtained using his an-
alytic techniques, as well as to results that were obtained later using methods
available to Dirichlet.

4.1 Dirichlet’s L-series for Quadratic Forms

Dirichlet obtained his class number formula using the language of quadratic
forms: ideals had not yet been invented. In the following, we will explain the
connection between the two approaches.

A binary quadratic form is an expression Q(X,Y) = AX2+BXY +CY?;
we will often denote this form by Q@ = (A, B,C). Its discriminant is A =
B? — 4AC. A form (A, B,C) is called primitive if gcd(A, B,C) = 1, and
positive definite if A < 0 and A > 0. The group SL2(Z) of 2 x 2-matrices
with integral entries and determinant 1 acts on these forms as follows: for
M= (%), weset Qm(X,Y)=Q(rX+sY,tX +uY). Two forms Q, Q' are
called equivalent if Q' = Q|y for some M € SLo(Z). It is easy to see that
equivalent forms have the same discriminant and represent the same integers.
The set of equivalence classes of primitive (and, if A < 0, positive definite)
forms is a finite abelian group Cl(A) with respect to “composition”

In order to keep things as simple as possible, we will only consider the
easier case of negative discriminants. To each positive definite form @ =
(A, B, C) we associate the ideal b = (A, 1372\/2) in the ring of integers of the
quadratic number field with discriminant A. Equivalent ideals correspond to
ideals in the same ideal class, so the map sending forms to ideals induces
an isomorphism between the class group Cl(A) of forms and the ideal class
group Cl(K). Conversely, given an ideal a we write a = oZ @ 7 and set

N(azx + By)

Qz,y) = ~ Na

Now let ¢ € Cl(A) be a class of forms; pick a form @ € ¢ and define the

L-series . .
L(s,c) = — —_—,
=1 ; Q(z,y)
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where the sum is over all integers z,y > 0 with (x,y) # (0,0), and where
w is the number of roots of unity in K (or, in the language of quadratic
forms, the number of automorphs of a quadratic form of discriminant A).
Since equivalent forms represent the same integers, this does not depend on
the choice of Q. It is easy to see that the integers represented by @ are
exactly the integers n for which there is an a € b with nNb = Na. To each
principal ideal («) of this form there correspond w values of a; moreover we
have already seen that these principal ideals are in bijection with the ideals
a € ¢! of norm m such that ab = («) is principal.

Lemma 4.1. Let Q = (A, B,C) be a quadratic form associated to the ideal
a. Then a natural number n is represented by Q if and only if there is an
integral ideal b € [a]~! with Nb = n.

Proof. If b € [a]~! with Nb = n, then ab = () O
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4.2 Genus Theory for Quadratic Number Fields

In this section we will review genus theory for quadratic number fields, and
give Dirichlet’s analytic proof for the existence of genera.
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4.3 Primes with Prescribed Residue Characters

In this section we will generalize Theorem [I.11} Dirichlet apparently never
bothered proving this result, since it is an immediate consequence of his
density result and quadratic reciprocity. Research by Kummer and Hilbert
on reciprocity laws in number fields, however, required results that did not
depend on reciprocity. Remarks made by Kummer in one of his proofs of
quadratic reciprocity show that Kummer was aware of these applications,
and Hilbert later generalized them to arbitrary number fields and used them
to prove the quadratic reciprocity law in totally complex number fields with
odd class number.

Let aq,...,a; be squarefree integers; we will call them independent mod-
ulo squares if any relation [ | a;j = a? for an integer a and exponents e; = 0, 1
implies e; = ... = e¢; = 0. Distinct primes, for example, are always in-

dependent modulo squares, whereas the integers 6, 10, 15 are not because
6-10-15 = 223252 is a square.

Theorem 4.2. Assume that ay,...,a; € Z are independent modulo squares.
Then for any choice ¢ = (c1,...,¢;) of signs ¢; = £1, the set S, of primes p

satisfying
al Qg
(%) e ot (%)a
p p
has Dirichlet density 6(S) = 271.

If we choose ¢; = ... = ¢ = 41, then S = Spl(K/Q) for the multi-
quadratic number field K = Q(y/a1, ..., /a; ). Since the independence mod-

ulo squares of the a; is equivalent to (K : Q) = 2%, we find that the set of

primes splitting completely in K/Q has Dirichlet density ﬁ

Our proof of Theorem will be modeled after Dirichlet’s proof of his
density theorem. For showing that, for coprime integers a and m, there are
infinitely many primes p = a mod m we introduced Dirichlet characters

X : Gal (Q(Gm)/Q) ~ (Z/mZ)* — C*;
here we have to consider characters
x : Gal (K/Q) ~ (Z/2Z)" — C*.
Every o € Gal (K/Q) defines a vector (ey,...,e;) € (Z/27Z) via
o(Var) = (=D)"Vai, ..., o(Jar)=(=1)"/a,
and we will identify o with the sign vector
(D), (1)) = (Va " o aT ),

and therefore Gal (K/Q) with ub, where ps is the group of 2nd roots of unity.
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Every prime p{ a; - - - a; defines an automorphism o, via

o= (%) (%)

Now we are ready for the

Proof of Thm.[[.3 Set f(s) = Zp Xx(op)p~*, where the sum is over all
primes p { @ = a;---a;. Since x is a quadratic character, fy(s) = O(1)
as s — 1 unless x = 1; this follows by taking logs of the corresponding
L-function L(s, x) and observing that L(1,x) # 0.

Now

0 ifo,=c,
S onton = Simser = {5 ¢
X X
by the orthogonality relations, hence

27 x(@fi () =27 x(e) ) x(opp~?
=27 p7 Y x(e)x(op)
- Y

p: op=c

On the other hand,

27" Z x(e)fx(s) =27 "log

X

1
-+ o),

s —

because all f,(s) with x # 1 are bounded as s — 1, whereas f\ (s) = log 25+

O(1) for x = 1 (in this case, fy(s) = >_,,p*). The claim now follows. [
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4.4 Primes Represented by Binary Quadratic Forms

The odd primes represented by the quadratic form Q(X,Y) = X2 + Y? are
exactly the primes p = 1 mod 4, hence have Dirichlet density % Do primes
represented by a general quadratic form Q(X,Y) = AX? + BXY +CY? (we
will often denote this form by @ = (A4, B,()) also have a Dirichlet density?
The problem is trivial if ged(A, B, C) # 1: the form 2X?2 + 2Y2, for example,
represents only 2. Let us therefore assume that ) is primitive, i.e., that
ged(A, B,C) = 1. Then Dirichlet claimed

Theorem 4.3. Let Q = (A, B,C) be a quadratic form with discriminant
A = B% — 4AC. Then the set Sg of primes represented by Q) has Dirichlet
density

2 ZfQN(Au_Bvc)v

2h

{i if Q # (A4,—B,C),

where h is the class number of forms of discriminant A.

Actually Dirichlet’s claims were slightly different, since he worked with
forms @Q = (A,2B,C) with even middle coefficients. If @ = (1,0,1), then
h = 1, hence Thm. tells us that primes represented by ) have Dirichlet
density 1.
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Exercises
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5. Algebraic Number Fields

The purpose of this chapter is to present the results from algebraic number
theory that we will assume to be known. We will also derive several results
on the decomposition of primes that we will need later on.

5.1 Archimedean Valuations of a Number Field

Let K be an algebraic number field; we can write K = Q(«), where « is a
root of an irreducible polyonmial f € Q[z]. Actually, it is sometimes better
to think of K as a purely algebraic object, namely K = Q[X]/(f); in this
interpretation, « = X + (f) is a root of f, but it does not make sense to ask
e.g. what |a| is. We can, however, define Q-homomorphisms x; : K — C as
follows: over the complex numbers, f factors into n distinct linear factors:

fX) =X -a)- (X —an).

We now put £;(a) = a; and extend this linearly to K by demanding

n—1 n—1
Kj aial) = agk; ()t
J t - thvj :
t=0 t=0

These maps K1,...,k, : K — C are called embeddings of K into C. They
are Q-homomorphism, that is, they respect the ring structure of K and are
Q-linear.

If k(K) C R, the embedding &; is called a real embedding, and a complex
embedding otherwise. The number field K = Q(+/2), for example, has one
real embedding sending o = X + (X3 — 2) to V/2 € R, and two complex
embeddings sending o to p</2 and p?3/2, respectively, where p is a primitive
cube root of unity. If x; is a complex embedding, then so is %; defined by
R;(a) = k;(a). Thus complex embeddings come in pairs. If we denote the
number of real embeddings of K by r, and the number of complex embeddings
by 2s, then we always have n = (K : Q) = r+2s. The pair of natural numbers
(r,s) is often called the signature of K.

Using these emebddings we now can define “archimedean valuations” on
K as follows. For each j = 1,...,n set |a|; = |o;(e)], where the absolute
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value on the right hand side is the usual absolute value in R or C. Since pairs
kj,R; of complex embeddings give rise to the same valuation, this provides
us with r + s valuations |- |1, ..., | * |r+s-

Now assume that all the fields x;(K) coincide. Then we can define
oj(a) == k7' (k;(a)) and get endomorphisms o; : K — K. For a € Q, we
clearly have o;(a) = a, and this shows that the o; are Q-automorphisms of
K. Thus in this case, the extension K/Q is normal, and we have Gal (K/Q) =

{o1 =id,09,...,0,}.
Conversely, if K/Q is Galois with Galois group Gal (K/Q) = {01 =
id, 09, ...,0,}, and if k; a fixed embedding of K, then the maps k; := k1 00;

define distinct embeddings of K into C. Thus in this case, we get all embed-
dings by twisting one of them with elements of Gal (KQ).

Trace and Norm

For any a € K, multiplication by « is a Q-linear endomorphism g, :
K — K of the Q-vector space K. With respect to some Q-basis such as
{1,a,a?,...,a" 1}, this linear map can be described by an n x n-matrix
M,,. The trace and the determinant of this matrix M, are rational numbers
that do not depend on the choice of the basis, and are called the trace Tr a
and the norm Na of a. It follows immediately that Tr (a4 3) = Tra+ Tr 8
and N(af) = Na- NS.

Trace and norm can also be defined using the embeddings of K into C:
we have

Tra=o01(a)+...+o,(a),

Na=o1(a) - op(a).

5.2 Arithmetic of Number Fields

Ring of Integers

Algebraic integers are roots of monic polynomials with integral coefficients.
If f is the minimal polynomial of an algebraic integer (the monic polynomial
f with minimal degree such that f(a) = 0), then f has integral coefficients.

The set A of algebraic integers forms a ring. The ring Ok of integers in a
number field K is defined by O = ANK. Since traces and norms of algebraic
integers are coefficients of their minimal polynomial, they are integers.

Algebraic integers aq,...,a, € Ok are called an integral basis if every
a € Ok can be written as a Z-linear combination of the «;. It is not difficult
to prove

Theorem 5.1. Every number field has an integral basis.
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Proof. Among all Q-bases a1, ..., a, with a; € Ok choose one for which the
natural number |disc (aq,...,a;,)| is minimal. It is then an easy matter to
show that every a € Ok is a Z-linear combination of these ;. O

More generally, each ideal a in O has a Z-basis {a1,...,a,}, and
disca = disc (aq,...,ap)

is independent of the choice of the integral basis, and is called the discriminant
of a. If a = O is the unit ideal, disc K := disc O g is called the discriminant
of the field K.

Proposition 5.2. For any integral ideal a we have
disca = Na? - disc K. (5.1)

Proof. Instead of giving the proof, let me sketch the idea behind one of them.
The result is almost obvious if a = («) is a principal ideal, since then a has
a Z-basis of the form aw, ..., aw,, where wy, ..., w, is an integral basis of
K; equation then follows immediately.

The problem now is that the Dedekind rings O do not necessarily have
class number 1. The solution to this problem is localization: let R be a domain
and S a multiplicatively closed set not containing 0; then Rg is the set of all
“fractions” = with » € R and s € S. If P is a prime ideal, then S = R\ P
is multiplicatively closed, and we call Rp = Rg the localization of R at P. If
R = Ok, the ring R, for a prime ideal p has a unique nonzero prime ideal,
namely pR,, and is a principal ideal domain. In commutative algebra, this
technique (it is completely elementary) is studied in detail, and it allows us
to reduce the proof of to a proof in all the localizations of O ; but since
these are PIDs, the proof given above applies. O

If f is the minimal polynomial of o € O, then disc K | disc f; in fact,
these discriminants differ by a perfect square.

In quadratic number fields Q(y/m ) with squarefree m € Z, we can pick
the integral basis {1,/m } and {1, 3(1+ /m )} according as m = 2,3 mod 4
or m = 1 mod 4; the discriminant of K is 4m and m in these cases.

Let ¢ = ¢, be a primitive p-th root of unity, i.e., a root of the cyclotomic
polynomial ¥

P—1
By (X) =
The cyclotomic field Q(¢) has an integral basis {1,¢,¢?,...,¢P7?} and dis-
criminant (—1)®~1/2pp=2,

The discriminant satisfies congruences modulo 4 and “modulo co”:

Proposition 5.3. Let K be a number field. Then

1. disc K = 0,1 mod 4 (Stickelberger);
2. disc K has sign (—1)®.

=XP 1y 4+ X+1.
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Arithmetic of Ideals

The basic result here is

Theorem 5.4. The ring of integers O of a number field is a Dedekind
domain.

Recall that a domain R is a Dedekind domain if the following conditions
hold:

1. R is integrally closed;
2. R is Noetherian;
3. every nonzero prime ideal of R is maximal.

These conditions are equivalent to the statement that every nonzero ideal in
R can be written uniquely as a product of prime ideals.
Thus, in the number field case, for every rational prime p there are prime
ideals p1, ..., pg with
POK =Pi' Py’

the exponent e; is called the ramification index of p;. Since prime ideals are
maximal, the residue class rings O /p; are finite fields; their cardinality is
called the norm Np; of the prime ideal p;. Moreover, O i /p; has characteristic
p, hence is an extension of the finite field F,, (in fact, the map sending @ mod
p to a mod p; is an injective ring homomorphism sending [F,, to a subfield
isomorphic to F, inside O /p;). Thus Ok /p; is a finite field with p/s elements
(where f; = (O /p; : Fp) is the degree of the extension), and f; is called the
inertia degree of p;. These numbers satisfy the relation eq fi +...+e4f; = n.

The actual decomposition of a prime p is computed as follows: let
K be a number field of degree n; for every a € Ok, put disc(a) =
disc (1, a, a2, ..., @™ 1), Then disc () = j?disc K for an integer j = j, that
measures how far the subring Z[a] = Z ® Za @ ... ® Za™ "t of Ok differs
from Dg: we have j = (O : Z[a]). A prime p dividing this index j for every
choice of « is called an inessential discriminant divisor, and Dedekind showed
that we always have p < n.

Theorem 5.5. Assume that K = Q(«), and let f € Z[X] denote the minimal
polynomial of oco. We can decompose f(X) into irreducible factors over Fp[X]:
f(X) = Pi(X) - Py(X)“.

If p 1 ja, then pOx = P --- Py’ for prime ideals P; = (p, P;i(a)) with

inertia degrees f; = deg P;.

Observe that this immediately implies n = e1f1 + ... 4+ e4fy since n =
deg f = e1deg Py + ... + ey deg Py. Also note that in quadratic fields and in
cyclotomic fields we can always find an o with j, = 1.
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5.3 Prime Decomposition in Relative Extensions

So far we have studied number fields K mostly as extensions of Q. In class
field theory, we will almost always deal with extensions L/K of number fields.

Some of the definitions we have given can be applied directly to the rel-
ative situation: for example, the relative trace Tr 1,/ and the relative norm
Np,/ can be defined in a completely analogous way: multiplication by o € L
is a K-linear map etc. Again the trace is additive and the norm multiplica-
tive; moreover, if L/F/K is a tower of number fields, then it is easily checked
that Tr /g = Tr py (Tr 1 ypa) and Ny ga = Np/g(Np pa). Moreover, if
a € F,then Trpjga = (L: F)-Trp/ga and Np o = (NF/Ka)(L:F).

We can also extend the norm to ideals: if 2 is an ideal in Oy, then the
ideal generated by the norms Ny, a, where o runs through 2, is an ideal in
O denoted by Ny /2. If 01, ..., 0y, are the n = (L : K) embeddings of L
into C that fix K elementwise, then there is a unique ideal a in 9 g such that
aOn = o1 (A) - - - 0, (A), where the product of the ideals is formed inside the
normal closure N of L/K, and we have a = Ny k2.

If a prime ideal p in O splits as pOr = P ---Py?, then the prime
ideals B; are said to lie above p; the exponents e; = e(B;|p) = ex /1 (B;) are
called the relative ramification indices, and the relative degrees f; = f(B;|p)
of the extensions (O /PB;)/(Ow/p) are called the relative inertia degrees. As
before, we have n = (L : K) =e1 fi + ...+ e4fq.

The prime ideal B, is said to be ramified in L/K if e; > 1; the prime
ideal p is said to be ramified in L /K if at least one of the e; is > 1. The same
remarks apply to infinite primes.

If L/K has degree n, we also can define the relative discriminant of ele-
ments o, ..., a, as before. But the definition of the discriminant of a number
field cannot be transferred directly to relative extensions, since in general a
number field L does not have a relative integral basis (that is, there do not
exist aq,...,a, € Oy, such that every a € Oy, is an O g-linear combination
of the ;). The reason for this failure is that the proof of the existence of an
integral basis over QQ uses the fact that Q has class number 1. Thus we have
to proceed differently.

First recall the definition of fractional ideals in Oy : these are Z-modules
a C K with the property that there is an o € K* such that «a is an integral
ideal. For example, the set a = {37‘1 ta € Z} is a fractional ideal in Z since
2a = (3). If a is a nonzero fractional ideal, we put a=! = {a € K : aa C Ok }.
If a has the prime ideal factorization a = pj* - - - p%~ (where the exponents are
integers, i.e., may be negative), then a=! = p7* .. p 9.

Tt is now easy to check that, for extensions L/K of number fields, the set

1 ={ae K:Trp/gaw e Oy forallw e O}

is a fractional ideal; since Oy C 9%, its inverse (O%)~! =: diff (L/K) is
an integral ideal in Oy, called the (relative) different of the extension L/K.
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The relative discriminant of L/K is simply the relative norm of the different:
disc (L/K) = Nk diff (L/K). The different is an important invariant of an
extension L/K, and is multiplicative in towers L/F/K of number fields:

Proposition 5.6. The different and the discriminant have the following
properties:

1. diff (L/K) = diff (L/F) - diff (F/K);
2. disc (L/K) = Npgdisc (L/F) - disc (F/K) &
3. disc (K/Q) = (disc K).

The second claim follows immediately from the first by taking norms.
The most important property of the different and the discriminant is
contained in the following

Theorem 5.7. A prime ideal P in Op above the prime ideal p in Ok is
ramified if and only if P | diff (L/K); the prime ideal p is ramified in L/K
if and only if p | disc (L/K).

Valuations

Every rational prime p defines a valuation on Q: in fact, let v,(a) denote the
exponent of p in the prime factorization of a € Q* (for example, ’Ug(%) = -2,
v3(3) =1, and v,(3) = 0 for all primes p > 5); extend this map to all of Q
by setting v,(0) = oo (observe that 0 is infinitely often divisible by p). Then

vp 1 Q — Z U {00} is a map with the following properties:

1. vp(a) = oo if and only if a = 0;
2. vp(ab) = vp(a) + vy(b);
3. vp(a+b) > min{v,(a), v, (b)}.

If we put |a|, = p~ () we get a new map vp : Q — R with the following
properties:

1. |a|p, > 0, with equality if and only if a = 0;
2. |abl, = lalp|blp;
3. la+0l, < max{|aly, [b],}

Thus the maps | - |, are valuations, that is, maps v : Q — R with the
properties

1. |a| = 0, with equality if and only if a = 0;
2. |ab| = |a - [b];
3. la+0b] < |a| + |b].

Note, however, that the | - |, satisfy a stronger triangle inequality (they are
called non-archimedean valuations). In addition to these valuations attached
to primes p, there is the archimedean valuation |-| given by the usual absolute
value. It can be shown that, up to rescaling, the valuations |- |,, | - |, and the
trivial valuation sending nonzero numbers to 1 are the only valuations on Q.
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Note that the integers can be characterized as the set of all rational numbers
z with |z|, <1 for all primes p.

All this generalizes to number fields: every prime ideal p defines an addi-
tive valuation v, on K by sending ov € K* to the exponent of p in the prime
ideal factorization of the ideal (), and then the function |af, = Np~v»(®
gives us a non-archimedean valuation.

An extension L/K is called unramified outside oo if no prime ideal from
K is ramified in L; this is the case if and only if disc (L/K) = (1). We say
that L/K is unramified (everywhere) if it is unramified outside oo, and if no
infinite prime is ramified in L/K.

5.4 Prime Ideals in Galois Extensions

In the following, let L/K be a finite Galois extension of number fields with
Galois group G = Gal (L/K). Let © = Oy, and 0 = Ok denote the corre-
sponding rings of integers, p a prime ideal in o0, and

pO = Pit - Py (5.2)

its prime ideal factorization in L. We will also denote the residue class field
of a prime ideal by &; thus e.g. k(B) = O/ and k(p) = o/p.

Since B, | pO, we clearly have p C P, No (here we have used pONo = p;
prove this!); on the other hand, p is a maximal ideal, so either B, No =p or
B; No = o; in the last case, we find the contradiction 1 € PB;, hence we must
have B; No = p.

We have proved

Lemma 5.8. If P is a prime ideal above p in L, then p =P No.

Note that since P C O, we also have PN K CPNEKNO =P No, and
since the inverse inclusion is trivial, we conclude that p =L N K.

Recall the the absolute norm N3 of a prime ideal 3 is the cardinal-
ity of the residue class field O/9. This immediately implies that NP =
(Ngp)f FIP) Moreover, N, /o is known to be the ideal generated by N.%,
and this shows that Ny, B = pf (Flp),

Now we claim

Proposition 5.9. The Galois group acts transitively on the prime ideals
above p.

This means that if ‘B3; and B; are two prime ideals above p, then there is
a 0 € G such that B; = PB7.

Proof. We use the Chinese Remainder Theorem. Let P = P, and P’ = P;
denote two distinct prime ideals above p. Then we can find an o € O with
a =0 mod P and o = 1 mod P; for all j # 1.
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Now N ga € oNP = p, and from p C P; we conclude that Ny gra € B;.
Thus B; | [[,cq @, and since P; is prime, we must have P; | a” for a
suitable o € G. But then o € 071(%;), and our construction implies that we
must have o1 (;) = P, that is, P’ = P,. O

Now consider the factorization . Then e; is the exponent of 37 in the
prime ideal factorization of p. Let o denote an automorphism that maps
PB1 to Pj; then e; is the exponent of P, in the prime ideal factorization of
pO. The theorem of unique factorization into prime ideals then implies that
we must have e; = e;. Thus in Galois extensions, all ramification indices
coincide, and we can write e; = ... = ¢4 =: €.

Since 97 = O, the automorphism ¢ of L/K induces an isomorphism
k(P1) — £(P;) by sending a residue class a+JP;1 to a?+P;; this map leaves
the elements of k(p) fixed, hence is a k(p)-isomorphism £(P1) — &(B;). In
particular, these extensions must have the same degree over k(p), and we
conclude that f1 = ... = f; =: f. We have proved:

Proposition 5.10. In Galois extensions L/K, a prime p in k splits as

pO = (P1---By)",
where each P; has inertia degree f, and we have efg=n = (L : K).

The Decomposition Group

Let P denote a prime ideal in O above p, and recall that pO = (Py--- Py)°.
Define the decomposition group Z(|p) by

Z(Blp) ={o € G: P =P}.

This is the stabiliser group of . The fixed field of Z(P|p) is a subfield Ly
of K/k and is called the decomposition field of J3|p.

For a quadratic extension L/K with Galois group G of order 2, there are
only three possibilities:

decomposition | Z(PBp)

p splits 1
p is inert G
p ramifies G

For finding the order of Z(B|p) in general, we consider the following ab-
stract situation: a finite group G acts transitively on a set X = {z1,...,24};
let G, = {0 € G : ox = z} denote the stabiliser of z. Define a map ¢ from
the cosets of G/G, to the elements of X by sending ¢G, to ox. Since G
acts transitively, ¢ is surjective. Moreover ¢ is injective: if ox = 7z, then
77 '0 € G, and hence 7G, = 77 '0G, = 0G,. Thus there is a bijection
between the cosets of G/G, and the elements of X:
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Lemma 5.11. Assume that a group G acts transitively on a finite set X.
Let G, denote the stabiliser of v € X. Then (G : G,) = #X.

When we apply this lemma to our situation, we find
Corollary 5.12. We have (G : Z(Blp)) = g.

Since the decomposition group has index g in G, Galois theory tells us
that the degree of the decomposition field Ly over K is also equal to g.

Note that this result is already nontrivial: the group G has order efg,
and we have just proved the existence of a subgroup of order g. Recall that,
for arbitrary finite groups, it is not true that for every divisor n of the group
order there is a subgroup of order n.

We will now study how the prime ideal p splits in the intermediate fields
of L/K as we go from K to L.

Lemma 5.13. Let q =*B N Lz be the prime ideal below P in Lyz.

1. q does not split in L/Lz; in other words, B is the only prime ideal above
qin 9.

2. e(Bla) = e and f(Blq) = f.

3. e(alp) = flalp) = 1.

Proof. We have

Z(Bla) ={o € Gal(L/Lz) : B7 = P} = Z(Plp) = Gal (L/Lz),
hence g(Blq) = (Gal(L/Lz) : Z(PB|q) = 1. This proves the first claim. Next

e =e(Plp) = e(Pla) -e(alp) and [ = F(Blp) = f(Bla) - f(alp)-

Moreover, from 1, we see that e(P|q) - f(Plg) -1 = (L : Lz) = ef. Since
e(Plq) < e and f(P|q) < f, we must have equality. The third claim now
follows, too. O

Theorem 5.14. Let L/K be a normal extension and B a prime ideal above p
in L. Then Ly is the largest intermediate field F' such that e(qlp) = f(q|p) =
1.

Corollary 5.15. A prime ideal that splits completely in two extensions Ly /K
and Lo/ K splits completely in the compositum Ly Lo K.

Corollary 5.16. Let L/K be an extension of number field. A prime that
splits completely in L/ K splits completely in the normal closure of L/K.
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Decomposition Groups for Infinite Primes

Let us set up the notation. If ¢ is an embedding of K and 7 an embedding of
L restricting to o, then all the embeddings of L restricting to 7 are given by
T0; as 0; runs through G = Gal (L/K). If v is the valuation on K defined by
7 and w the valuation on L defined by o, then the embeddings 7o; induce
the valuations of L restricting to v. If the infinite prime oo attached to v
does not ramify, then these valuations are pairwise different. If co ramifies
(this happens if ¢(K) is real, but 7(L) is complex), however, then o, (a) :=
771(7(a)) defines an element o, € G (in fact, if @ € K, then 7(a) = o(a)

is real, hence o, (a) = 771(7(a)) = 7717(a) = «a) that fixes the subfield

Ly, = 77Y(L™ NR); since 7(02 (o)) = 7(04(a)) = 7(a) = 7(c), the element

0w has order 2. Note that 7o, and 70,0; both induce the same valuation

since |70,,0(a)| = |7(a;(a))] = |7(o; ()]
The group Z(w|v) = {1,0,} is called the decomposition group of w, and
its fixed field L., the corresponding decomposition field.

5.5 Minkowski Bounds

The geometric techniques introduced by Minkowski allow us to give rather
simple proofs of the two fundamental finiteness results of algebraic number
theory: the finiteness of the class number and Dirichlet’s unit theorem, ac-
cording to which the unit group of the rings D g are finitely generated.

Theorem 5.17 (Minkowski Bounds). Let K be a number field with degree
n =1+ 2s. Then every ideal class contains an integral ideal a with norm

Prdys
NaS:—n(—) +/|disc K.

™

Since Na > 1, the Minkowski bounds imply that |disc K| > (%(%)5)2
It is easy to show that the expression on the right hand side is > 1 for all
number fields of degree n > 1; this implies the following result conjectured

by Kronecker:

Corollary 5.18. Let K be a number field # Q; then disc K > 1. In particu-
lar, in every number field # Q at least one prime ramifies.

Let o1, ..., 0, denote the embeddings of K into R and C and order them
in such a way that o1, ..., o, are the real embeddings, and that the 0,44
are the complex conjugate of o,;. Let Kr = R" x C® denote the tensor
productﬂ of K with R; then set

@) = (o1(a),...,00(@), 0rp1(), ..., 0rps(@)).

I This is easily verified as follows: write K = Qa1 @ ... @ Qan; then K ®p R =
Rai @ ...® Ray,. But Rae = R if « is real, and Ra = C otherwise.
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The map ¢ : K — Kp is a group homomorphism of the additive group
(in fact, it even respects multiplication, but we will not need that at the
moment), and it is obviously injective (already o1 () = 0 implies o = 0).

If, for = (z1,...,245) € R" x C*, we define

N(z) = |21 2p(rgr - 2rys)?],

then clearly N(:(a)) = |Na| for all @ € K, hence the following diagram

commutes:
L
K —— Kgp

N@'fl lN
Q — R

The map at the bottom is the usual embedding of Q into R. By the way, the
point of using these commutative diagrams is not preparing the application
of homological methods; their only purpose is helping you “see” what’s going
on.

For computing volumes it is desirable to work in R™; the isomorphism
C ~ R? of vector spaces allows us to replace Kg by R" via the linear map

(1, Trgs) ¥— (21, .y 2p, Rexppy, Ima, g, ... Rexpg g, Ima, ).

For example, the element 1 + 4 € C corresponds to the vector (1,1) € R2.
The composition of ¢ with this isomorphism gives us an embedding
o K — R™. If we give both Q-vector spaces their natural topology, the
image of +* is dense in R™. Note that ¢* is still a group homomorphism from
the additive group of K to that of R™, but that multiplicativity has been
destroyed by the isomorphism R” x C* ~ R"™.
The extension of the norm function to R™ is defined by

N(z)=|zy - ap (@l +al,o) - (x5 +30)],

and we get a commutative diagram of Q-vector spaces

L ~

K Kr — R"™
Né(l lN lN
Q R id R

A lattice A is a discrete additive subgroup of R™; each lattice has the form
AN=7Z& D ... B ZE for some real numbers &1, ..., & and t < n; lattices with
maximal rank n are called full lattices. The elements &1,...,&; are called a
basis of the lattice, and the set

PA:{xGR":x:Zajﬁj,Oﬁaj<l}



72 5. Algebraic Number Fields

is called a fundamental domain of A (P4 depends on the choice of the basis).
Let {a1,...,a,} be a Q-basis of K; then their discriminant, which is the
square of the determinant

oi(ar) ... op(ag)
D =

0'1(.0477,) . an(.an),

is nonzero. Assume we have ordered the embeddings in the following way:
the embeddings o1, ..., o, are real, and the complex embeddings are 0,41,
Or42 = Opt1, -- .. Adding the columns with index r + 2, r + 4, etc. to those
preceding them and factoring out the resulting factor 2 from s columns shows
that
0'1(0[1) Rear(al) Er(al)
D =2° : .
oi(ayn) ... Reor(an) Tr(an)
Subtracting the columns with index r + 1, » + 3 etc. from those following
them and pulling out the resulting factors ¢ from s of the columns shows that

D = (2i)* det(1* (o)) (5.3)

If the o; form an integral basis of K, then their discriminant is disc K, and
we find det(t*(a;))? = (—4)*disc K.

Lemma 5.19. *(Ok) is a full lattice in R™.

Proof. Clearly (*(O k) is an additive subgroup of R™, so we only have to
show that ¢*(Ok) is discrete. To this end, let C; denote the hypercube in
R™ defined by the inequalities |z;| < ¢. If *(«) € Cy, then |o;(a)] < t for
j=1,...,7, and |oj(a)] < V2t for j = r +1,...,n. This implies that the
coefficients of the minimal polynomial f(X) = [[(X — oj(a)) are bounded,
hence there can only be finitely many such a. O

The volume of P, can be expressed as a determinant:

Lemma 5.20. Let A be a full lattice in R™ with fundamental domain Pj.
Let &1,...,&, be a Z-basis of A, and write § = ) a;je;, where the e; form
the standard basis of R™. Then vol (Pa) = | det(ai;)|.

Proof. The volume of P, is the absolute value of the integral f Py dxy - dx,.
Consider the the linear map T with T'(e;) = &;, and define the change of
variables T'(u1, . . ., un) = (21, ...,Z,). This maps the “unit cube” Pg, that is,
the fundamental domain of the lattice F with the standard basis {eq,...,e,},
to Py, and the Jacobian transformation formula gives us

‘/ dry---dzx,
Pa

= ‘ / (det aij)dul coduy | = |det aij|'
Pg
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Thus vol (A) := vol (P4) does not depend on the choice of the basis, and

(5.3) tells us that
vol (1" (D x)) = 27 *|disc K.

If A is a full sublattice of A, then the index (A : A’) is finite, and it is easily
checked that
vol (A") = (A : A')vol (A).

Thus if a is an ideal in O g, then

vol (¢*(a)) = 27°Na+/|disc K.

We now have to invoke Minkowski’s geometry of numbers. The basic result
we need is

Theorem 5.21. Let A be a full lattice in R™, and let S be a convex, compact,
measurable, centrally symmetric subset of R™ with

vol (S) > 2™vol (A).

Then S contains a nonzero lattice point.

A set S is convex if it has the property that for all z,y € S, the whole line
segment joining x and y is in S. The term measurable refers to the Lebesgue
measure in R™ and basically means that we can attach a volume to S. Finally,
S is centrally symmetric if x € S implies —z € S.

Minkowski’s result is intuitively clear in small dimensions, and giving a
rigorous proof is quite easy.

Corollary 5.22. Assume S is a convex, compact, measurable, centrally sym-
metric subset of R™ with the property that |[N(z)| < 1 for all x € X. Then
every full lattice A in R™ contains a nonzero point x with
NG| < vl (4)
T ———vo .
~ vol (X)
This follows easily by applying Theorem to the set S = tX for a real
number ¢ with on
t" = ————vol (A).
vor () O A
The whole point of getting good bounds such as Minkowski’s is finding
a set S with the required properties that is as large as possible. The choice
S ={(x1,...,2,)}, where the z; satisfy the inequalities

lz1], .oy |zr] < 1,xf+1+xf+2,...,xi_l+xi <1,

obviously has the properties we need, and its volume is easily seen to be
vol (S) = 2"x®. This leads to the existence of a point z € A\ {0} with
IN(z)| < (3)*vol(4).
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A better choice is the set T consisting of points satisfying

lz1] + ..+ |z + 2\/ xr+1 + 'rr+2 +. \/

Showing that 7' has all the required properties is not very difficult, and a
computation via double induction on r and s readily shows that

vol (T) = %TT(%)S.

With this choice of X =T, Cor. gives

Theorem 5.23. Let A be a full lattice in R™. Then there is an x € A\ {0}
with

N < X (§)Sv01 (A).

n" \m
If we apply this to the lattice ¢*(a) for some nonzero ideal a we get

Corollary 5.24. FEvery nonzero ideal a in O contains a nonzero element

a with
Nk ()] < ( ) V]disc K| - Na. (5.4)

The Minkowski bounds follow from this by applying a trick we have seen
before: let ¢ € CI(K) be an ideal class, and pick an integral ideal a € ¢=1;
by Corollary the ideal a contains an element « satisfying . Thus
ab = (a), and b € ¢ has norm Nb = |[Na|/Na.

Exercises

5.1 Show that quadratic number fields Q(y/m ) have (r, s) = (2,0) or (r,s) = (0,1)
according as m > 0 or m < 0.

5.2 Show that pure cubic fields K = Q(&/m ) have (r,s) = (1,1).
5.3 Determine (r, s) for pure quartic fields Q(&/m).

5.4 Show that r and s do not depend on the choice of o or f: if Q(a) = Q(B),
show that the minimal polynomials of o and (3 have the same number of real
roots.

5.5 Show that if K is a number field of degree n and a € Q, then Tr(a) = na
and N(a) = a™. More generally, show that Tr (aa) = aTr («) and N(aa) =
a"N(a) for all a € K.

5.6 Let w = &/m; compute Tr (a + bw + cw?) and N(a 4+ bw). Find a unit # +1 in
Q(V2).

5.7 Show that disc (1, /m) = 4m and disc (1, ¢/m, ¥/m’) = —27m?.

5.8 Compute |1 + V/2|; and |1 4+ /2|2 for the two archimedean valuations of
Q(V2).

5.9 Deduce from Theorem how primes p split in quadratic extensions.
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5.10 Use the Minkowski bounds to show that the field Q(+/2) has class number 1.
Show directly that 3 ramifies completely by verifying that (1 + ¥/2)% = (3),
and show that this relation provides you with a unit.

5.11 Draw a lattice in R? and sketch an example that shows why we need the
condition “centrally symmetric” in the statement of Thm.[5.21

5.12 Show that the set T" that occurred in the proof of the Minkowski bounds is
convex, centrally symmetric, and compact.
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6. Dirichlet’s Unit Theorem

Let K be an algebraic number field with ring of integers 9 g . The units in
this ring form a group EFx = O, which is often called the unit group of K
(this is an abuse of language, since the unit group of the field K is actually
K*). For K = Q, the unit group has order 2 since Eg = {—1,+1}. For a
general number field, Dirichlet proved (in modern terms) that Fx is a finitely
generated abelian group, and in fact determined its abstract structure.

The unit group plays an important role in class field theory. This might
seem surprising at first, but we will see over and over again that questions
concerning the ideal class group are tied intricately to properties of the unit
group. One manifestation of this link is the fact that Dedekind’s class number
formula will give us a formula for the product AR, where h is the class number
of K and R its regulator, a number that does for units what the discriminant
does for rings of integers.

6.1 Units in Quadratic Number Fields

It is easy to see that o € O is a unit if and only if Nk /oo = +1. For
quadratic number fields with discriminant d, this boils down to the solvability
of the Pell equation T? —dU? = +4. It is then easy to check that, for complex
quadratic number fields, the unit groups are given by

(—p) ~7Z/6Z ifd=—3; here p?>+p+1=0.
Ex = (i ~7Z/AZ if d = —4; herei® = —1.
(1) ~Z/27Z  otherwise.

For positive d, however, the Pell equation always has a nontrivial solution.
This was known to Fermat and Euler, but it was Lagrange who first found
a proof. We will next present a proof for the solvability of the Pell equation
going back to Dirichlet, and then give his proof of the unit theorem in general
number fields.

Theorem 6.1. Let K = Q(v/m) be a real quadratic number field with m > 0
squarefree. Then
Ex =9 ~7Z/2Z 8 L. (6.1)
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In other words, there exists a unit n € Ex such that every unit € € Ex can
be written uniquely in the form e = (—1)%n" with a € Z/27 and b € Z.

The idea behind the proof is the following: there are only finitely many
integral ideals of bounded norm in Q(y/m); if we can construct sufficiently
many elements with bounded norm, then there must be two that generate
the same ideal. But if (a) = (3), then € = § is a unit. In order to make sure

that € has infinite order, we observe

Lemma 6.2. Let K = Q(y/m ) be a real quadratic number field. Then e € O
has infinite order if and only if |g| # 1.

Proof. If |e| = 1, then € = a + by/m = =£1. The irrationality of \/m then
implies @ = +1 and b = 0, that is, ¢ = £1.

If |e| # 1, then € cannot have finite order: in fact, €™ = 1 implies |e|™ = 1,
hence |eps| = 1. O

The idea is to construct a sequence of algebraic integers a; = z; + y;/m
(m a positive squarefree integer) with [Na;|