In May 2003, I gave Import Export International in San Diego a little bit more than $ 5000 as well as all of my personal belongings, including my mathematical library, so that it could be shipped to Germany. Half a year later, there's no trace of my things; my guess is that these guys stole my books as well as my money and never intended to deliver.
In case you should find a single book with my name in it (I never sold one) or sufficiently many of the books below (representing a small but dear part of my collection) with the name removed, please let me know.

Partial List of Stolen Books

  1. S.S. Abhyankar, Algebraic geometry for scientists and engineers
  2. C. Adelmann, The decomposition of primes in torsion point fields.
  3. S. D. Adhikari, S. A. Katre, D. Thakur (eds.) Cyclotomic fields and related topics.
  4. E. Artin, Collected papers
  5. E. Artin, J. Tate Class Field Theory
  6. H. Bass, Algebraic K-theory.
  7. H. Bass, A. O. Kuku and C. Pedrini (eds.), Algebraic K-theory and its applications.
  8. B. Berndt, R. Evans, K. Williams, Gauss and Jacobi sums.
  9. A. Babakhanian, Cohomology of finite groups.
  10. R. Bix, Conics and cubics. A concrete introduction to algebraic curves.
  11. I. Blake, G. Seroussi, N. Smart, Elliptic curves in cryptography
  12. Z.I. Borevich, I. Shafarevich Number theory
  13. R. Brauer Collected papers I, II, III
  14. E. Brieskorn, H. Knörrer Ebene algebraische Kurven.
  15. M. Brodmann, Algebraische Geometrie
  16. D. Bump, Algebraic geometry
  17. D. Bump, Automorphic forms and representations
  18. E. Burger, Exploring the number jungle: a journey into Diophantine analysis.
  19. J.J. Callahan, The Geometry of Spacetime
  20. J.W.S. Cassels, Elliptic curves
  21. J.W.S. Cassels, Local Fields
  22. J.W.S. Cassels, E.V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus 2
  23. J.W.S. Cassels, A. Frölich Algebraic Number Fields
  24. Ph. Cassou-Noguès, M. Taylor, Elliptic functions and rings of integers
  25. J.S. Chahal, Topics in number theory.
  26. C. Chevalley, Class field theory
  27. N. Childress, J. Jones, Arithmetic geometry
  28. C.H. Clemens, A scrapbook of complex curve theory
  29. J. Coates, S.T. Yau, (eds.) Elliptic curves, modular forms, & Fermat's last theorem.
  30. H. Cohen, A course in computational algebraic number theory
  31. H. Cohen, Advanced topics in computational number theory
  32. H. Cohn, A classical invitation to algebraic numbers and class fields
  33. H. Cohn, Construction of Class Fields
  34. P.M. Cohn, P. M. Algebraic numbers and algebraic functions
  35. G. Cornell, Arithmetic geometry
  36. G. Cornell, J. Silverman, G. Stevens (eds.) Modular forms and Fermat's last theorem.
  37. D. Cox, Primes of the form x2 + ny2.
  38. D. Cox, J. Little, D. O'Shea, Using algebraic geometry
  39. J.E. Cremona, Algorithms for modular elliptic curves.
  40. V.I. Danilov, Algebraic curves, algebraic manifolds, and schemes
  41. O. Debarre, Tores et variétés abéliennes complexes
  42. R. Dedekind, Lectures on the Algebraic Integers
  43. Delone, Faddeev, Irrationalities of the third degree
  44. Dickson, History of the theory of numbers, I, II, III
  45. P.G.L. Dirichlet, Vorlesungen über Zahlentheorie
  46. Dixon et al., Analytic pro-p groups
  47. H. Edwards, Fermat's Last Theorem.
  48. D. Eisenbud, J. Harris, The geometry of schemes
  49. G. Eisenstein Gesammelte Abhandlungen I, II (2 copies)
  50. B. Engquist, W. Schmid, Mathematics unlimited---2001 and beyond
  51. G. Everest, Th. Ward, Heights of polynomials and entropy in algebraic dynamics.
  52. I. Fesenko, S.V. Vostokov, Local fields and their extensions
  53. Fischer Ebene algebraische Kurven
  54. J. Foster, J.D. Nightingale, A Short Course in General Relativity
  55. A. Fröhlich, Algebraic number theory
  56. A. Fröhlich, Central extensions, Galois groups, and ideal class groups of number fields
  57. A. Fröhlich, M.J. Taylor, Algebraic number theory
  58. W. Fulton, Algebraic curves. An introduction to algebraic geometry
  59. C.F. Gauss Disquisitiones Arithmeticae (Engl.)
  60. C.F. Gauss Arithmetische Untersuchungen
  61. C.G. Gibson, Elementary geometry of algebraic curves: an undergraduate introduction.
  62. J.R. Goldman, The queen of mathematics: a historically motivated guide to number theory
  63. D. Goldschmidt, Algebraic Functions and Projective Curves
  64. G. Gras, Class field theory
  65. Ph.A. Griffiths, Introduction to algebraic curves.
  66. Ph. Griffiths, J. Harris, Principles of algebraic geometry.
  67. J. Harris, Algebraic geometry. A first course
  68. R. Hartshorne, Algebraic geometry
  69. H. Hasse Gesammelte Abhandlungen I, II, III
  70. H. Hasse Number Theory
  71. H. Hasse Über die Klassenzahl abelscher Zahlkörper.
  72. H. Hasse Vorlesungen über Zahlentheorie
  73. H. Hasse Vorlesungen über Klassenkörpertheorie Bericht I, Ia, II
  74. E. Hecke, Lectures on the theory of algebraic numbers
  75. Y. Hellegouarch Invitation aux mathematiques de Fermat-Wiles
  76. D. Hilbert, The theory of algebraic number fields. Gesammelte Werke I
  77. M. Hindry, J. Silverman, Diophantine Geometry. An Introduction
  79. L. Holzer, Zahlentheorie I, II, III
  80. L. Holzer, Klassenkörpertheorie
  81. L.P. Hughston, K.P. Tod, An Introduction to General Relativity
  82. K. Hulek, Elementare algebraische Geometrie
  83. W. Hulsbergen, Conjectures in arithmetic algebraic geometry. A survey
  84. D. Husemoller, Elliptic curves
  85. S. Iitaka, Algebraic geometry. An introduction to birational geometry of algebraic varieties
  86. K. Ireland, M. Rosen, A classical introduction to modern number theory. 2nd ed
  87. H. Iwaniec, Topics in classical automorphic forms.
  88. K. Iwasawa, Collected papers. Vol. I, II.
  89. C.G.J. Jacobi Collected papers (5 vol.)
  90. G.J. Janusz, Algebraic number fields
  91. W.E. Jenner, Rudiments of algebraic geometry
  92. K. Kato, Kazuya N. Kurokawa, T. Saito, Number theory 1. Fermat's dream.
  93. G. Kempf, Algebraic varieties
  94. G. Kempf, Algebraic structures
  95. G. Kempf, Complex abelian varieties and theta functions
  96. G. Karpilovsky, The Schur Multiplier
  97. K. Kendig, Elementary algebraic geometry.
  98. F. Kirwan, Complex algebraic curves.
  99. H. Kisilevsky, R. Murty (ed.) Elliptic curves and related topics.
  100. A. Knapp, Elliptic curves.
  101. N. Koblitz, A course in number theory and cryptography
  102. N. Koblitz, Algebraic aspects of cryptography.
  103. N. Koblitz, Introduction to elliptic curves and modular forms
  104. N. Koblitz, Number Theory related to Fermat's Last Theorem
  105. H. Koch, Zahlentheorie
  106. H. Koch, Galoistheorie der p-Erweiterungen
  107. H. Koch, Galois theory of p-extensions
  108. H. Koch, Number Theory II
  109. M. Koecher, A. Krieg, Elliptische Funktionen und Modulformen.
  110. E. Kunz, Ebene algebraische Kurven.
  111. S.Lang, Algebra.
  112. S.Lang, Topics in cohomology of groups.
  113. S.Lang, Algebraic number theory (2 copies)
  114. S.Lang, Cyclotomic fields. I
  115. S.Lang, Cyclotomic fields. II
  116. S.Lang, The beauty of doing mathematics
  117. S.Lang, Number theory III: Diophantine geometry.
  118. S.Lang, Elliptic functions
  119. S.Lang, Complex multiplication
  120. S.Lang, Abelian varieties
  121. S.Lang, Introduction to algebraic and abelian functions
  122. S.Lang, Elliptic curves: Diophantine analysis.
  123. J.M. Lee, Introduction to Smooth Manifolds
  124. F. Lemmermeyer, Reciprocity laws. From Euler to Eisenstein. 2 copies
  125. S. Levy (ed.) The eightfold way. The beauty of Klein's quartic curve
  126. Lidl, Niederreiter, Finite Fields
  127. J.H. van Lint, G. van der Geer, Introduction to coding theory and algebraic geometry
  128. Q. Liu, Algebraic geometry and arithmetic curves.
  129. F. Lorenz, Algebraische Zahlentheorie
  130. D. Lorenzini, An invitation to arithmetic geometry
  131. M. Ludvigsen, General Relativity: A Geometric Approach
  132. B. A. Magurn, An algebraic introduction to $K$-theory.
  133. D. Marcus, Number Fields
  134. I.G. Mcdonald, Algebraic geometry. Introduction to schemes
  135. H. McKean, V. Moll, Elliptic curves. Function theory, geometry, arithmetic
  136. John Milnor, Introduction to algebraic K-theory.
  137. R. Miranda, Algebraic curves and Riemann surfaces.
  138. K. Miyake, Class field theory---its centenary and prospect.
  139. M. Miyanishi, Algebraic geometry.
  140. R. Mollin, Algebraic number theory
  141. P. Morandi, Field and Galois Theory
  142. C.J. Moreno, Algebraic curves over finite fields
  143. C.J. Moreno, Advanced analytic number theory. Part I. Ramification Theoretic methods
  144. D. Mumford Abelian varieties
  145. D. Mumford Tata lectures on theta. I
  146. D. Mumford Tata lectures on theta. III
  147. D. Mumford Red Book of Varieties
  148. K. Murty Introduction to abelian varieties
  149. K. Murty Seminar on Fermat's Last Theorem
  150. C. Musili, Algebraic geometry for beginners.
  151. J. Neukirch, Algebraische Zahlentheorie
  152. J. Neukirch, A. Schmid, K. Wingberg, Cohomology of number fields
  153. H. Niederreiter, Ch. Xing, Rational points on curves over finite fields: theory and applications.
  154. D.G. Northcott, An introduction to homological algebra.
  155. T. Ono, An introduction to algebraic number theory
  156. T. Ono, Variations on a theme of Euler. Quadratic forms, elliptic curves, and Hopf maps
  157. D. Perrin, Géométrie algébrique. Une introduction
  158. V. Platonov, A. Rapinchuk, Algebraic groups and number theory.
  159. Pollard, Diamond, Algebraic number theory
  160. V. Prasolov, Y. Solovyev, Elliptic functions and elliptic integrals
  161. D. Ramakrishnan, R.J. Valenza, Fourier Analysis on Number Fields
  162. E. Reyssat, Quelques aspects des surfaces de Riemann.
  163. P. Ribenboim The book of prime number records
  164. P. Ribenboim 13 Lectures on Fermat's Last Theorem, 1979.
  165. P. Ribenboim Classical Theory of Algebraic Numbers
  166. L. Ribes, Introduction to profinite groups and Galois cohomology
  167. A. Robert, Elliptic curves
  168. A. Robert, A Course in p-adic Analysis
  169. S. Roman, Coding and Information Theory
  170. H.E. Rose, A course in number theory
  171. M. Rosen Number Theory of Function Fields
  172. J. Rosenberg, Algebraic K-theory and its applications.
  173. K. Rubin, Euler systems
  174. P. Samuel, Lectures on old and new results on algebraic curves
  175. V. Sanford, A Short History of Mathematics
  176. B.F. Schutz, A First Course in General Relativity.
  177. A. Seidenberg, Elements of the theory of algebraic curves
  178. J.-P. Serre, Abelian l-adic representations and elliptic curves
  179. J.-P. Serre, Local Fields
  180. J.-P. Serre, Galois cohomology
  181. I.R. Shafarevich, Basic algebraic geometry. 1: Varieties in projective space
  182. I.R. Shafarevich, Basic algebraic geometry. 2: Schemes amd complex manifolds
  183. S.S. Shatz, Profinite groups, arithmetic, and geometry,
  184. G. Shimura, Introduction to the arithmetic theory of automorphic functions
  185. J.H. Silverman, Arithmetic of elliptic curves
  186. J.H. Silverman, Advanced topics in the arithmetic of elliptic curves.
  187. J.H. Silverman, J. Tate, Rational points on elliptic curves
  188. John R. Silvester, Introduction to algebraic K-theory.
  189. A. Skorobogatov, Torsors and rational points
  190. N. Smart, The algorithmic resolution of diophantine equations
  191. H. Smith Report on Number Theory
  192. K. Smith, L. Kahanpää, P. Kekäläinen, W. Traves, An invitation to algebraic geometry
  193. V. Srinivas, Algebraic K-theory
  194. H. Stephani, General Relativity
  195. I. Stewart, D. Tall, Algebraic number theory.
  196. H. Stichtenoth, Function Fields
  197. H.P.F. Swinnerton-Dyer, A brief guide to algebraic number theory
  198. J. Tate, Les conjectures de Stark sur les fonctions L d'Artin en s=0
  199. A.D. Thomas, Zeta-functions: An introduction to algebraic geometry
  200. A. Trautmann, E. Pirani, H. Bondi, Lectures on General Relativity
  201. K. Ueno, An introduction to algebraic geometry.
  202. K. Ueno, Algebraic geometry. 1. From algebraic varieties to schemes
  203. K. Ueno, Algebraic geometry. 2. Sheaves and cohomology
  204. P. Du Val, Elliptic functions and elliptic curves.
  205. C. Viola (ed.) Arithmetic theory of elliptic curves.
  206. R. Wald, General Relativity
  207. R. Walker, Plane Algebraic Curves
  208. L. Washington, Introduction to cyclotomic fields. 1st ed.
  209. L. Washington, Introduction to cyclotomic fields. 2nd ed.
  210. A. Weil, Basic Number Theory
  211. A. Weil, Number Theory - An approach through history,
  212. E. Weiss, Algebraic number theory.
  213. E. Weiss, Cohomology of Groups
  214. H. Weyl, Algebraic Theory of Numbers
  215. J. Wilson Profinite groups
  216. E. Witt, Collected papers
  217. M. Yoshida, Hypergeometric functions, my love.