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1. Fermat, Euler, and Nonunique Factorization

In this chapter we will motivate the introduction of algebraic integers by
showing how Euler used these to solve diophantine equations in the ordinary
integers. We will also recall the basic definitions like divisibility, units, primes,
and irreducibles, and discuss unique factorization domains.

1.1 Euler and Quadratic Irrationals

Algebraic number theory was born when Euler used algebraic numbers to
solve diophantine equations such as y2 = x3 − 2: Fermat had claimed that
(x, y) = (3, 5) is the only solution in natural numbers, and Euler gave a
“proof” by writing

x3 = y2 + 2 = (y −
√
−2 )(y +

√
−2 ) (1.1)

and working with the ring Z[
√
−2 ] = {a+ b

√
−2 : a, b ∈ Z}.

The problem with Euler’s idea was that he did not justify all of his claims.
Arguing that the two factors on the right hand side of (1.1) were coprime1,
he concluded that each factor had to be a perfect cube,2 i.e. that y+

√
−2 =

(a+ b
√
−2 )3 for certain a, b ∈ Z. Comparing real and imaginary parts yields

y = a3 − 6ab2 = a(a2 − 6b2) and 1 = 3a2b − 2b3 = b(3a2 − 2b2). The last
equation tells us that b | 1, hence b = ±1. Moreover, 3a2 − 2b2 = 1, hence
a = ±1. Plugging these solutions into y = a(a2−6b2) shows that y = ±5 and
thus x = 3, proving Fermat’s claim.

In order to understand why Euler’s argument is not sufficient, let us con-
sider the diophantine equation y2 = x2 − 5. Imitating Euler’s proof, we find

x2 = y2 + 5 = (y −
√
−5 )(y +

√
−5 ). (1.2)

Since the two factors are “coprime”, both of them must be squares; but from
y +

√
−5 = (a + b

√
−5 )2 we get the equation 1 = 2ab, which does not have

1 Here is the first problem: he does not really define what this means.
2 This is the second problem: Euler knows that this argument works inside the

natural numbers; in fact a proof can be found in Euclid’s elements. But Euler
does not explain why this should work in Z[

√
−2 ].
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any solutions in integers. This seems to suggest that y2 = x2 − 5 does not
have any integral solutions; but actually (x, y) = (3, 2) is one.3

Thus Euler’s “proof” sometimes produces wrong results; we will see below
that this is due to the fact that unique factorization holds in the ring Z[

√
−2 ],

but not in Z[
√
−5 ].

1.2 Unique Factorization Domains

Let R be a ring; we say that a 6= 0 is a zero divisor if there is a nonzero b ∈ R
such that ab = 0. A commutative ring with unit element 1 and without zero
divisors is called a domain.

From now on, let R be a domain. We say that b | a for elements a, b ∈ R
if there is some c ∈ R such that a = bc. Elements dividing 1 are called units.
The units of R = Z are ±1.

Proposition 1.1. The units in R form a group R×.

Proof. We first show that R× is closed under multiplication. To this end, let
a, b ∈ R×; then there exist c, d ∈ R such that ac = 1 and bd = 1. But then
(ac)(bd) = 1 (we have used commutativity), hence ac ∈ R×.

Next, the unit element 1 ∈ R is a unit and serves as the neutral element
of R×. If a ∈ R×, then ac = 1 for some c ∈ R; clearly c is a unit, hence every
element of R× has an inverse. Finally, R× inherits associativits from R.

It is quite easy to determine all units in the rings R = Z[
√
m ] for negative

integers m:

Proposition 1.2. Let m < −1 be an integer; then the units of the ring
R = Z[

√
m ] = {a+ b

√
−m : a, b ∈ Z} are R× = {−1,+1}.

For the proof of this result we introduce an important function, the norm.
This is a multiplicative map N : Q(

√
m ) −→ Q defined as follows: for α = a+

b
√
m, put α′ = a− b

√
m. A simple calculation shows that (αβ)′ = α′β′. Now

define the norm of α by N(α) = αα′ = a2 −mb2. The norm is multiplicative
since N(αβ) = (αβ)(αβ)′ = αα′ββ′ = N(α)N(β). Note that the norm, when
restricted to Z[

√
m ], gives a map N : Z[

√
m ] −→ Z.

Lemma 1.3. An element ε = a+b
√
m ∈ R = Z[

√
m ] (here m is a nonsquare

integer) is a unit if and only if Nε = ±1.

3 Of course there is no need to invoke algebraic numbers for solving y2 = x2 − 5,
because we can write the equation in the form 5 = x2 − y2 = (x − y)(x + y).
In Z, the prime 5 only has four possible divisors; going through all possibilities
easily shows that (±3,±2) are the only integral solutions.
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Proof. If ε is a unit, then there is some η ∈ R with εη = 1. Applying the
norm gives N(ε)N(η) = N(1) = 1. This is an equation in Z, hence N(ε) =
N(η) = ±1.

Conversely, assume that ε = a + b
√
m ∈ R satisfies N(ε) = ±1. Then

1
ε = a−b

√
m

a2−mb2 = ±(a− b
√
m ) =: η satisfies εη = 1, hence ε ∈ R×.

Now we are ready to give the

Proof of Prop. 1.2. From Lemma 1.3 we know that ε = a + b
√
m ∈ R× is a

unit if and only if Nε = a2 −mb2 = ±1. Since m < 0, this is equivalent to
a2−mb2 = 1, and for m < −1 this holds if and only if b = 0 and a = ±1.

A nonunit p ∈ R \R× is called

• irreducible if it only has trivial factorizations: p = ab for a, b ∈ R;
• prime if p | ab for any a, b ∈ R implies that p | a or p | b.

Observe that primes (irreducibles) in Z need not be prime (irreducible) in
number rings; for example, the equations 2 = (1 + i)(1 − i) = −

√
−2 ·

√
−2

show that 2 is not prime (not even irreducible) in Z[i] and Z[
√
−2 ].

The norm is also useful for showing that certain elements are irreducible:

Lemma 1.4. Let α ∈ Z[
√
m ] be an element whose norm is Nα = ±p for a

prime p. Then α is irreducible in Z[
√
m ].

Proof. Assume that α = βγ. Taking the norm gives ±p = Nα = NβNγ. But
since the left hand side is irreducible, we must have Nβ = ±1 or Nγ = ±1.
Thus β or γ is a unit, and this means that α is irreducible.

We know the following result from elementary number theory:

Proposition 1.5. Primes are irreducible.

Proof. Let ∈ R be prime, and assume that p = ab. We have to show that this
factorization is trivial, i.e., that a or b is a unit in R. Since p | ab, the fact
that p is prime implies that p | a or p | b; assume without loss of generality
that p | a, and write a = pc. Then p = ab = pbc, and since R is a domain,
we must have bc = 1 (here is the simple argument: 0 = p − pbc = p(1 − bc);
since p 6= 0 and since R does not have zero divisors, the second factor must
be 0). But this shows that b ∈ R×.

A domain R is called a unique factorization domain (UFD) or simply
factorial if the following conditions are satisfied:

• every nonzero nonunit element of R has a factorization into irreducibles;
• these factorizations are essentially unique, that is, if a = p1 · · · pr =
q1 · · · qs for irreducible elements pi and qj , then r = s, and we can re-
arrange the factors in such a way that pi = uiqi for i = 1, . . . , r and for
units ui ∈ R×.
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For example, the factorizations 6 = 2 · 3 = (−3) · (−2) in Z are esssentially
the same since 2 = (−1)(−2) and 3 = (−1)(−3). In fact, we know from
elementary number theory that Z is a UFD.

Let us now see why the domain Z[
√
−5 ] is not factorial. Consider the

factorization 6 = (1 +
√
−5 )(1 −

√
−5 ) = 2 · 3. Clearly the factors do not

differ by units, since the only units in Z[
√
−5 ] are ±1. We now claim that

all the factors of 6 in the factorizations above are irreducible; this will then
imply that Z[

√
−5 ] is not factorial.

In order to show that 2 is irreducible in Z[
√
−5 ], write 2 = αβ for α, β ∈

Z[
√
−5 ]. We have to show that α or β is a unit. To this end, take the norm; we

find 4 = N(2) = N(α)N(β). This is an equation in the integers; in fact, since
Nα > 0 it is an equation in natural numbers. Thus the only possibilities, are
Nα = 1, Nβ = 4; Nα = 4, Nβ = 1; or Nα = Nβ = 2. Assume that Nα = 2
for α = a+b

√
−5 and integers a, b. Then a2 +5b2 = 2: but this equation does

not have a solution: contradiction. Thus we must have Nα = 1 or Nβ = 1;
but this implies that α or β is a unit.

The same method allows you to show that 3 and 1 ±
√
−5 are also irre-

ducible.
Now consider the factorizations

√
2 ·
√

2 = (2 +
√

2 )(2−
√

2 )

in R = Z[
√

2 ]. All the factors in there are irreducible since their norms are
±2; yet the two factorizations do not differ substantially because the factors
differ by units: in fact, 2 +

√
2 =

√
2 · (1 +

√
2 ), and ε = 1 +

√
2 is a unit in

R.
On the other hand, 3 and, say, 1 + 2

√
−5 do not differ by a unit since

their quotient 1
3 + 2

3

√
−5 is not an element of R.

1.3 Euclidean Rings

In the following, we will present techniques that allow us to prove that Z[i]
and Z[

√
−2 ] are indeed factorial. The key is the Euclidean algorithm. Recall

that, in Z, given any pair of nonzero integers a and b, we can find integers q
and r such that a = bq + r with |r| < |b|. The proofs that Z is factorial are
all based more or less explicitly on this fact.

Not let R be an arbitrary domain, and assume that there is a map f :
R −→ N with the following properties:

• f(a) = 0 if and only if a = 0;
• for all a, b ∈ R with b 6= 0 there exist q, r ∈ R with a = bq + r and
f(r) < f(b).

Then R is called a Euclidean ring, and f a Euclidean function on R. Clearly
Z is a Euclidean ring with respect to the absolute value f = | · |. We now
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show that Z[i] is also Euclidean, and then prove that all Euclidean rings are
actually factorial.

Z[i] is Euclidean

We claim that the norm is a Euclidean function on R. Clearly N maps
Gaussian integers to the natural numbers, and N(α) = 0 if and only if
α = 0. It remains to show that for nonzero α, β ∈ Z[i] we can find
γ, ρ ∈ Z[i] with α = βγ + ρ and N(ρ) < N(β). Since the norm is multi-
plicative, this is equivalent to α

β = γ + ρ
β with N( ρ

β ) < 1. Thus for any
ξ = α

β ∈ Q(i) = {r+si : r, s ∈ Q} we have to find a Gaussian integer γ ∈ Z[i]
such that N(ξ − γ) < 1.

This is done as follows. Write ξ = r + si for rational numbers r, s ∈ Q.
Find integers a, b ∈ Z such that |r−a| ≤ 1

2 and |s−b| ≤ 1
2 , and put γ = a+bi.

Then ξ−γ = t+ui with |t|, |u| ≤ 1
2 , hence N(ξ−γ) = t2+u2 ≤ 1

4 + 1
4 = 1

2 < 1.

The Euclidean Algorithm

For computing gcd(a, b) in a Euclidean ring (or for showing its existence in
the first place), write

a = bq1 + r1, f(r1) < f(b)
b = r1q2 + r2, f(r2) < f(r1)
r1 = r2q3 + r3, f(r3) < f(r2)
. . .

rn−2 = rn−1qn + rn, f(rn) < f(rn−1)
rn−1 = rnqn+1

Then the last nonzero remainder rn is a gcd of a and b. In fact, the last
equation tells us that rn | rn−1; the next to last equation then gives rn | rn−2,
and working our way up we eventually find rn | a and rn | b. Thus rn is a
common divisor. In order to show that it is the gcd, assume that e | a and
e | b. Starting from the top we now find e | r1, . . . , e | rn.

1.4 Principal Ideal Domains

Let R be a domain; a subring I of R is called an ideal if RI = I, that is, if
ri ∈ I for all r ∈ R and all i ∈ I. In Z, every subring is an ideal; in Z[i], the
subring Z is not an ideal since i · 1 = i 6∈ Z.

For a ∈ R, the set (a) = {ar : r ∈ R} is an ideal; it is called the
principal ideal generated by R. More generally, for a1, . . . , am ∈ R the set
(a1, . . . , am) = {r1a1 + . . .+ rmam : ri ∈ R} is easily seen to be an ideal. If R
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is a domain in which every ideal is principal, we call R a principal ideal ring
(PID).

Our next goal is to show that every Euclidean ring is a PID, and that
every PID is a UFD.

In order to become familiar with ideals, let us prove

Lemma 1.6. Let R be a ring. Then (b) ⊇ (a) if and only if b | a (to contain
is to divide).

Proof. If (b) ⊇ (a), then a ∈ (b) and hence a = bc for some c ∈ R. Thus b | a.
The converse is also clear.

Lemma 1.7. Let R be a ring. Then (a) = (b) if and only of a = bu for some
unit u ∈ R×.

Proof. From (a) = (b) we get (a) ⊆ (b) ⊆ (a), hence b | a and a | b, or a = bu,
b = av. Thus a = bu = auv; cancellation gives uv = 1, so u, v ∈ R×.

Note that two factorizations p1 · · · pm = q1 · · · qm into irreducible elements
are essentially the same if, after some permutation of the indices, we have
(p1) = (q1), . . . , (pm) = (qm). Thus the use of ideals in questions of unique
factorization suppresses exactly the information we do not care about (factors
differing by units).

Lemma 1.8. Let R be a ring. Then (a) ⊆ (a, b) for any b ∈ R.

This is trivial.

Lemma 1.9. Let R be a ring. If (a) ⊆ I and (b) ⊆ I, then (a, b) ⊆ I.

Proof. This is clear by the definition of an ideal: from a, b ∈ I we get ar+bs ∈
I for all r, s ∈ I.

The next result connects ideals to the notion of a greatest common divisor:

Proposition 1.10. Let R be a PID. Then elements have a gcd. Moreover,
d = gcd(a, b) for a, b, d ∈ R if and only if (a, b) = (d).

Proof. Let a, b ∈ R. We have to show that there is some d ∈ R satisfying the
axioms of a gcd. Since R is a PID, we can write (a, b) = (d) (such a d will
not be unique). There are two things to show:

1. d | a, d | b: In fact, a ∈ (a, b) = (d) implies a = dr for some r ∈ R, hence
d | a; similarly we find d | b.

2. e | a, e | b =⇒ e | d: since d ∈ (a, b) there exist r, s ∈ R with d = ar+ bs.
Now the assumptions imply that e divides the right hand side, hence
e | d.

Now we claim



1.4 Principal Ideal Domains 11

Theorem 1.11. Every Euclidean domain is a PID.

Proof. Let I be an ideal in the Euclidean ring R; we have to show that I is
principal. If I = (0) we are done; thus assume that I is not the zero ideal.
Let a ∈ I be a nonzero element with minimal f(a), where f is the Euclidean
function. We claim that I = (a).

In fact, let b ∈ I and write b = aq + r with f(r) < f(a); since a ∈ I and
I is an ideal we know that aq ∈ I, hence r = b− aq ∈ I. By the definition of
a we must have r = 0, and this shows that every element of I is a multiple
of a, i.e., I = (a).

This provides us with many (but not all) PIDs. In our proof of unique
factorization in Z, the main problem was showing that irreducibles are prime.
In PIDs, we get this for free:

Proposition 1.12. In any PID irreducible elements are prime.

Proof. Let p ∈ R be irreducible, and assume that p | ab. If p | a we are
done, so assume that p - a. We claim that (a, p) = (1) = R. In fact, write
(d) = (a, p). Then d | p, hence p = dr for d, r ∈ R. Since p is irreducible, d
or r must be a unit. If d is a unit, then (a, p) = (1) as claimed, and if r is a
unit, then (d) = (p), hence (a, p) = (p) and finally p | a: contradiction.

Thus (a, p) = (1), hence there exist r, s ∈ R with ar + ps = 1. But then
b = abr+ aps, and since p | ab, p divides the right hand side, hence p | b.

Next we have to show that every nonzero nonunit in a PID has a factor-
ization into irreducibles. This is not at all obvious: consider e.g. the domain
D = Z[

√
2, 4
√

2, 8
√

2, . . .] containing Z and all roots 21/2n

for n ≥ 1. Then 2 is
not a unit, and it is not irreducible because 2 =

√
2 ·
√

2. But
√

2 = 4
√

2 · 4
√

2
shows that

√
2 is also reducible, and this process can be continued indefi-

nitely: although 2 is a nonunit, it is not a product of irreducibles because
none of its factors is irreducible. In PIDs, this does not happen:

Proposition 1.13. Let R be a PID. Then every a ∈ R \ {0} has a factor-
ization into a unit times irreducible elements.

Proof. If a is a unit, we are done. If a is a nonunit then we claim that a
has an irreducible factor. This is clear if a is irreducible; if not then it has
a nontrivial factorization a = a1b1. If a1 is irreducible, we are done; if not,
then there is a nontrivial factorization a1 = a2b2 etc. In this way we get a
sequence of elements a1, a2, . . . with . . . , a3 | a2, a2 | a1, a1 | a. Consider the
ideal I = (a, a1, a2, . . .). Since R is a PID, there is a c ∈ R with I = (c). Since
I is the union of the ideals (a), (a1), (a2), . . . , c must be an element of one
of these, say c ∈ (am). But then (c) ⊆ (am) and (am) ⊆ I = (c) imply that
I = (am). Now am+1 | am, as well as am | am+1 because am+1 ∈ I = (am):
this implies that am and am+1 differ by a unit, hence am = am+1bm+1 is not
a nontrivial factorization.
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Thus we have shown that every nonzero nonunit a is divisible by an
irreducible element. We now claim that a has a factorization into irreducibles.
In fact, write a = a1b1 with a1 irreducible. If b1 is irreducible, we are done; if
not, write b1 = a2b2 with a2 irreducible and continue. By the same argument
as above this process must terminate, and after finitely many steps we have
a factorization of a into irreducibles.

Now we are ready to prove

Theorem 1.14. Every PID is a UFD.

Proof. We have already shown the following two facts:

1. Every element 6= 0 has a factorization into irreducible elements;
2. Irreducibles are primes.

Now assume that a = p1 · · · pr = q1 · · · qs are factorizations into irre-
ducibles. Since p1 is prime and divides the right hand side, it must di-
vide one of the factors, say p1 | q1. Since q1 is irreducible, we must have
q1 = p1u1 for some unit u1; replacing q2 by q2u1 and cancelling p1 shows that
p2 · · · pr = q2 · · · qs. Now do induction on the number of irreducible factors
just as in Z.

Note that not every UFD is a PID; a well known counterexample is the
factorial ring Z[X]: here (2, X) is not a principal ideal, i.e., cannot be gener-
ated by a single element.

1.5 The Ring of Gaussian Integers

Units and Primes

Finding all units in R = Z[i] is easy: a Gaussian integer is a unit if and only
if its norm is 1, which immediately gives

Proposition 1.15. We have Z[i]× = {±1,±i}.

Now let us determine all the primes in Z[i]. Assume that a+ bi is prime.
Then (a + bi) | (a + bi)(a − bi) = N(a + bi) = a2 + b2. Thus every prime
divides a natural number a2 + b2; writing this number as a product of primes
in N and keeping in mind that a + bi is a prime in Z[i] we find that a + bi
must divide one of the prime factors of a2 + b2.

Lemma 1.16. Every prime in Z[i] divides a prime in Z.

Thus in order to find all primes in Z[i] we only need to look at factors of
primes in Z. Of course primes in Z need not be prime in Z[i]: for example,
we have 5 = (1 + 2i)(1− 2i).

Now assume that a prime p ∈ N factors nontrivially in Z[i]; then p = (a+
bi)(c+di). Taking norms gives p2 = (a2+b2)(c2+d2). Since none of the factors
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is a unit, we must have a2 + b2 = c2 + d2 = p. Since a2 + b2 ≡ 0, 1, 2 mod 4,
primes of the form p ≡ 3 mod 4 are irreducible in Z[i], and since Z[i] is a
UFD, they are prime (in algebraic number theory, primes in Z remaining
prime in an extension are called inert).

Next 2 = i3(1 + i)2: thus 2 is a unit times a square (in algebraic number
theory, such primes will be called ramified).

Finally, if p ≡ 1 mod 4, then (−1
p ) = +1, hence x2 ≡ −1 mod p for some

integer x. This implies p | (x2 + 1) = (x + i)(x − i). Now clearly p does
not divide any of the factors since x

p + 1
p i is not a Gaussian integer. Thus

p divides a product without dividing one of the factors, and this means p
is not prime in Z. Since irreducibles are prime, this implies that p must be
reducible, i.e., it has a nontrivial factorization. We have seen above that this
means that p = a2 + b2 for a, b ∈ Z: thus the first supplementary law plus
unique factorization in Z[i] implies Fermat’s two-squares theorem!

Let us get back to primes p ≡ 1 mod 4. We have seen that p = a2 + b2 =
(a+ bi)(a− bi). Can it happen that a+ bi and a− bi differ only by a unit? If
a+ bi = (a− bi)ε, then ε = a+bi

a−bi = 1
p (a+ bi)2 = 1

p (a2 − b2 + 2abi). But this
is not a Gaussian integers since p - 2ab. Thus a + bi and a − bi are distinct
primes (in algebraic number theory, we say that such primes split).

Theorem 1.17. The ring Z[i] has the following primes:

• 1 + i, the prime dividing 2;
• a+ bi and a− bi, where p = a2 + b2 ≡ 1 mod 4;
• rational primes q ≡ 3 mod 4.

In particular, Z[i] has infinitely many primes. We could have proved this
also by Euclid’s argument.

1.6 Fermat and the Harbingers of Nonunique
Factorization

The examples above suggest the following question: why does an argument
that works well for numbers of the form a + b

√
−2 go wrong for numbers

of the form a + b
√
−5? The reason for this strange behavior would not be

uncovered until the mid-19th century, although traces of it can be tracked
back to the work of Fermat. One of his more famous theorems claims that
every prime of the form 4n + 1 can be written as the sum of two squares.
The heart of Fermat’s proof was the fact that a divisor of a number of the
form x2 + y2 with gcd(x, y) = 1 also can be represented in the form x2 + y2;
thus from 5 · 13 = 82 + 12 we may conclude that 5 and 13 are sums of two
squares.4

4 From the modern point of view his proof essentially is a “translation” of the fact
that Z[i] is Euclidean into a language avoiding algebraic numbers.
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Fermat also found by induction that the same claim holds for the
quadratic form x2 +2y2; on the other hand he knew that it failed for x2 +5y2

because
21 = 12 + 5 · 22 = 42 + 5 · 12, (1.3)

yet 3 and 7 cannot be represented in this form.
The connection with Euler’s use of quadratic irrationals becomes apparent

when we write (1.3) in the form

3 · 7 = (1 + 2
√
−5 )(1− 2

√
−5 ) = (4 +

√
−5 )(4 +

√
−5 ). (1.4)

As before we can show that the factors in these factorizations are all irre-
ducible in the ring R = Z[

√
−5 ], and do not differ just by units.

This shows that Z[
√
−5 ] does not have unique factorization, and that this

is a consequence of Fermat’s observation on divisors of numbers of the form
x2 +5y2. This fact is also responsible for the erroneous result that our second
“proof” above has produced. If Z[

√
−5 ] had unique factorization, the given

proof would actually be correct, as the following lemma shows:

Lemma 1.18. Assume that R is a unique factorization domain. If a, b ∈ R
are coprime and if ab = cn for some c ∈ R, then there exists a unit u ∈ R×
and elements r, s ∈ R such that a = urn and b = u−1sn.

Proof. Since R has unique factorization, a is the product of a unit and certain
prime powers. Since a and b are coprime, these primes do not divide b; since
ab is an n-th power, the exponent of each prime in the factorization of a must
be a multiple of n. This proves the claim.

This result does not hold in Z[
√
−5 ]: here (2+

√
−5 )(2−

√
−5 ) = 32 is a

square; since the factors (2+
√
−5 ) and (2−

√
−5 ) are irreducible (!) and do

not differ by a unit, they must be coprime. Yet ±(2 +
√
−5 ) is not a square

(again because 2 +
√
−5 is irreducible).

The insight that nonunique factorization is responsible for the failure of
Euler’s method in certain cases became common knowledge in the middle
of the 19th century and is connected with the work of Dirichlet, Jacobi,
Eisenstein, Liouville, Kummer, and Dedekind.

1.7 Dedekind’s Ideals

How can we save unique factorization in rings like Z[
√
−5 ]? In order to

motivate the answer, consider Hilbert’s example of the set of integers M =
{1, 5, 9, . . . , 4n + 1, . . .}. In this monoid, the factorization 9 · 49 = 21 · 21
shows that unique factrization does not hold. The different factorizations
can, however, be explained by introducing the “ideal numbers” 3 = (21, 33)
and 7 = (21, 49) and observing that 9 · 49 = 21 · 21 comes from pairing up
the factors in the ideal factorization 441 = 3272 in two different ways.
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Now let us do the same in Z[
√
−5 ] by introducing the ideals. Recall that

an ideal a in a ringR is a set closed with respect to addition and multiplication
by ring elements:

a, b ∈ a =⇒ a+ b ∈ a;
a ∈ a, r ∈ R =⇒ ra ∈ a.

Given elements a1, . . . , an ∈ R we can define an ideal a = (a1, . . . , an) =
{
∑
riai : ri ∈ R}; ideals of the form a = (a) = aR are called principal ideals.
Ideals can be multiplied: we simply let ab = {

∑
aibi : ai ∈ a, bi ∈ b} be

the set of all finite sums of products of elements of a and b. In particular,
this implies that e.g. (a)(b) = (ab), (a)(b1, b2) = (ab1, ab2), (a1, a2)(b1, b2) =
(a1b1, a1b2, a2b1, a2b2), etc. Moreover, the ideal (1) = R consisting of all ring
elements is a neutral element with respect to this multiplication.

The factorization (1.4) of elements in R = Z[
√
−5 ] immediately implies

a corresponding factorization of principal ideals

(3) · (7) = (1 + 2
√
−5 )(1− 2

√
−5 ) = (4 +

√
−5 )(4 +

√
−5 ).

But whereas the elements in (1.4) were irreducible, the ideals are not. In
fact, write p = (3, 1 +

√
−5 ), p′ = (3, 1 −

√
−5 ), q = (7, 4 +

√
−5 ), and

q′ = (7, 1−
√
−5 ). Then we find

pp′ = (9, 3(1−
√
−5 ), 3(1 +

√
−5 ), 6)

= (3)(3, 1−
√
−5, 1 +

√
−5, 2) = (3)(1) = (3),

because any ideal containing 3 and 2 also contains 3 − 2 = 1 and hence
is the unit ideal. Similarly we get qq′ = (7); this calculation is left to the
reader. Thus we have (3)(7) = (pp′)(qq′), and we may hope that the other
factorizations can be explained similarly. This does work indeed:

pq = (21, 3(4 +
√
−5 ), 7(1 +

√
−5 ), (1 +

√
−5 )(4 +

√
−5 ))

= (4 +
√
−5 )(4−

√
−5, 3 +

√
−5, 1 +

√
−5 )

= (4 +
√
−5 )

because the ideal (4−
√
−5, 3+

√
−5, 1+

√
−5 ) contains 7 = 4−

√
−5+3+

√
−5

and 2 = (3+
√
−5 )−(1+

√
−5 ), hence 1 = 7−3·2. Note that (3+

√
−5 ) does

not denote an ideal here: it must denote a number inside brackets because the
left hand side 2 is a number, and because we have not defined the difference
of ideals.

Similarly we find p′q′ = (4 +
√
−5 ), pq′ = (1 − 2

√
−5 ), and p′q = (1 +

2
√
−5 ). Thus the nonunique factorization of elements in (1.4) turns into the

equality
(21) = pp′qq′

of ideals, from which the factorizations of principal ideals
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(21) = (3)(7) = (1 + 2
√
−5 )(1− 2

√
−5 ) = (4 +

√
−5 )(4 +

√
−5 )

results from pairing the ideals p, p′, q and q′ in different ways.
The first goal now is to prove that this is not accidental, and that factor-

ization into prime ideals holds in any ring of integers of an algebraic number
field. This can be shown in various degrees of abstraction. In the next chapter,
we give a down and dirty way of doing this in quadratic number fields.

Exercises

1.1 Find a zero divisor in the ring M2(Z) of 2×2-matrices with integral coefficients.

1.2 Using the Euclidean algorithm, find the gcd of the Gaussian integers 10 + 11i
and 11 + 16i.

1.3 Show that the ring Z[
√
−2 ] is Euclidean.

1.4 Find units 6= ±1 in the rings Z[
√

m ] for m = −1, 2, 3, 5, 6, 7.

1.5 Prove that (a1, a2)(b1, b2) = (a1b1, a1b2, a2b1, a2b2) for ideals in some commu-
tative ring. Generalize.

1.6 Show that 21 = (1+2
√
−5 )(1−2

√
−5 ) = 3·7 is another example of nonunique

factorization in Z[
√
−5 ], and find a third factorization of 21 into irreducibles.

1.7 Show that 6 = 2 · 3 = (2 +
√
−2 )(2−

√
−2 ) is not an example of nonunique

factorization in Z[
√
−2 ].

1.8 Discuss the factorization 6 = 2 · 3 =
√

6 ·
√

6 in Z[
√

6 ].

1.9 Explain the different factorizations in Exercise 1 using the ideals p = (2, 1 +√
−5 ), q = (3, 1 +

√
−5 ), and q′ = (3, 1−

√
−5 ). Show that

1. (2, 1−
√
−5 ) = p;

2. p2 = (2);
3. qq′ = (3);
4. q2 = (2 +

√
−5 ).

1.10 Discuss the factorizations 6 = 2 · 3 = −
√
−6

2
in Z[

√
−6 ] and 6 = 2 · 3 =

(2 +
√

10 )(−2 +
√

10 ) in Z[
√

10 ].

1.11 Prove that the only unique factorization domains of the form Z[
√

m ] with
m ≤ 1 are those for m = 1 and m = 2.
Hints. First consider the case m ≡ 2 mod 4. If m > 2, it is composite, say

m = ab. Now consider the factorizations m = ab = −
√
−m

2
. If m is odd and

m 6= 1, then have a look at the factorization of m + 1.

1.12 The last exercise showed that unique factorization domains are rare among the
rings Z[

√
m ] with m ≤ 1. The situation is better for m > 1; nevertheless show

that Z[
√

m ] does not have unique factorization if m = 2n with n ≡ 1 mod 4.
Does the proof also work if n ≡ 3 mod 4?

1.13 Show that Z[
√

m ] is norm-Euclidean for m = −2, 2, 3.
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1.14 Let R be the ring of continuous functions R −→ R, where addition and mul-
tiplication are defined pointwise.
1. Determine the unit group R×;
2. does R contain irreducible elements?
3. for a ∈ R let Ia = {f ∈ R : f(a) = 0}; is Ia an ideal?
4. find an ideal in R that is not principal.

1.15 Prove that the ideal (X, Y ) in C[X, Y ] is not principal.

1.16 Use the Euclidean algorithm to compute gcd(7− 6i, 3− 14i).

1.17 Find the prime factorization of −3 + 24i. (Hint: first factor the norm).

1.18 Find c ∈ {0, 1, . . . , 16} such that 3 + 2i ≡ c mod 1 + 4i.

1.19 Show that for any α ∈ Z[i] with odd norm there is a unit ε ∈ Z[i]× such that
αε = a + bi with a odd, b even, and a + b ≡ 1 mod 4. Show also that this
condition is equivalent to a + bi ≡ 1 mod (2 + 2i).

1.20 Use Euclid’s argument to show that there are infinitely many primes in Z[i].

1.21 Show that Z[
√

2 ] contains infinitely many units.

1.22 Find all the prime elements in Z[
√
−2 ].

1.23 Solve the congruence x2 ≡ −1 mod 41 and then compute gcd(x+i, 41) in Z[i].

1.24 Find infinitely many integers x, y, z ∈ Z with x2 + y2 = z3.

1.25 Solving equations like y2 = x3 + c is not always as easy as for c = −2. Show
that solving y2 = x3 + 1 in the standard way leads to the new diophantine
equation a3 − 2b3 = 1. How do you think mathematicians solve this last
equation?
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2. Rings of Integers, Modules, and Ideals

In this chapter we introduce the rings of integers in quadratic number fields.
Then we shall deal with modules and ideals in these rings.

2.1 Algebraic Integers

Before we give the final definition of the “correct” rings of integers, let us
introduce some notation.

Norm and Trace

Consider the quadratic number field

K = Q(
√
m ) = {a+ b

√
m : a, b ∈ Q}.

This is a Galois extension of Q, i.e., there are two automorphisms, the identity
and the conjugation map σ sending α = a + b

√
m ∈ K to σ(α) = α′ =

a− b
√
m. Clearly σ2 = 1, and Gal(K/Q) = {1, σ}. It is obvious that α ∈ K

is fixed by σ if and only if b = 0, that is, if and only if α ∈ Q. We say that K
is real or complex quadratic according as m > 0 or m < 0.

The element α = a + b
√
m ∈ K is a root of the quadratic polynomial

Pα(X) = X2 − 2aX + a2 − mb2 ∈ Q[X]; its second root α′ = a − b
√
m is

called the conjugate of α. We also define

Nα = αα′ = a2 −mb2 the norm of α,
Trα = α+ α′ = 2a the trace of α, and
disc(α) = (α− α′)2 = 4mb2 the discriminant of α.

The basic properties of norm and trace are

Proposition 2.1. For all α, β ∈ K we have N(αβ) = NαNβ and Tr(α +
β) = Trα + Trβ. Moreover Nα = 0 if and only if α = 0, Trα = 0 if and
only if α = b

√
m, and disc(α) = 0 if and only if α ∈ Q.

Proof. Left as an exercise.

In particular, the norm is a group homomorphism K× −→ Q×, and the
trace is a group homomorphism from the additive group (K,+) to the addi-
tive group (Q,+).
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The Power of Linear Algebra

Let K ⊆ L be fields; then L may be viewed as a K-vector space: the vectors
are the elements from L (they form an additive group), the scalars are the
elements of K, and the scalar multiplication is the restriction of the usual
multiplication in L. The dimension dimK L of L as a K-vector space is called
the degree of L/K and is denoted by (L : K).

Clearly K = Q(
√
m ) has degree 2 over Q: a basis is given by{1,

√
m}

since every element of K can be written uniquely as a Q-linear combination
of 1 and

√
m.

In algebraic number theory, fields of higher degree are also studied; for
example,

Q( 3
√

2 ) = {a+ b
3
√

2 + c
3
√

4 : a, b, c ∈ Q}

is a number field of degree 3 with basis {1, 3
√

2, 3
√

4}.
Norm and trace can be defined in arbitrary number fields by generalizing

the following approach: Let {1, ω} denote a basis of K = Q(
√
m ) as a Q-

vector space (for example, take ω =
√
m). Multiplication by α is a linear map

because α(λβ + µγ) = λ(αβ) + µ(αγ) for λ, µ ∈ Q and β, γ ∈ K. Now once
a basis is chosen, linear maps can be represented by a matrix; in fact, all we
have to do is compute the action of α = a+ bω on the basis {1, ω}.

To this end let us identify a+ b
√
m with the vector

(
a
b

)
; then 1 and

√
m

correspond to
(
1
0

)
and

(
0
1

)
. The images of these vectors under multiplication

by α are, in light of α · 1 = a + bω and α · ω = bm + aω for ω =
√
m, the

vectors
(
a
b

)
and

(
mb
a

)
. Thus multiplication by α is represented by the matrix

Mα = ( a mb
b a ). Now we see that N(α) = detMα and Tr(α) = TrMα. It is an

easy exercise to show that the norm and the trace in this definition do not
depend on the choice of the basis.

From linear algebra we know that the characteristic polynomial of the
matrix Mα is given by

det(Mα −XI) =
∣∣∣∣( a−X mb

b a−X

)∣∣∣∣ = X2 − Tr(α)X + N(α) = Pα(X).

We now say that α is integral if the characteristic polynomial Pα(X) has
integral coefficients. Clearly α is integral if its norm and trace are ordinary
rational integers. Thus all elements in Z[

√
m ] are algebraic integers, but so

are e.g. ρ = −1+
√
−3

2 and 1+
√

5
2 , as is easily checked. Moreover, a rational

number a ∈ Q is integral if and only if Pa(X) = X2 − 2aX + a2 = (X − a)2

has integral coefficients, which happens if and only if a ∈ Z. This is a good
sign: the integral numbers among the rationals according to our definition
coincide with the integers!
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Rings of Integers

Now let OK denote the set of all algebraic integers in K = Q(
√
m ), where

m is a squarefree integer. In the following, we will determine OK and show
that it forms a ring.

Lemma 2.2. We have a+ b
√
m ∈ OK if and only if u = 2a and v = 2b are

integers with u2 −mv2 ≡ 0 mod 4.

Proof. Assume that α = a + b
√
m ∈ OK ; then u := 2a = Tr(α) ∈ Z and

a2−mb2 = N(α) ∈ Z. Multiplying the last equation through by 4 we find that
4mb2 must be an integer. Since m is squarefree, it cannot cancel any denom-
inators in 4b2, hence 4b2 and therefore also v := 2b are integers. Moreover,
u2−mv2 = 4a2−4mb2 = 4N(α) is a multiple of 4, hence u2−mv2 ≡ 0 mod 4.

Now assume that u = 2a and v = 2b are integers with u2−mv2 ≡ 0 mod 4.
Then for α = a + b

√
m we find that Pα(X) = X2 − uX + 1

4 (u2 −mv2) has
integral coefficients, hence α ∈ OK .

This lemma is now used to classify the algebraic integers in K:

Proposition 2.3. We have

OK =

{
{a+ b

√
m : a, b ∈ Z} if m ≡ 2, 3 mod 4,

{a+b
√

m
2 : a ≡ b mod 2} if m ≡ 1 mod 4.

In particular, OK = Z[
√
m ] is the ring of integers in K whenever m ≡

2, 3 mod 4.

Proof. Assume that a+ b
√
m with a, b ∈ Q is an algebraic integer. Then 2a,

2b and a2 −mb2 are integers by Lemma 2.2.
1. If m ≡ 2 mod 4, then u2 − mv2 ≡ 0 mod 4 for integers u = 2a and

v = 2b implies that u and v are even, hence a and b are integers.
2. If m ≡ 3 mod 4, then u2 − mv2 ≡ 0 mod 4 for integers u = 2a and

v = 2b can only happen if u and v have the same parity; if they are both
odd, then u2 ≡ v2 ≡ 1 mod 4 and u2 −mv2 ≡ 2 mod 4: contradiction. Thus
u and v are even, and a and b are integers.

3. Finally assume that m ≡ 1 mod 4. Again, u2 −mv2 ≡ 0 mod 4 if and
only if u and v have the same parity. If u and v are both even, then a and b are
integers; if not, then u ≡ v ≡ 1 mod 2 are both odd, and a+ b

√
m = u+v

√
m

2
is an algebraic integer with trace u and norm 1

2 (u2 −mv2).

In the cases m ≡ 2, 3 mod 4, every integer in OK can be written uniquely
as a Z-linear combination of 1 and

√
m: we say that {1,

√
m} is an integral

basis in this case. These are not unique: other examples are {1, a+
√
m} for

any a ∈ Z or {1 +
√
m,
√
m}.

In the case m ≡ 1 mod 4 we claim that OK also has an integral basis,
namely {1, ω} with ω = 1

2 (1 +
√
m ). In fact, for any pair of integers a, b ∈ Z,



22 2. Rings of Integers, Modules, and Ideals

the number a+bω = 2a+b+b
√

m
2 is integral since 2a+b ≡ b mod 2; conversely,

any integer a+b
√

m
2 with a ≡ b mod 2 can be written in the form a−b

2 + bω

with a−b
2 , b ∈ Z. We have proved:

Corollary 2.4. The ring OK of integers in a quadratic number field K is a
free abelian group, i.e., for

ω =

{√
m if m ≡ 2, 3 mod 4,

1+
√

m
2 if m ≡ 1 mod 4

we have OK = Z⊕ ωZ.

Now that we have constructed the rings of integers in a quadratic number
field, we want to prove that they are Dedekind rings, i.e., domains in which
every ideal is the product of prime ideals in a unique way. As a first step we
review the basics of ideals and modules in commutative rings – the actual
proof of unique factorization into prime ideals will then actually be quite
easy.

2.2 Modules

Let R be a commutative ring; an (additively written) abelian group M is
said to be an R-module if there is a map R×M −→M : (r,m) 7−→ rm with
the following properties:

• 1m = m for all m ∈M ;
• r(sm) = (rs)m for all r, s ∈ R and m ∈M ;
• r(m+ n) = rm+ rn for all r ∈ R and m,n ∈M ;
• (r + s)m = rm+ sm for all r, s ∈ R and m ∈M .

The most important examples are abelian groups G: they are all Z-
modules via ng = g + . . . + g (n terms) for n > 0 and ng = −(−n)g for
n < 0. In particular, a subring M of a commutative ring R is a Z-module.

Given any α, β ∈ K = Q(
√
d ), the set M = [α, β] = Zα + Zβ of all

Z-linear combinations of α and β is a Z-module. In the following, we will
classify all full Z-modules in OK .

Proposition 2.5. Let M ⊂ OK be a Z-module in OK . Then there exist
natural numbers m,n and and integer c ∈ Z such that M = [n, c + mω] :=
nZ⊕ (c+mω)Z.

Note that this says that every element in M is a unique Z-linear com-
bination of n and c + mω; the elements n and c + mω are therefore called
a basis of the Z-module M in analogy to linear algebra. Actually, studying
R-modules is a generalization of linear algebra in the sense that R-modules
are essentially vector spaces with the field of scalars replaced by a ring.



2.2 Modules 23

Also observe that, in general, not every R-module has a basis; R-modules
possessing a basis are called free, and the number of elements in a basis is
called the rank of the R-module. Proposition 2.5 claims that all Z-modules
in OK are free of rank ≤ 2. In fact, the Z-modules M = {0} = [0, 0], M =
Z = [1, 0] and M = OK = [1, ω] have ranks 0, 1 and 2, respectively.

Proof of Prop. 2.5. Step 1: defining m,n and c. Consider the subgroup H =
{s : r+sω ∈M} of Z. Every subgroup of Z has the form mZ for some integer
m, hence in particular we have H = mZ for some m ≥ 0. By construction,
there is an integer c ∈ Z such that c+mω ∈M . Finally, M ∩Z is a subgroup
of Z, hence M ∩ Z = nZ for some n ≥ 0.

Step 2: showing that this definition works. We now claim that M = nZ⊕
(c+mω)Z. The inclusion ⊇ is clear; assume therefore that r+sω ∈M . Since
s ∈ H we have s = um for some u ∈ Z, and then r−uc = r+sω−u(c+mω) ∈
M ∩ Z, hence r − uc = vn. But then r + sω = r − uc + u(c + mω) =
vn+ u(c+mω) ∈ nZ⊕ (c+mω)Z.

If n > 0 and 0 ≤ c < n, then the integers c, n,m are uniquely determined,
and we can think of [n, c+mω] as the canonical representation of a module
M .

Residue Classes

Given a Z-submodule M of R we can form the quotient group R/M whose
elements are expressions of the form r+M for r ∈ R, with r+M = s+M if
and only if r−s ∈M ; addition is defined by (r+M)+(s+M) = (r+s)+M .

The number of elements in R/M is called the norm of the module M and
will be denoted by N(M). In general, the norm N(M) = (R : M) will not
be finite: just consider the module M = Z = [1, 0] in some ring R = OK .
Reducing a+ b

√
m modulo M gives a+ b

√
m ≡ b

√
m mod M , and in fact we

have R/M = {b
√
m+M : b ∈ Z} since b

√
m ≡ b′

√
m mod M implies b = b′.

In particular, (R : M) = ∞.
This cannot happen if the Z-module M has rank 2. Note that a Z-module

M = [n, c+mω)] in OK has rank 2 if and only if mn 6= 0. Modules of maximal
rank in OK (in the case of quadratic extensions K/Q this means rank 2) are
also called full modules. Now we claim

Proposition 2.6. Let M = [n, c+mω)] be a full Z-module in OK . Then

S = {r + sω : 0 ≤ r < n, 0 ≤ s < m}

is a complete residue system modulo M in OK , and in particular N(M) =
mn.

Proof. We first show that every x + yω ∈ OK is congruent mod M to an
element of S. Write y = mq + s for some q ∈ Z and 0 ≤ s < m; then
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x+yω−q(c+mω) = x′+sω for some integer x′, hence x+yω ≡ x′+sω mod M .
Now write x′ = nq′+r for q′ ∈ Z and 0 ≤ r < n; then x′+sω ≡ r+sω mod M .

Now we claim that the elements of S are pairwise incongruent modulo M .
Assume that r + sω ≡ r′ + s′ω mod M for 0 ≤ r, r′ < n and 0 ≤ s, s′ < m;
then r− r′ + (s− s′)ω ∈M implies that s− s′ ∈ mZ and r− r′ ∈ nZ, hence
r = r′ and s = s′.

We will also need a second way of characterizing the norm of modules in
OK . In contrast to the results above, which are valid in more general orders
(they hold, for example, in rings Z[

√
−m ]), this characterization of the norm

only holds in the ring of integers OK (also called the maximal order). In fact,
the following lemma due to Hurwitz exploits that we are working in OK :

Lemma 2.7. Let α, β ∈ OK and m ∈ N. If Nα, Nβ and Trαβ′ are divisible
by m, then m | αβ′ and m | α′β.

Proof. Put γ = αβ′/m; then γ′ = α′β/m, and we know that γ + γ′ =
(Trαβ′)/m and γγ′ = Nα

m
Nβ
m are integers. But if the norm and the trace of

some γ in a quadratic number field are integral, then we have γ ∈ OK .

Remark: the last sentence of the proof demands that any element in
Q(
√
m ) with integral norm and trace is in the ring. This means that the

lemma holds in any subring of K containing OK , but not in smaller rings.
In fact, consider the ring O = Z[

√
−3 ] and α = 2, β = 1 +

√
−3. Then

Nα = Nβ = 4, and Trαβ′ = Tr (2 − 2
√
−3 ) = 4. Thus Nα, Nβ and Trαβ′

are divisible by m = 4, yet 4 - αβ′ = 2− 2
√
−3.

If M = [α, β] and N = [γ, δ] are Z-modules in OK , then we can define the
product MN as the Z-module containing all Z-linear combinations of αγ,
αδ, βγ and βδ; in such a case we will write

MN = 〈αγ, αδ, βγ, βδ〉.

Proposition 2.8. Let K be a quadratic number field with ring of integers
OK and integral basis {1, ω}. If M is a full Z-module in OK , then there is
an f ∈ N and a module O = [1, gω] such that MM ′ = fO and N(M) = fg.

Full Z-modules O ⊆ OK containing Z are also called orders; the order
OK is, for obvious reasons, called the maximal order.

Proof. Using Proposition 2.5 we can write M = [α, β] for α, β ∈ OK (ac-
tually Prop. 2.5 is more precise, but this is all we need for now). Then
M ′ = [α′, β′] and therefore MM ′ = [Nα,αβ′, α′β,Nβ]. Now there is
some integer f > 0 with f = gcd(Nα,Nβ,Trαβ′) (in Z); thus we get
MM ′ = f〈Nα

f , Nβ
f , αβ′

f , α′β
f 〉 (the generators of this Z-module are all integral

by Hurwitz’s Lemma).
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Now we claim that 1 ∈ O = 〈Nα
f , Nβ

f , αβ′

f , α′β
f 〉. In fact, 1 is a Z-linear

combination of Nα
f , Nβ

f and Tr αβ′

f (by the definition of f), hence in partic-

ular a Z-linear combination of Nα
f , Nβ

f , αβ′

f and α′β
f . Now Nα

f and Nβ
f are

multiples of 1, hence we have O = 〈1, αβ′

f , α′β
f 〉. Next αβ′

f + α′β
f is an integer,

hence a multiple of 1, and this implies O = 〈1, α′β
f 〉.

Now we choose a canonical basis for M , namely α = n and β = c+mω.
Then O = 〈1, nc+nmω

f 〉; since nc
f is an integer, we finally get O = 〈1, nm

f ω〉. If
nm 6= 0, then 1 and nm

f ω are independent, so in this case we getO = [1, nm
f ω].

In particular, g = nm
f and fg = nm = N(M) as claimed.

This Proposition does not hold in arbitrary orders. Consider as before
the ring Z[

√
−3 ] and the module M = [2, 1 +

√
−3 ]. Then it is easy to

show that N(M) = 2, where N(M) = (Z[
√
−3 ] : M); in fact {0, 1} is a

complete system of residues mod M in O. Now M ′ = [2, 1−
√
−3 ] = M , and

MM ′ = [4, 2 + 2
√
−3 ] = 2M . Since you cannot factor out any f > 1 from

M (not inside the ring O, anyway), this means that MM ′ cannot be written
in the form fO for some order O.

2.3 Ideals

An ideal I in some ring R is just a Z-submodule of R that also is an R-
module. In other words, I must satisfy I+ I = I (closed under addition) and
I ·R = I (closed under multiplication by ring elements).

The fact that IR = I allows us to make the quotient group R/I into a
ring via (r+ I) · (s+ I) = rs+ I. In fact, if r+ I = r′ + I and s+ I = s′ + I,
i.e., if a = r − r′ ∈ I and b = s− s′ ∈ I, then r′s′ + I = (r − a)(s− b) + I =
rs+(ab−rb−sa)+I, and this is equal to the coset rs+I only if ab−rb−sa ∈ I;
since a, b ∈ I implies that ab ∈ I, this is equivalent to rb + sa ∈ I. Since I
is an ideal, we find sa, rb ∈ I, and this implies that multiplication is well
defined.

Note that if I and J are ideals in R, then so are

I + J = {i+ j : i ∈ I, j ∈ J},
IJ = {i1j1 + . . .+ injn : i1, . . . , in ∈ I, j1, . . . , jn ∈ J},

as well as I ∩ J . The index n in the product IJ is meant to indicate that
we only form finite sums. If A and B are ideals in some ring R, we say that
B | A if A = BC for some ideal C.

We say that an nonzero ideal I 6= R is

• irreducible if I = AB for ideals A, B implies A = R or B = R;
• a prime ideal if AB ⊆ I for ideals A, B always implies A ⊆ I or B ⊆ I;
• a maximal ideal if I ⊆ J ⊆ R for an ideal J implies J = I or J = R.



26 2. Rings of Integers, Modules, and Ideals

In principal ideal rings, this coincides with the usual usage of prime and
irreducible elements: an ideal (a) is irreducible (prime) if and only if a is
irreducible (prime). In fact, (r) | (s) is equivalent to r | s. In general do-
mains, r may be irreducible whereas (r) factors into two ideals (necessarily
not principal).

Prime ideals and maximal ideals can be characterized as follows:

Proposition 2.9. An ideal I is

• prime in R if and only if R/I is an integral domain;
• maximal in R if and only if R/I is a field.

Proof. R/I is an integral domain if and only if it has no zero divisors. But
0 = (r + I)(s + I) = rs + I is equivalent to rs ∈ I; if I is prime, then this
implies r ∈ I or s ∈ I, i.e., r+ I = 0 or s+ I = 0, and R/I is a domain. The
converse is also clear.

Now let I be maximal and take some a ∈ R\I; we have to show that a+I
has a multiplicative inverse. Since I is maximal, the ideal generated by I and
a must be the unit ideal, hence there exist elements m ∈ I and r, s ∈ R such
that 1 = rm+ sa. But then (a+ I)(s+ I) = as+ I = (1− rm) + I = 1 + I.

Conversely, assume that every coset r + I 6= 0 + I has a multiplicative
inverse. Then we claim that I is maximal. In fact, assume that M is an
ideal strictly bigger than I. Then there is some m ∈ M \ I. Pick r ∈ R sith
(m+ I)(r + I) = 1 + I; then mr − 1 ∈ I ⊂ M , and m ∈ M now shows that
1 ∈M .

Note that an integral domain is a ring with 1 in which 0 6= 1; thus (1) is
not prime since the null ring R/R only has one element.

It follows from this proposition that every maximal ideal is prime; the
converse is not true in general. In fact, consider the ring Z[X] of polynomials
with integral coefficients. Then I = (X) is an ideal, and R/I ' Z is an
integral domain but not a field, hence I is prime but not maximal.

Example. Now consider the domain R = Z[
√
−5 ] and the ideal p = (2, 1 +√

−5 ). We claim that R/p ' Z/2Z; this will imply that p is prime, and even
a maximal ideal.

We first prove that every element of R is congruent to 0 or 1 modulo
p. This is easy: reducing a + b

√
−5 modulo 2 shows that every element is

congruent to a + b
√
−5 mod (2) with a, b ∈ {0, 1}, i.e., to one of 0, 1,

√
−5,

1+
√
−5.1 Reducing these classes modulo p we find that

√
−5 ≡ 1 mod p (the

difference is in p and 1+
√
−5 ≡ 0 mod p). Thus every element is ≡ 0, 1 mod p.

Moreover, these residue classes are different since 0 ≡ 1 mod p would imply
1 ∈ p, which is not true: 1 = α · 2 + β · (1 +

√
−5 ) is impossible for α, β ∈ R,

as a little calculation will show.
1 Actually this is a complete set of residue classes modulo a = (2) in R. The ring

R/(2) has zero divisors because (1 +
√
−5 )2 = −4 + 2

√
−5 ≡ 0 mod (2); in

particular, (2) is not a prime ideal in R.



2.3 Ideals 27

An important result is

Theorem 2.10 (Chinese Remainder Theorem). If A and B are ideals in R
with A+B = R, then R/AB ' R/A⊕R/B as rings.

Proof. Since A + B = R, there exist a ∈ A and b ∈ B such that a + b = 1.
Consider the map φ : R/A ⊕ R/B −→ R/AB defined by φ(r + A, s + B) =
rb + sa + AB. We claim that φ is a ring homomorphism. Checking that
φ(r + A, s + B) + φ(r′ + A, s′ + B) = φ(r + r′ + A, s + s′ + B) is easy.
Multiplication is more tricky: we have

φ(r +A, s+B)φ(r′ +A, s′ +B) = (rb+ sa)(r′b+ s′a) +AB

= rr′b2 + ss′a2 +AB

= rr′b(1− a) + ss′a(1− b) +AB

= rr′b+ ss′a+AB = φ(rr′ +A, ss′ +B).

In order to show that φ is bijective, it is sufficient to define the inverse map
ψ : R/AB −→ R/A⊕R/B by ψ(r+AB) = (r+A, r+B) and verifying that
ψ ◦ φ and φ ◦ ψ are the identity maps; this is again easily done.

Ideals as Z-Modules

Clearly every ideal in OK is a Z-module (and therefore is generated by at
most two elements); the converse is not true since e.g. M = [1, 0] = Z is a
Z-module in OK but clearly not an ideal: the only ideal containing 1 is the
unit ideal (1) = OK . A different way of looking at this is the following: ideals
in OK are OK-modules, and the fact that Z ⊂ OK implies that every ideal
is a Z-module.

Given a Z-module M = [n, c +mω], under what conditions on a,m, n is
M an ideal? This question is answered by the next

Proposition 2.11. A nonzero Z-module M = [n, c+mω] is an ideal if and
only if m | n, m | c (hence c = mb for some b ∈ Z) and n | m ·N(b+ ω).

Writing n = ma for some integer a, this shows that ideals can be written
in the form a = m[a, b+ ω] for integers a,m such that a | N(b+ ω).

Proof. Since M is an ideal, n ∈ M ∩ Z implies nω ∈ M . Thus we have
n ∈ H (see the proof of Prop. 2.5) by definition of H. This shows that
nZ = M ∩ Z ⊆ H = mZ, hence m | n (if the multiples of n are contained in
the multiples of m, then m must divide n; this instance of “to divide means
to contain” will reoccur frequently in the following).

In order to show that m | c we observe that ω2 = x+yω for suitable x, y ∈
Z. Since M is an ideal, c+mω ∈M implies (c+mω)ω = mx+(c+my)ω ∈M ,
hence c +my ∈ H by definition of H, and therefore c +my is a multiple of
m. This implies immediately that m | c, hence c = mb for some b ∈ Z.
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In order to prove the last divisibility relation we put α = c + mω =
m(b+ω). Then α ∈M implies α(b+ω′) ∈M . Since 1

mNα = m(b+ω)(b+ω′) ∈
M ∩ Z, we conclude that 1

mN(b+ ω) is a multiple of n.

For Z-modulesM inOK we have shown thatMM ′ = fO for some module
O containing 1. If M is an ideal, then so is O, and since every ideal containing
1 is the unit ideal, we find

Proposition 2.12. If a is a nonzero ideal in OK , then there exists some
integer f > 0 with aa′ = (f).

In fact, this integer f is nothing but the norm of a, that is, the number
of residue classes in OK/a:

Proposition 2.13. Let a be an ideal in OK , and write aa′ = fOK for some
natural number f . Then f = N(a).

Proof. By Prop. 2.5 we can write a = m[a, b+ ω], and we have N(a) = m2a.
It remains to show that aa′ = (m2a). To this end, we compute

aa′ = m2[a, b+ ω][a, b+ ω′]

= m2[a2, a(b+ ω), a(b+ ω′), N(b+ ω)]

= m2a[a, b+ ω, b+ ω′, 1
aN(b+ ω)].

The last module is integral because of Proposition 2.11. We want to show
that it is the unit ideal. Note that the ideal must be generated by a rational
integer since aa′ = (f). But the only integers dividing b+ ω are ±1 (see the
next lemma).

Lemma 2.14. If g is an integer dividing a+ bω ∈ OK , then g | b.

Proof. We have g | a + bω if and only if a+bω
g ∈ OK . But elements of OK

have the form c+ dω with integers c, d, hence we conclude that g | a+ bω if
and only if a

g and b
g are integers, i.e., if and only if g | a and g | b.

Proposition 2.13 implies in particular that N(ab) = N(a)N(b) because
both sides generate the same ideal aba′b′. Here are a few more useful prop-
erties:

• Na = 1 ⇐⇒ a = (1): if Na = 1, then (1) = aa′ ⊆ a ⊆ OK = (1), and
the converse is clear.

• Na = 0 ⇐⇒ a = (0): if aa′ = (0), then Nα = αα′ = 0 for all α ∈ a.
• For principal ideals a = (α) we have Na = |N(α)|. In fact, aa′ = (αα′) =

(Nα).
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2.4 Unique Factorization into Prime Ideals

We want to show that every ideal in the ring OK of integers in a quadratic
number field K = Q(

√
d ) can be factored uniquely into prime ideals. The

whole proof uses only two facts: for the existence of the prime ideal factor-
ization, we need to know that norms of ideals are finite, and for proving
uniqueness we need that for every ideal a there is a nonzero ideal b such that
ab = (α) is principal.

The Cancellation Law

Now we turn to the proof of unique factorization for ideals. The idea behind
the proof is the same as in the proof of unique factorization for numbers:
from equality of two products, conclude that there must be two equal factors,
and then cancel. Now cancelling a factor is the same as multiplying with its
inverse; the problem is that we do not have an inverse for ideals.

In the ring R = Z/6Z we have (2)(3) = (2)(0), but cancelling (2) yields
nonsense. Similar examples exist in all rings with zero divisors. Are there
examples in integral domains? Yes, there are. Simple calculations show that
(a, b)3 = (a2, b2)(a, b) in arbitrary commutative rings; whenever (a2, b2) 6=
(a, b)2, we have a counter example to the cancellation law. For an example,
take R = Z[X,Y ] and observe that XY ∈ (X,Y )2, but XY /∈ (X2, Y 2).

The cancellation law even fails in subrings of OK : consider e.g. the ring
R = Z[

√
−3 ]; then (2)(2, 1+

√
−3 ) = (1+

√
−3 )(2, 1+

√
−3 ), and cancelling

would produce the incorrect statement (2) = (1 +
√
−3 ). It was Dedekind

who realized that his ideal theory only works in rings OK :

Proposition 2.15. If a, b, c are nonzero ideals in OK with ab = ac, then
b = c.

Proof. The idea is to reduce the cancellation law for ideals to the one for
numbers, or rather for principal ideals.

Thus assume first that a = (α) is principal. Then αb = ab = ac = αc. For
every β ∈ b we have αβ ∈ αc, hence there is a γ ∈ c such that αβ = αγ. This
shows β = γ ∈ c, hence b ⊆ c. By symmetry we conclude that b = c.

Now assume that a is an arbitrary ideal. Then ab = ac implies that
(aa′)b = (aa′)c. Since aa′ = (Na) is principal, the claim follows from the first
part of the proof.

This shows that the ideals in OK form a monoid with cancellation law,
analogous to the natural numbers.

Divisibility of Ideals

We say that an ideal b is divisible by an ideal a if there is an ideal c such that
b = ac. Since c ⊆ OK we see b = ac ⊆ a(1) = a; this fact is often expressed
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by saying “to divide is to contain”. As a matter of fact, the converse is also
true:

Proposition 2.16. If a, b are nonzero ideals in OK , then a ⊇ b if and only
if a | b.

Proof. From a ⊇ b we deduce ba′ ⊆ aa′ = (a), where a = Na. Then c = 1
aba′

is an ideal because of 1
aa′b ⊆ OK (the ideal axioms are easily checked) Now

the claim follows from ac = 1
abaa′ = b.

We know that maximal ideals are always prime, as it is known that a is
maximal in a ring R if and only if R/a is a field, and it is prime if and only
if R/a is an integral domain.

In the rings of integers in algebraic number fields all three notions coincide;
irreducible and maximal ideals are the same:

• irreducible ideals are maximal: if a were not maximal, then there were
an ideal b with a ( b ( (1); this implies b | a with b 6= (1), a.

• maximal ideals are irreducible: for a = bc implies a ( b ( (1).

It remains to show that, in our rings, prime ideals are maximal; note that
this is not true in general rings. In fact we have to use Proposition 2.16 in
the proof.

Proposition 2.17. In rings of integers of qadratic number fields, prime
ideals 6= (0) are maximal.

Proof. Assume that a = bc and a - b; then a | c, and since c | a (to divide is
to contain) we have a = c and therefore b = (1).

Observe that from a | c and c | a we cannot conclude equality a = c: we
do get a = cd and c = ae, hence a = dea. But without the cancellation law
we cannot conclude that de = (1).

In R = Z[X], the ideal (X) is prime since Z[X]/(X) ' Z is an integral
domain; it is not maximal, since Z is not a field, and in fact we have (X) ⊂
(2, X) ⊂ R.

Now we can prove

Theorem 2.18. Every nonzero ideal a in the ring of integers OK of a
quadratic number field K can be written uniquely (up to order) as a prod-
uct of prime ideals.

Proof. We start with showing the existence of a factorization into irreducible
ideals. If a is irreducible, we are done. If not, then a = bc; if b and c are
irreducible, we are done. If not, we keep on factoring. Since Na = NbNc and
1 < Nb, Nc < Na etc. this process must terminate, since the norms are
natural numbers and cannot decrease indefinitely.

Now we prove uniqueness. Assume that a = p1 · · · pr = q1 · · · qs are two
decompositions of a into prime ideals. We claim that r = s and that we can
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reorder the qi in such a way that we have pi = qi for 1 ≤ i ≤ r. Since p1

is prime, it divides some qj on the right hand side, say p1 | q1. Since q1 is
irreducible, we must have equality p1 = q1, and the cancellation law yields
p2 · · · pr = q2 · · · qs. The claim now follows by induction.

2.5 Decomposition of Primes

Now that we know that ideals in OK can be factored uniquely into prime
ideals, we have to come up with a description of these prime ideals. For
quadratic (and, as we will see, also for cyclotomic) fields this is not hard.

Lemma 2.19. Let p be a prime ideal; then there is a unique prime number
p such that p | (p).

Proof. We have p | pp′ = (Np); decomposing Np in Z into prime factors and
using the fact that p is prime shows that p divides (hence contains) some ideal
(p) for prime p. If p would divide (hence contain) prime ideals (p) and (q) for
different primes p and q, it would also contain 1, since p and q are coprime:
this implies, by Bezout, the existence of x, y ∈ Z with px+ qy = 1.

If p is the prime contained in p, then we say that the prime ideal p lies
above p. Since (p) has norm p2, we find that Np equals p oder p2.

Lemma 2.20. If p is an ideal in OK with norm p, then it is prime.

Proof. The ideal is clearly irreducible (p = ab implies p = Np = Na · Nb),
hence prime.

For describing the prime ideals in quadratic number fields it is useful to
have the notion of the discriminant. If K = Q(

√
m ) with m squarefree, let

{1, ω} denote an integral basis. We then define

discK =
∣∣ 1 ω
1 ω′

∣∣2 = (ω − ω′)2 =

{
m if m ≡ 1 mod 4,
4m if m ≡ 2, 3 mod 4.

Theorem 2.21. Let p be an odd prime, K = Q(
√
m ) a quadratic number

field, and d = discK its discriminant.

• If p | d, then pOK = (p,
√
m )2; we say that p is ramified in K.

• If (d/p) = +1, then pOK = pp′ for prime ideals p 6= p′; we say that p
splits (completely) in K.

• If (d/p) = −1, then pOK is prime, and we say that p is inert in K.

Proof. Assume first that p | d; since p is odd, we also have p | m. Now

(p,
√
m )2 = (p2, p

√
m,m) = (p)(p,

√
m, m

p ) = (p),
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since the ideal (p,
√
m, m

p ) contains the coprime integers p and m
p , hence

equals (1).
Next assume that (d/p) = 1; then d ≡ x2 mod p for some integer x ∈ Z.

Putting p = (p, x+
√
m ) we find

pp′ = (p2, p(x+
√
m ), p(x−

√
m ), x2 −m)

= (p)(p, x+
√
m,x−

√
m, x2−m

p ).

Clearly 2
√
m = x+

√
m−(x−

√
m ) and therefore 4m = (2

√
m)2 are contained

in the last ideal; since p and 4m are coprime, this ideal equals (1), and we
have pp′ = (p). If we had p = p′, then it would follow that 4m ∈ p and
p = (1): contradiction.

Finally assume that (d/p) = −1. If there were an ideal p of norm p,
Proposition 2.11 would show that it has the form p = (p, b + ω) with p |
N(b+ω): in fact, we find p = m[a, b+ω] and Np = m2a. Since Np = p, this
implies m = 1 and a = p, hence p = [p, b+ ω] with p | N(b+ ω).

If ω =
√
m, this means b2 − m ≡ 0 mod p, hence (d/p) = (4m/p) =

(m/p) = +1 in contradiction to our assumption. If ω = 1
2 (1 +

√
m ), then

(2b+ 1)2 ≡ m mod p, and this again is a contradiction.

The description of all prime ideals above 2 is taken care of by the following

Exercise. Let K = Q(
√
m ) be a quadratic number field, where m is square-

free.

• If m ≡ 2 mod 4 then 2OK = (2,
√
m )2.

• If m ≡ 3 mod 4 then 2OK = (2, 1 +
√
m )2.

• If m ≡ 1 mod 8 then 2OK = aa′, where a = (2, 1+
√

m
2 ) and a 6= a′.

• If m ≡ 5 mod 8 then 2OK is prime.

The two cases p odd and p = 2 can be subsumed into one by introducing
the Kronecker-Symbol (d/p). This agrees with the Legendre symbol for odd
primes p and is defined for p = 2 and d ≡ 1 mod 4 by (d/2) = (−1)(d−1)/4;
for d 6≡ 1 mod 4 we put (d/2) = 0.

2.6 Examples

Let us now investigate the example of R = Z[
√
−5 ], and start by listing all

prime ideals of norm ≤ 7. First we observe that ∆ = −4 · 5 = −20.

• 2 | ∆, so (2) = p2
2 for p2 = (2, 1 +

√
−5 ). The ideal p2 has norm 2.

• (−5
3 ) = +1, and x2 ≡ −5 mod 3 has the solution x = 1. Thus (3) = p3p

′
3

for p3 = (3, 1 +
√
−5 ) and p′3 = (3, 1−

√
−5 ). Both ideals have norm 3.

• There are no prime ideals of norm 4; such a prime ideal p would have to
divide 2 (this follows from p | Np = 4 = 2 · 2 and the assumption that p
is prime), hence must be equal to p2.
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• 5 | ∆, hence (5) = p2
5 with p5 = (5,

√
−5 ) = (

√
−5 ). This is an ideal

with norm 5.
• Prime ideals have prime power norm, so there are no prime ideals of norm

6.
• (−5

7 ) = +1, and x2 ≡ −5 mod 7 has the solutio n x = 3; thus (7) = p7p
′
7

with p7 = (7, 3+
√
−7 ) and p′7 = (7, 3−

√
−7 ). Both ideals have norm 7.

Now let us compute a few prime ideal factorizations. Let us start with the
principal ideal a = (5+

√
−5 ). We see thatNa = 30, so it must be the product

of prime ideals of norms 2, 3, and 5. Since there is only one prime ideal with
norm 2 and 5, respectively, we know immediately that either a = p2p3p5 or
a = p2p

′
3p5. To find out which, we have to check whether α = 5 +

√
−5 is an

element of p3 or p′3: in fact, (α) = p2p3p5 implies α ∈ p2p3p5 ⊆ p3.
This is most easily decided by computing α mod p3. Clearly α = 5 +√
−5 ≡ 5 +

√
−5− (1 +

√
−5 ) = 4 ≡ 4− 3 ≡ 1 mod p3, and this shows that

α 6∈ p3 (otherwise p3 would contain 1, i.e., would be the unit ideal). As a
check, we compute α = α+ 1−

√
−5 = 6 ≡ 0 mod p′3. Thus a = p2p

′
3p5.

Exercises

2.1 Compute the matrix Mα for α = a + bω + cω2 in the cubic number field Q(ω)
with ω3 = 2.

2.2 Show that every subgroup A of Z is automatically a subring and even an ideal
in Z, and that there is an a ∈ Z such that A = aZ.

2.3 Let n ∈ N be a natural number. Find a basis (as a Z-module) for the ideal
(n) in OK , where K = Q(

√
m ) is a quadratic number field.

2.4 Show that (3, 1 +
√
−5 ) = [3, 1 +

√
−5 ] in R = Z[

√
−5 ], i.e., that every R-

linear combination 3α + (1 +
√
−5 )β with α, β ∈ R can already be written in

the form 3a + (1 +
√
−5 )b with a, b ∈ Z.

2.5 Show that in R = Z[
√
−5 ] we have R/(

√
−5 ) ' Z/5Z and deduce that (

√
−5 )

is a maximal ideal.

2.6 Show that all ideals of prime norm p in OK have the form [p, a + ω], where
p | N(a + ω).

2.7 Show that the set of upper triangular 2× 2-matrices with coefficients in some
ring R is a subring, but not an ideal of the ring of all 2× 2-matrices.

2.8 Consider the space S of all sequences of rational numbers. This is a ring with
respect to pointwise addition and multiplication:

(a1, a2, a3, . . .) + (b1, b2, b3, . . .) = (a1 + b1, a2 + b2, a3 + b3, . . .),

(a1, a2, a3, . . .) · (b1, b2, b3, . . .) = (a1b1, a2b2, a3b3, . . .).

Show that the the following subsets of S actually are subrings:
1. the set N of sequences converging to 0;
2. the set D of sequences converging in Q;
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3. the set C of Cauchy sequences;
4. the set B of bounded sequences.

Observe that N ⊂ D ⊂ C ⊂ B ⊂ S. Determine which of these subrings are
ideals in B (resp. C, D). Show that all of these rings contain zero divisors,
and that N is maximal in C (so C/N is a field; actually C/N ' R: this is one
possible way of constructing the field of real numbers).

2.9 If M and N are R-modules, then so is M ⊕N = {(m, n) : m ∈ M, n ∈ N} via
the action r(m, n) = (rm, rn).

2.10 Show that [n, c + mω] is a full Z-module if and only if mn 6= 0.

2.11 Let R = Z[X], and consider a = (2, X). Show that there does not exist an
ideal b 6= (0) in R such that ab is principal.

2.12 Let p = (p, x +
√

m ) be an ideal in R = OK , where p is an odd prime and
p | (x2 −m). Find a Z-basis of p as a Z-module.

2.13 Show that the ideal (2, 1 +
√
−5 ) equals the Z-module [2, 1 +

√
−5 ].

2.14 Show that the Z-module M = [2, 1 + 3
√
−5 ] has norm 6, and that MM ′ =

2[1, 3
√
−5 ].

2.15 Show that the full Z-module M = [2,
√
−3 ] has stabilizer ring O = [1, 2

√
−3 ].

2.16 Show that every order is its own stabilizer ring.

2.17 Let p be a prime ideal in OK . Prove Fermat’s little theorem: αNp ≡ α mod p
for all α ∈ OK . (Hint: transfer the proof from elementary number theory to
OK .)

2.18 Let m be a squarefree integer and p a prime number with (m
p

) = −1. Derive the

congruence (a + b
√

m )p ≡ a− b
√

m for a, b ∈ Z. What happens if (m
p

) = +1?

2.19 Let K = Q(
√

m ) be a quadratic number field, where m is squarefree. Prove
the following:
• If m ≡ 2 mod 4 then 2OK = (2,

√
m )2.

• If m ≡ 3 mod 4 then 2OK = (2, 1 +
√

m )2.

• If m ≡ 1 mod 8 then 2OK = aa′, where a = (2, 1+
√

m
2

) and a 6= a′.
• If m ≡ 5 mod 8 then 2OK is prime.

2.20 Show that (7, 1 +
√
−5, ) = (1).

2.21 Show more generally that (a, α) = (1) for a ∈ Z and α ∈ OK with
gcd(a, Nα) = 1.

2.22 Compute the prime ideal factorization of (4 +
√
−5 ).

2.23 Find all prime ideals of norm ≤ 7 in Z[
√
−6 ], and compute the prime ideal

factorizations of (3 +
√
−6 ) and (6 +

√
−6 ).

2.24 Find all prime ideals of norm ≤ 5 in OK for K = Q(
√
−23 ), and compute the

prime ideal factorizations of (ω) and (1 + ω), where ω = 1+
√
−23

2
.
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In this chapter we will determine the unit groups of the ringsOK of integers in
quadratic number fields. We will also show how the knowledge of units allows
us to test in finitely many steps whether a given ideal in OK is principal.

3.1 The Pell Equation

The determination of the unit group of quadratic number fields is an impor-
tant task; knowledge of units is needed for solving diophantine equations or
for computing the ideal class group. For general commutative rings R, the
units form a group R×; in the following we will determine the structure of
the unit group for rings of integers R = OK in quadratic number fields.

Lemma 3.1. Let K = Q(
√
m ) be a quadratic number field. Then an ε ∈ OK

is a unit if and only if Nε = ±1.

Proof. Let ε ∈ Ok be a unit; then εη = 1 for some η ∈ Ok, and taking the
norm shows that NεNη = N(1) = 1. Since Nε and Nη are integers, we either
have Nε = Nη = 1 or Nε = Nη = −1.

Conversely, if Nε = 1, then 1 = N(ε) = εε′ shows that ε is a unit.

Let us make this criterion explicit. If m ≡ 2, 3 mod 4, then ε = t+ u
√
m,

and Nε = t2 −mu2. Thus in this case, finding units is equivalent to solving
the Pell1 equation

t2 −mu2 = ±1.

For example, 1 +
√

2 and 2 +
√

3 are units in Z[
√

2 ] and Z[
√

3 ], respectively.
If m ≡ 1 mod 4, then we can write ε = t+u

√
m

2 and find that we have to
solve the Pell equation

t2 −mu2 = ±4.

Alternatively, we can write ε = r+ sω with ω = 1+
√

m
2 ; since Nε = r2 + rs+

1−m
4 , we have to solve the equation

1 Named by Euler after the British mathematician John Pell, who had nothing to
do with this equation first studied by the Indians, and then by Fermat, Wallis
and Brouncker.
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r2 + rs+
1−m

4
= ±1,

which can be transformed into t2 −mu2 = ±4 by multiplying through by 4
and completing the square.

Note that solutions of t2 − mu2 = ±4 give us also solutions of the Pell
equation t2 − mu2 = ±1 in the following way: if t and u are even, this is
clear (just cancel 2). Assume therefore that t ≡ u ≡ 1 mod 2; we claim first
that m ≡ 5 mod 8 in this case. In fact, we have m ≡ 1 mod 4 anyway; if
m ≡ 1 mod 8, then ±4 = t2 − mu2 for odd values of t, u implies, in light
of t2 ≡ u2 ≡ 1 mod 8, that r ≡ ±4 ≡ t2 − mu2 ≡ 1 − m mod 8, hence
m ≡ 5 mod 8.

Now put ε = t+u
√

m
2 . We claim that ε3 ∈ Z[

√
m ]. This will follow from a

brute force computation:

ε3 =
1
8
(t3 + 3mtu2) +

1
8
(3t2m+mu3)

√
m

=
t

8
(t2 + 3mu2) +

m

8
(3t2 +mu2)

√
m.

Now t2 + 3mu2 ≡ 1 + 3 · 5 ≡ 0 mod 8 and 3t2 +mu2 ≡ 3 + 5 ≡ 0 mod 8 show
that the coefficients of ε3 are integers.

As an example, observe that the unit ε = 1+
√

5
2 corresponding to 12 − 5 ·

12 = −4 gives ε3 = 2 +
√

5, which corresponds to 22 − 5 · 12 = −1.
The structure of O×

K for complex quadratic fields is easily determined:

Theorem 3.2. Assume that m < 0 is squarefree, let K = Q(
√
m ), and let

R = OK denote the ring of integers in K. Then

R× =


〈i〉 ' Z/4Z if m = −1;

〈−ρ〉 ' Z/6Z if m = −3;
〈−1〉 ' Z/2Z otherwise.

Here i =
√
−1 denotes a primitive fourth, and ρ = 1

2 (−1+
√
−3 ) a primitive

cube root of unity.

Proof. Assume first that m ≡ 2, 3 mod 4 and let ε = a+b
√
m be a unit. Since

norms are positive in complex quadratic fields, this implies 1 = Nε = a2 −
mb2. If m < −1, this equation only has the trivial solutions (a, b) = (±1, 0); if
m = −1, there are exactly four solutions, namely (a, b) = (±1, 0) and (0,±1);
The corresponding units in this case are all powers of i. It is easily checked
that the map sending ia to a mod 4 is a well defined isomorphism between
Z[i]× = 〈i〉 and Z/4Z.

If m ≡ 1 mod 4, we put ε = a+b
√

m
2 and have to solve 4 = a2 − mb2.

Again there are only the trivial solutions (±2, 0) for m < −3, showing that
the only units in this case are ±1. If m = −3, on the other hand, there are
six solutions (±2, 0), (±1,±1), giving rise to the six units
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±1, ±−1 +
√
−3

2
, ±1 +

√
−3

2
.

Setting ρ = −1+
√
−3

2 (this is a cube root of unity since ρ3 = 1), then EK is
generated by −ρ (a sixth root of unity).

Solving the Pell equation for positive values of m is much more difficult.
Fermat claimed he could show that x2 −my2 = 1 always is solvable for non-
square positive values of m and challenged the British mathematicians to
prove this; since the problem was not clearly formulated, the British mathe-
maticians solved the equation in rational numbers, which is easy (we will get
back to this problem later). After Fermat had clarified that he wanted integral
solutions, Wallis and Brouncker showed how to solve the equation in finitely
many steps, but Fermat later complained that they did not prove that the
method always works. As usual, Fermat also did not give any proof thereof:
it was Lagrange who first succeeded in giving a complete proof. In due time,
the the theory of continued fractions became the standard approach to the
Pell equation. Our approach will be different and goes back to Dirichlet.

The idea is to construct many elements with small norm in the hope of
finding two elements α and β that not only have the same norm but that
actually generate the same principal ideal. In fact, we have (α) = (β) if and
only if α

β is a unit (possibly a trivial one, though).
Here’s how it looks in practice: for finding a unit in Z[

√
11 ], we solve lots

of equations x2−11y2 = n for integers n with small absolute value. For y = 1,
the expression x2 − 11y2 will be small if x ≈

√
11, i.e. for x = 3 and x = 4.

We find

32 − 11 = −2,

42 − 11 = +5.

We continue by trying y = 2 and x ≈ 2
√

11, i.e.

62 − 11 · 22 = −8,

72 − 11 · 22 = +5.

Thus 4±
√

11 and 7±2
√

11 all have norm 5. Which of these elements generate
the same ideal? One way to find out is by computing the quotients. We have

7 + 2
√

11
4 +

√
11

=
(7 + 2

√
11)(4−

√
11)

(4 +
√

11)(4−
√

11)
=

6 +
√

11
5

,

which is not an algebraic integer, showing that (7 + 2
√

11 ) and (4 +
√

11 )
generate different prime ideals above 5. Next

7 + 2
√

11
4−

√
11

=
(7 + 2

√
11)(4 +

√
11)

(4 +
√

11)(4−
√

11)
=

50 + 15
√

11
5

= 10 + 3
√

11,
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and we have found a unit ε = 10 + 3
√

11.
Since trial and error is somewhat unsatisfactory, let us see how we could

have predicted that 7+2
√

11 and 4−
√

11 were the right elements to consider.
We know that these elements generate ideals of norm 5, i.e., they must all be
prime ideals above 5. Now there are only two of these, namely 51 = (5, 1 +√

11 ) and 52 = (5, 1+
√

11 ). Thus
√

11 ≡ −1 mod 51 and
√

11 ≡ +1 mod 52,
therefore

7 + 2
√

11 ≡ 0 mod 51,

7 + 2
√

11 ≡ 4 mod 52,

4 +
√

11 ≡ 3 mod 51,

4 +
√

11 ≡ 0 mod 52

etc., showing that (7 + 2
√

11 ) = (4−
√

11) = 51.
Another way we could have compute a nontrivial unit here is by observing

that (2) = 22 is ramified in K. Since 3 +
√

2 has norm −2, we must have
2 = (3 +

√
11 ), and now (2) = 22 = (3 +

√
11 )2 = (20 + 6

√
11 ) shows that

20+6
√

11
2 = 10 + 3

√
11 is a unit.

3.2 Solvability of the Pell Equation

Here’s a modernized version of Dirichlet’s standard proof found in most text-
books. The idea is the following: there are only finitely many integral ideals
of bounded norm in Q(

√
m ); if we can construct sufficiently many elements

with bounded norm, then there must be two that generate the same ideal
and therefore differ by a unit.

The idea is to construct a sequence of algebraic integers αj = xj + yj
√
m

(m a positive squarefree integer) with |Nαj | < B. Eventually there will be two
elements αi and αj generating the same ideal, and their quotient ε = αi/αj

will then be a unit. In order to make sure that ε 6= ±1 we construct the αj

in such a way that α1 > α2 > . . . > αk > . . .. (Our proof uses the fact that
the number of ideals in OK with bounded norm is finite; this can also be
proved more generally for rings Z[

√
m ] for general nonsquare m, and then

the proof below shows the solvability of the Pell equation x2 −my2 = 1 for
all nonsquare numbers m < 0).

This is achieved in exactly the same way as above for m = 11: we consider
the sequence y = 0, 1, . . . , N and let x denote the smallest integer > y

√
m;

then 0 < x− y
√
m ≤ 1 and x+ y

√
m < BN for B = d2

√
me. Since there are

N + 1 such numbers x− y
√
m in the interval (0, 1), Dirichlet’s box principle

guarantees the existence of pairs (a, b) and (a′, b′) with 0 < (a−b
√
m)− (a′−

b′
√
m ) < 1

N . Putting x = a − a′ and y = b − b′ we find 0 < x − y
√
m < 1

N
and 0 < |x+y

√
m | < BN . Thus we can find numbers x−y

√
m with positive
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absolute value as small as we wish, but in such a way that N(x− y
√
m ) < B

is bounded.
Now we can construct our sequence of αj . We start with α1 = 1. Assume

we have already found αi for i = 1, . . . , k − 1 with

α1 > α2 > . . . > αk−1 > 0

and |N(αi)| < B. By the argument above we can find αk = x − y
√
m with

0 < αk < αk−1 and |N(αk)| < B.
Since there are only finitely many integral ideals with norm < B, there

must exist i < j with (αi) = (αj). But then ε = αi/αj > 1 is a unit, and we
have proved:

Theorem 3.3. Every real quadratic field has units 6= ±1. In particular, the
equation X2 −mY 2 = 1, where m > 1 is an integer, has integral solutions
with y > 0.

Now that we know that the Pell equation is solvable, let us compute the
structure of the unit group in OK :

Theorem 3.4. Let K = Q(
√
m ) be a real quadratic number field with m > 0

squarefree. Then
EK = O×

K ' Z/2Z⊕ Z.

In other words, every unit ε ∈ EK can be written uniquely in the form ε =
(−1)aηb with a ∈ Z/2Z and b ∈ Z, where η is the smallest unit in EK with
η > 1.

Proof. We first have to prove that there is a smallest unit η > 1. If not, then
there is a sequence of units η1 > η2 > . . . > 1; then 0 < |η′i| = 1/εi < 1, hence
if we write ηj = xj + yj

√
m, we find 2|xj | = |ηj + η′j | ≤ |ηj |+ |η′j | < η1 + 1:

this shows that there are only finitely many choices for x, and the same
argument with η′j replaced by −η′j shows that the same holds for yj . This is
a contradiction.

Now let ε > 1 be any unit. If ε = ηn for some integer n we are done; if
not, then there is some n ∈ N with ηn < ε < ηn+1. But then υ = εη−n is a
unit in OK with 1 < υ < η, contradicting the choice of η.

Thus every unit > 1 has the form ηn for some n ∈ N. If 0 < ε < 1, then
1/ε > 1, hence ε = ηn for some integer m < 0. Finally, if ε < 0, then −ε > 0
has the form ηn. This proves that every unit can be written as ±ηn.

Simple Consequences

We have just seen that the Pell equation x2 − my2 = 1 has nontrivial in-
tegral solutions whenever m is not a square; next we will give a few simple
consequences of the solvability of the Pell equation.

Below, the following argument will be used repeatedly:
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Lemma 3.5. Let a, b, c,m ∈ N be integers, m squarefree, such that ab = mc2,
and assume that d = gcd(a, b). Then a = rdx2, b = sdy2 for r, s, x, y ∈ N
with rs = m and dxy = c.

Proof. Put α = a
m , β = b

m , and γ = c
m . Then αβ = mγ2, and gcd(α, β) = 1.

Next put r = gcd(α,m) and s = gcd(β,m).
Then rs = m: in fact, write m = paqb · · · ; then pa||αβ, and since

gcd(α, β) = 1 we conclude that either pa | α or pa | β, hence pa|| gcd(α,m) gcd(β,m) =
rs. The claim now follows from the observation primes dividing rs must di-
vide m.

Now α
r

β
s = γ2, and the factors on the left are coprime. Thus they are

perfect squares, that is, α = rx2 and β = sy2, and finally a = dα = rdx2 and
b = dβ = sdy2.

Now we claim

Proposition 3.6. If p ≡ q ≡ 3 mod 4 are primes, then px2 − qy2 = ±1 is
solvable in integers for some choice of signs.

Proof. Consider K = Q(
√
m ) for m = pq, and let η = t + u

√
m correspond

to the minimal nontrivial solution of the Pell equation t2 −mu2 = 1. Since
m ≡ 1 mod 4, we see that t is odd and u is even. Next mu2 = t2 − 1 =
(t− 1)(t+ 1); we claim that gcd(t− 1, t+ 1) = 2. Clearly both numbers are
even, hence it is sufficient to show that the gcd divides 2. But this is clear,
since gcd(t− 1, t+ 1) divides the difference t+ 1− (t− 1) = 2.

Thus with u = 2w we get mw2 = t−1
2

t+1
2 , and since the factors on the

right are coprime, unique factorization implies that we must have one of the
following:

t+ 1 = 2r2 t− 1 = 2ms2,

t+ 1 = 2pr2 t− 1 = 2qs2,

t+ 1 = 2qr2 t− 1 = 2ps2,

t+ 1 = 2mr2 t− 1 = 2s2.

Here r and s are nonzero integers that we may and will choose positive.
Substracting these equations from each other and dividing through by 2 we
find

1 = r2 −ms2,

1 = pr2 − qs2,

1 = qr2 − ps2,

1 = mr2 − s2.

The first equation contradicts the minimality of (t, u) because t = r2 +ms2

shows that 0 < r < t. The last equation is also impossible since it implies
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−s2 ≡ 1 mod p, i.e., −1 ≡ s2 mod p: but p ≡ 3 mod 4, so −1 is a quadratic
nonresidue modulo p. Thus the second or the third of these equations must
be solvable, which is what we wanted to prove.

This simple result implies a piece of the quadratic reciprocity law:

Corollary 3.7. If p ≡ q ≡ 3 mod 4 are prime, then (p
q ) = −( q

p ).

Proof. Consider a solution of the equation pr2 − qs2 = ±1. Switching the
roles of p and q if necessary we may assume that the plus sign holds. But
then we get the congruences pr2 ≡ 1 mod q and −qs2 ≡ 1 mod p, which in
turn imply (p/q) = +1 and (q/p) = −1.

Here is another famous result:

Proposition 3.8. If p ≡ 1 mod 4 is prime, then the negative Pell equation
t2 − pu2 = −1 is solvable.

Proof. Again, pick a minimal solution of x2 − py2 = 1 and write py2 =
(x− 1)(x+ 1). For the same reason as above, gcd(x+ 1, x− 1) = 2, and we
find that one of the following two sets of equations hold:

x+ 1 = 2r2, x− 1 = 2ps2

x+ 1 = 2pr2, x− 1 = 2s2.

This implies as before either r2 − ps2 = 1 (contradicting the minimality of
the chose solution) or pr2 − s2 = 1, thus proving the claim.

For certain families of quadratic fields it is easy to write down units ex-
plicitly. In fact, assume that m = n2 − 1 is squarefree for some even integer
n. Then m ≡ 3 mod 4, hence the fundamental unit comes from the minimal
solution of t2 −my2 = 1. But the minimal solution is clearly (t, u) = (n, 1),
and we see:

Proposition 3.9. Let n be an even integer and assume that m = n2 − 1 is
squarefree. Then η = n+

√
m is the fundamental unit of Q(

√
m ).

3.3 Principal Ideal Tests

Assume that we are given an ideal a in OK ; how can we tell whether it is
principal?

This is a finite task for complex quadratic fields. Take, for example, the
ideal 2 = (2, ω) for ω = 1+

√
−m

2 and some m > 0 with −m ≡ 1 mod 8.
Then 2 is an ideal of norm 2. If it were principal, there would exist elements
with norm 2 (norm −2 is impossible in the complex quadratic case). But
N(a+b

√
−m

2 ) = 2 is equivalent to a2 + mb2 = 8, and this equation only has
solutions for m = 7.
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Proposition 3.10. Let m ≡ 7 mod 8 be a positive squarefree integer. Then
the prime ideals above 2 in Q(

√
−m ) are principal if and only if m = 7.

In real quadratic fields, testing whether a given ideal is principal is a much
less trivial task. Consider e.g. the case m = 79 and the ideal (3, 1 +

√
79 ).

This ideal is principal if and only if one of the equations x2 − 79y2 = ±3
is solvable. As a matter of fact, x2 − 79y2 = 3 is impossible modulo 4 since
3 = x2 − 79y2 ≡ x2 + y2 mod 4. Thus the question is: does x2 − 79y2 = −3
have a solution?

Here it is not obvious how to check this in finitely many steps. Just plug-
ging in y = 1, 2, 3 . . . will not help since we do not know where to stop.

Here the unit group comes to our rescue. Consider a real quadratic number
field K = Q(

√
m ) assume that α = a+b

√
m has norm Nα = n, and let ε > 1

be a nontrivial unit in OK . Then we can choose an integer m in such a way
that 1 ≤ |αεm| < ε. Put β = x + y

√
m; since N(β) = N(α)N(ε) = ±n, we

find |β′| = |ββ′|
|β| = |n|

|β| < |n|. But then 2|x| = |β + β′| ≤ |β| + |β′| < ε + |n|,
and similarly 2|y|

√
m < ε+ |n|.

In our case m = 79, the fact that N(9+
√

79 ) = 2 implies that ε = 1
2 (9+√

79 )2 = 80 + 9
√

79 is a unit (actually ε is fundamental). Since n = −3, we
find that 2|y|

√
79 < ε+3 < 163 and therefore |y| ≤ 9. Checking all the values

of y between 0 and 9 shows that 31 = (3, 1+
√

79 ) is not principal. With a little
bit more effort, we can prove in the same way that 32

1 is not principal. On the
other hand, the fact that N(17+2

√
79 ) = −27 shows that 33

1 = (17+2
√

79 )
is principal. In fact, the relation 17 + 2

√
79 = 3 · 5 + 2(1 +

√
79 ) implies

17 + 2
√

79 ∈ 31; moreover, 17 + 2
√

79 is not divisible by 3, hence cannot be
contained in 32.

Actually we can easily improve our bounds by choosing m more cleverly.
In fact, we might just as well pick m in such a way that√

|n|√
ε
≤ |αεm| <

√
|n|ε.

Then, with β = αεm, we get |β′| = |ββ′|
|β| <

√
|n|ε, and this implies

|y| <
√
|n|ε√
m

.

As a matter of fact, using the following lemma due to Cassels we can do
still better:

Lemma 3.11. Suppose that the positive real numbers x, y satisfy the inequal-
ities x ≤ s, y ≤ s, and xy ≤ t. Then, x+ y ≤ s+ t/s.

Proof. 0 ≤ (x− s)(y − s) = xy − s(x+ y) + s2 ≤ s2 + t− s(x+ y).
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Putting x = |α| and y = |α′| in Lemma 3.11 we find

|2a| ≤ |α|+ |α′| <
√
nε+

√
n/ε,

and likewise

|2b
√
m | = |β − β′| ≤ |β|+ |β′| <

√
nε+

√
n/ε.

We have proved

Proposition 3.12. Let k = Q(
√
m ) be a real quadratic number field, ε > 1

a unit in k, and 0 6= n = |Nξ | for ξ ∈ k. Then there is a unit η = εj such
that ξη = a+ b

√
m and

|a| <
√
n

2
(
√
ε+ 1/

√
ε ), |b| <

√
n

2
√
m

(
√
ε+ 1/

√
ε ).

Note that if m ≡ 1 mod 4, the number y may be half an integer!

3.4 Elements of small norms

After these preparations, it is an easy matter to prove the following result
originally due to Davenport:

Proposition 3.13. Let m,n, t be natural numbers such that m = t2 + 1 ; if
the diophantine equation |x2−my2| = n has solutions in Z with n < 2t, then
n is a perfect square.

Proof. Let ξ = x+y
√
m; then |Nξ | = n, and since ε = t+u

√
m > 1 is a unit

in Z[
√
m ], we can find a power η of ε such that ξη = a+b

√
m has coefficients

a, b which satisfy the bounds in Proposition 2.2. Since 2t < ε < 2
√
m, we

find

|b| ≤
√
n

2
√
m

(√
ε+

1√
ε

)
< 1 +

1
t
.

Since the assertion is trivial if t = 1, we may assume that t ≥ 2, and now the
last inequality gives |b| ≤ 1. If b = 0, |Nξ| = a2 would be a square; therefore,
b = ±1, and this yields α = ξη = a ±

√
m. Now |Nξ| = |Nα| = |a2 −m| is

minimal for values of a near
√
m, and we find

|a2 −m| = 2t if a = t− 1;
|a2 −m| = 1 if a = t;
|a2 −m| = 2t if a = t+ 1.

This proves the claim.

Using the idea in the proof of Proposition 3.13 one can easily show more:

Proposition 3.14. Let m,n, t be natural numbers such that m = t2 + 1; if
the diophantine equation |x2 −my2| = n has solutions in Z with n < 4t+ 3,
then n = 4t− 3, n = 2t, or n is a perfect square.
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Proposition 3.13 can be used to show that the ideal class group of k =
Q(
√
m ) has non-trivial elements if m = t2 + 1 and t = 2lq for l > 1 and

prime q: since m ≡ 1 mod q, q splits in k, i.e. we have (q) = pp′′. If p were
principal, the equation x2−my2 = ±4q would have solutions in Z; but since
4q < 2t = 4lq is no square, this contradicts Proposition 3.12.

3.5 Computing the Fundamental Unit

The computation of units in quadratic number rings is a difficult and very
interesting task. Part of the interest in these calculations stems from the fact
that knowing the fundamental unit of Q(

√
m ) often allows us to factor m:

from x2 −my2 = 1 we get my2 = x2 − 1 = (x− 1)(x+ 1), and gcd(m,x− 1)
is a (possibly trivial) factor of m. For example, the fundamental unit for
m = 91 is ε = 1574 + 165

√
91, and gcd(91, 1573) = 13. Thus, as a general

rule, computing a solution of the Pell equation x2 −my2 = 1 is at least as
hard as factoring m (and definitely harder if m happens to be a large prime).

Now let us see how our method for computing the fundamental unit works
for some larger values of m, say m = 3431. We start by collecting elements
with small norms:

α Nα
55 +

√
m −2 · 7 · 29

56 +
√
m −5 · 59

57 +
√
m −2 · 7 · 13

58 +
√
m −67

59 +
√
m −2 · 52

60 +
√
m 132

61 +
√
m 2 · 5 · 29

62 +
√
m 7 · 59

63 +
√
m 2 · 269

By the way: by coincidence, 602 −m = 132 is a square; this shows that
m = 602−132 = (60−13)(60+13) = 47 ·73. This is happens only rarely after
so few computations, but is the basic idea in Fermat’s method of facoring.

It seems that not all primes occur as factors: certainly none of these
numbers is divisible by 3: this is because there is no ideal of norm 3 in OK .
In fact, x2 −my2 ≡ 0 mod p implies (m

p ) 6= −1, so none of the primes with
(m

p ) = −1, such as p = 3, 11, 17 . . . can occur in these factorizations. The
others do, but waiting until we find two elements with the same norm (let
alone generating the same ideal) will take forever.

It is a better idea to construct elements generating the same ideal by
multiplying together several elements of small norm. Here’s how we do this:
first we list all the prime ideals in OK with small norm: 2 = (2, 1 +

√
m ),

51 = (5, 1 +
√
m ), 52 = (5, 1 −

√
m ), 7 = (7, 1 +

√
m ), 72 = (7, 1 −

√
m ).
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Then we factor the elements of small norm and keep only those which factor
over our “factor base”:

α 2 51 52 71 72

1 +
√
m 1 1 0 3 0

1−
√
m 1 0 1 0 3

41 +
√
m 1 3 0 0 1

41−
√
m 1 0 3 1 0

59 +
√
m 1 0 2 0 0

59−
√
m 1 2 0 0 0

The first line in this table represents the ideal factorization

(1 +
√
m ) = 21 · 51

1 · 73
1.

Picking a factor base as small as ours is not a good idea in practice, since
there will only be very few “smooth” elements, i.e. elements that factor over
the factor base.

If we look carefully at this table we see that (1 +
√
m )(41 +

√
m )3 has

factorization 24510
1 73

17
3
2. Since 22 = (2) and 7172 = (7), we find that the

element
(1 +

√
m )(41 +

√
m )3

22 · 73
= 21549 + 364

√
m

has the prime ideal factorization 510
1 . But now (59 −

√
m )5 = 25510 shows

that

α =
(59−

√
m )5

21549 + 364
√
m

= 49316884− 841948
√
m

is an integer with ideal factorization 25. Since this ideal is ramified, the ele-
ment ε = 25α−2 must be a unit, and we find

ε = 152009690466840 + 2595140740627
√
m.

Now

gcd(152009690466841, 3431) = 1,
gcd(152009690466839, 3431) = 3431,

so the fundamental unit does not give us any factor of m.
Note that this method not only gave us a nontrivial unit, it also gave us

what is called a “compact presentation”:

ε =
2(1 +

√
m )2(41 +

√
m )6

76(59−
√
m )10

.

Finally let us remark that it was our knowledge of prime ideal factorization
in quadratic number fields that has allowed us to compute this unit.
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Now that we know a nontrivial unit, how can we be sure it is the fun-
damental unit? In any case we know that ε = ±ηm for some m ∈ Z, where
m ∈ Z. Since ε > 1, we see that the plus sign holds and that m ≥ 1. Clearly
ε is not a square (we can see this from the compact representation), which
shows that ε is twice a square. Of course we can check by hand that ε is not
a p-th power for p = 3, 5, 7, 11, . . ., but we do not know how far we have to
carry on with these tests.

Here is how to achieve this:

Lemma 3.15. Let ε > 1 be the fundamental unit of a real quadratic number
field with discriminant d. Then

log ε >

{
log d1/2 if Nε = +1,
log(d1/2 − 1) if Nε = +1.

Proof. Assume that K = Q(
√
m ) with m ≡ 2, 3 mod 4 and Nε = +1. Then

the minimal value of ε is a +
√
m with a ≈

√
m; since Nε = +1, we must

have a ≥
√
m, and this shows that ε ≥ 2

√
m =

√
d.

The other cases are treated similarly.

In our case, m = 3431 = 47 · 73; since m is divisible by a prime 47 ≡
3 mod 4, we find that Nε = +1, and this gives us log ε ≥ 4.763 . . ., hence
m = log ε/ log η ≤ 33.3/4.763 = 6.991 . . .; this shows that m ≤ 6, and since
we already know that ε is not a square, we even have m ≤ 5.

Thus it remains to test whether ε is a cube or a fifth power. The easiest
way to do this by hand is by looking for a prime ideal p such that ε mod p
is not a cube etc. Now ε ≡ 0− 3

√
m ≡ 3 mod 51 shows again that ε is not a

square since 3 is not a square modulo 51 because ( 3
5 ) = −1.

For showing that ε is not a cube we need a prime ideal of norm ≡ 1 mod 3.
Then ε ≡ 3 +

√
m ≡ 2 mod 71, and since 2 is not a cube modulo 7, it is not

a cube modulo 71 since OK/71 ' Z/7Z. Thus ε is not a cube.
Finally, the prime ideal q = (61, 25 +

√
m ) of norm 61. We find ε ≡

40 − 3
√
m ≡ 54 mod q. A tedious calculation shows that 54 is not a fifth

power modulo 61.
If you prefer working with real numbers instead of residues modulo prime

ideals, here’s what you do. Compute the real numbers

ε ≈ 304019380933680.00000, 1/ε ≈ 3.289 · 10−15.

Clearly ε+1/ε is an integer: this follows from ε = a+b
√
m and 1/ε = a−b

√
m.

Now assume that ε is a fifth power: taking fifth roots shows that we must
have η ≈ 788.098052 . . . and 1/η ≈ 0.0012688776 . . .. Again, η+ 1/η must be
an integer, but we find η + 1/η ≈ 788.0993 . . .. Thus η is not a fifth power,
and the cases m = 2, 3 can be treated analogously.

Remark. The calculations above were made using pari; note, however, that
the computation of the compact presentation of ε could have easily done by



3.6 Factoring 47

hand! pari is an absolutely indispensible tool for working with number fields.
Here, the command

r = quadgen(4*3431)

defines the algebraic number r =
√

3431 (quadgen only takes discriminants
as an input). Then typing in

(1+r)*(41+r)^3/(2^2*7^3)

produces the desired output

21549 + 364*r

For a list of all number theoretic commands, enter

?4

for a short description of a command, enter

?quadgen

As an exercise, find out what quadunit(3431) is doing. You can quit pari
by typing in

\q

3.6 Factoring

The same idea we used for computing the fundamental unit can be used to
directly factor n. As an example, take n = 4469 and factor the integers a2−n
for a ≈

√
4469 = 66.85 . . . into primes. Keep the factorizations that factor

over some small number base of primes p with (n
p ) 6= 1 such as p = 2, 5, 11, . . .

(but including the “prime” −1):

a −1 2 5
62 1 0 4
63 1 2 3
67 0 2 1

The first line represents the factorization 622 − n = −54.
Here the idea is to find a solution to a2 ≡ b2 mod n; if we have such a pair

of integers, then gcd(a−b, n) and gcd(a+b, n) are (possibly trivial) factors of
n. Note that (632−n)(672−n) = −2454 implies that 632672 ≡ −2454 mod n;
moreover, 622 ≡ −54 mod n, hence 632 · 672 ≡ 42622 mod n, and we find
gcd(63 · 67− 4 · 62, n) = 1: no luck.

Increasing our factor base we find
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a −1 2 5 11 13
62 1 0 4 0 0
63 1 2 3 0 0
67 0 2 1 0 0
71 0 2 0 1 1
72 0 0 1 1 1
83 0 2 1 2 0

Now we see that 672722 ≡ 712 · 52 mod n, but this gives us the trivial factor-
ization again. Finally, 672 ·112 ≡ 832 mod n gives us gcd(67·11−83, n) = 109,
and in fact we have n = 41 · 109.

Finding relations is of course just a matter of linear algebra: interpret the
exponents in the factorizations as elements of an F2-vector space; then finding
squares corresponds to finding linear dependences in the factorizations. For
example, the F2-vectors of the factorizations of 672−n and 832−n both are
(0, 0, 1, 0, 0).

The factorization method based on this idea is called the quadratic sieve
and was the best method for factoring integers without a small prime factors
before the number field sieve was invented by Pollard.

Exercises

3.1 Find the elements of smallest nontrivial norm in other simplest quadratic
number fields.

3.2 Use the results of the preceding exercise to find examples of quadratic fields
with large class number.

3.3 Show that if m = 2p for some prime p ≡ 5 mod 8, then the fundamental unit
of Q(

√
m ) has negative norm.

3.4 Show that if m = 2p with p ≡ 3 mod 4 prime, then either x2 − my2 = 2 or
x2 −my2 = −2 is solvable in integers.

3.5 Show that if m = 2p with p ≡ 3 mod 4 prime, then 2ε is a square in OK ,
where ε is the fundamental unit of K = Q(

√
m ).

3.6 Compute the fundamental units of Q(
√

m ) for m = 3, 19, 43, 67, 131, 159,
199.



4. The Ideal Class Group

The two most important groups associated to number fields are the unit group
EK = O×

K studied in Chapter 3, and the ideal class group Cl(K) that we will
study next. The intimate relation between these invariants will become clear
through Dedekind’s zeta function associated to K.

4.1 Class Group

Definition

We have seen that the set of nonzero ideals in ZK form a monoid with can-
cellation law. Such monoids can be made into groups by imitating the con-
struction of Z from N (or that of Q) from Z); the group IK of these fractional
ideals contains the group HK = {(α) : α ∈ K×} of principal ideals as a sub-
group, and the quotient group Cl(K) = IK/HK is called the class group of
K. This group is trivial if and only if ZK is a PID. The order h(K) of Cl(K)
is called the class number of K.

We can avoid this formal procedure by introducing fractional ideals as
actual sets: write ab−1 = ab′(bb′)−1 = 1

b ab, where b = Nb denotes the norm
of b, and define 1

α c := { γ
α : γ ∈ c}. The set of nonzero fractional ideals forms

a group with respect to multiplication; note that the inverse of the integral
ideal a is the fractional ideal a−1 = 1

aa′ with a = Na.
In these notes, we choose a third possibility: we define an equivalence

relation on the set of all integral ideals and then make the equivalence classes
into a group.

To this end, let a and b be two ideals; they are called equivalent (a ∼ b)
if there exist α, β ∈ ZK such that αa = βb. Checking the usual axioms
(symmetry, reflexivity, transitivity) is left as an exercise.

On the set of equivalence classes of ideals we define a multiplication as
follows: given classes c und d, we pick representatives a ∈ c and b ∈ d,
and then put c · d = [ab]. This definition does not depend on the choice of
representatives; the class of the unit ideal is the neutral element; and finally
the fact that aa′ = (a) shows that [a]−1 = [a′].

Thus the ideal classes [a] form an abelian group Cl(K). If this group is
trivial, then every ideal is equivalent to (1), that is, every ideal is principal.
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Since the converse is also clear, we see that ZK is a PID if and only if K has
class number 1.

Consider e.g. the ring R = Z[
√
−5 ]; here we have the classes 1 = [(1)]

und c = [a] mit a = (2, 1 +
√
−5 ). We have c2 = 1 since a2 = (2) ist c2 = 1.

Putting b = (3, 1 +
√
−5 ) we find a ∼ b: in fact, ab = (1 +

√
−5 ) implies

ab ∼ (1), hence [b] = [a]−1 = [a]. More calculations seem to suggest that
there are only two classes, that is, the class number of R seems to be 2.

The goal of this section is to show that Cl(K) is finite and to give an
algorithm for computing it. The finiteness of the class group is one of three
important finiteness theorems in algebraic number theory:

• Cl(K) is finite;
• EK = Z×K is a finitely generated abelian group;
• given a B > 0, the set of number fields with discriminant < B is finite.

Finiteness of the Class Number

We now show that every ideal class in Cl(k) contains an integral ideal with
norm bounded by a constant depending only on k; this immediately implies
the finiteness of the class number.

Let us call an ideal in ZK primitive if it is not divisible by a rational
integer m > 1. Clearly every ideal class is represented by a primitive ideal.

According to Proposition 2.11, every ideal a has a Z-basis of the form
{n,m(b + ω)} with m | n; Thus a is primitive if and only if m = 1. In
other words: if a is primitive, then there exist n ∈ N and b ∈ Z such that
a = nZ⊕ (b+ ω)Z, and we have Na = n. Now we claim:

Theorem 4.1. Let m ∈ Z be squarefree, K = Q(
√
m ) a quadratic field with

ring of integers OK = Z[ω] and discriminant d. Define the Gauss bound

µK =

{√
d/5, if d > 0,√
−d/3, if d < 0.

Then every ideal class in Cl(K) contains an integral nonzero ideal with norm
≤ µK ; in particular, the number h = # Cl(K) of ideal classes is finite.

The bounds are clearly best possible: for d = 5 and d = −3 they are sharp.
If µK ≤ 2, then every ideal class contains a nonzero integral ideal with norm<
2; but then the norm must be 1, hence every ideal class contains the unit ideal,
and we deduce that h = 1 and that OK is a PID. Theorem 4.1 says that this
is true for −12 ≤ d ≤ 20, i.e. for m ∈ {−11,−7,−3,−2,−1, 2, 3, 5, 13, 17}.

Exercise. If d ≡ 5 mod 8, then (2) is inert, hence there are no ideals of norm
2 in OK . Show that this implies that the fields with d = −19, 21, 29, 37 have
class numberl 1. Which fields do you get by demanding in addition that (3)
be inert (that is, d ≡ 2 mod 3)?
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Now consider R = Z[
√
−5 ], where d = −20; according to Theorem 4.1,

every ideal class contains a nonzero ideal with norm <
√

20/3, hence ≤
2. Since there are only two such ideals, namely the unit ideal (1) and the
nonprincipal ideal (2, 1 +

√
−5 ), we deduce that R has class number 2.

Actually we can show more: we have seen that Cl(K) is generated by the
classes of (1) and a = (2, 1 +

√
−5 ). Now let p be a prime with (−20/p) =

+1; then pZK = pp′ for some prime ideal p with norm p. Then p is either
principal, say p = (a + b

√
−5 ) and thus p = a2 + 5b2, or p ∼ a, and then

ap = (C + d
√
−5 ) is principal. In the latter case we get 2p = C2 + 5d2; since

C and d are both odd, we can write C = 2c + d for some c ∈ Z and find
2p = (2c+ d)2 + 5d2 = 4c2 + 4cd+ 6d2, that is, p = 2c2 + 2cd+ 3d2. In other
words: if (−5/p) = +1, then p = a2 + 5b2 or p = 2c2 + 2cd+ 3d2.

Since p = a2 + 5b2 ≡ a2 + b2 ≡ 1 mod 4, this can only happen if p ≡
1 mod 20. Similarly, p = 2c2+2cd+3d2 ≡ 3 mod 4, that is, p ≡ 11, 19 mod 20.
We have proved:

Theorem 4.2. Primes p ≡ 1, 9 mod 20 are represented by the quadratic form
x2+5y2, whereas primes p ≡ 11, 19 mod 20 are represented by 2x2+2xy+3y2.

An important consequence of Theorem 4.1 is the following observation:

Corollary 4.3. Let K = Q(
√
m ) be a quadratic number field with class

number h, and assume that pOK = pp′ splits completely in OK . Then there
exist x, y ∈ N such that ±4ph = x2 −my2.

Proof. The h-th power of any ideal in K = Q(
√
m ) is principal. In particular,

ph = (x+y
√

m
2 ) for suitable integers x, y, and taking the norm yields ph =

|x
2−my2

4 |.

Proof of Theorem 4.1. Let c = [a] be an ideal class represented by an ideal
a. We may and will assume that a is primitive. Therefore a = (a, α) with
a = Na and α = b + ω = s + 1

2

√
d for some s ∈ Q with 2s ∈ Z. If a ≤ µK ,

we are done; if not, we apply the Euclidean algorithm to the pair (s, a) and
find q ∈ Z such that s− qa = r and

|r| ≤ a

2
if d < 0,

a

2
≤ |r| ≤ a if d > 0.

Setting α1 = r + 1
2

√
d we find α1 ∈ a, |Nα1| ≤ 1

4 (a2 − d) < a2, and a1 :=
1
aα

′
1a ∼ a is an integral ideal with [a1] = [a] and Na1 < Na. We repeat this

step until we find an ideal of norm ≤ µK ; since the norm decreases with each
step, the algorithm terminates.

The proof of the inequality |Nα1| ≤ 1
4 (a2 − d) < a2 is simple: if d < 0,

then |Nα1| = |r2 − d
4 | ≤

a2+|d|
4 < 1 since a2 > µ2

K = |d|
3 , and if d > 0, we

have −a2 = a2−5a2

4 < r2 − d
4 < a2.
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It remains to show that the ideal a1 is integral; but this is clear in light
of 1

aα
′
1a ⊆ OK ⇐⇒ α′a ⊆ (a) = aa′ ⇐⇒ (α′) ⊆ a′.

4.2 Computation of Class Groups

With a little practice, computing class groups of quadratic number fields can
be fun (Gauss computed class groups of fields with discriminant down to
−10, 000). Here we will indicate how to proceed for small discriminants.

We will also use the notation (a, b, . . .) for the abelian group Z/aZ ⊕
Z/bZ⊕ · · · .

d = −23

Here every ideal class contains an ideal of norm 1 or 2, hence all ideal classes
are given by 1, [21] and [22], where 21 = (2, ω) and 22 = (2, ω′). As usual,
{1, ω} denotes the standard integral basis, i.e., we have ω = −1+

√
−23

2 . The
ideal 21 is not principle since OK does not contain elements of norm 2 (the
equation a2+23b2 = 8 is not solvable in integers). Of course 21·22 = (2) ∼ (1),
so [22] = [21]−1. This shows us that the class group is generated by [21]; since
there are exactly three classes, we conclude that Cl(K) ' Z/3Z. In fact,
23
1 = ( 3−

√
−23

2 ) = (2 − ω); note that (2 − ω) ⊂ (2, ω), so (2 − ω) really is 23
1

and not 23
2.

Now let us consider primes p with (−23
p ) = +1. They split into (p) = pp′;

for some primes p, the ideals p and p′ will be principal, and for others not.
Can these primes be characterized? The answer is yes, but actually lies quite
deep. In fact, consider the polynomial f(x) = x3 − x + 1. Factoring this
polynomial over Fp shows e.g. that f(X) is irreducible modulo 13, but that
f(x) ≡ (x+ 4)(x+ 13)(x− 17) mod 59. On the other hand, the prime ideals
above 13 are not principal, whereas (6 +

√
−23 ) has norm 59.

This is no accident; in fact we have

Proposition 4.4. Let K = Q(
√
−23 ), and let p be a prime such that (−23

p ) =
+1. Then the polynomial f(x) = x3 − x + 1 of discriminant −23 splits into
three linear factors over Fp or is irreducible according as there are elements
of norm p in OK or not.

Actually, this is a consequence of class field theory, the theory of abelian
extensions of number fields. In any case it shows that for understanding
quadratic extensions, we also have to study number fields of higher degree.

d = −30

We know that the class group is generated by ideals with norm ≤ 6. The
only prime ideals with norm ≤ 6 are 2 = (2,

√
−30 ), 3 = (3,

√
−30 ), and
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5 = (5,
√
−30 ). These are all ramified: 22 = (2), 32 = (3), 52 = (5), hence

22 ∼ 32 ∼ 52 ∼ 1. The factorization
√
−30 = 2 · 3 · 5 provides us with the

additional relation 2 · 3 · 5 ∼ 1, i.e., 5 ∼ 2 · 3. Thus every ideal class contains
one of the following ideals: (1), 2, 3, 2·3, and K = Q(

√
−30 ) has class number

≤ 4.
We now show that these classes are all different. In fact, none of 2, 3,

2 · 3 can be principle since there are no elements of norm 2, 3 or 6 in OK .
Moreover, 2 ∼ 3 would imply 2 · 3 ∼ 32 ∼ (1), which is wrong. Thus the class
number is exactly 4.

The only group with 4 elements and exponent 2 is Klein’s four group
V4 = Z/2Z× Z/2Z, hence we have Cl(K) ' (2, 2).

d = 4 · 478

Here OK = Z[
√

478 ], and every ideal class contains an ideal of norm ≤ 9.
Here are the prime ideals of norm ≤ 7:

• 2 = (2,
√

478 ), 22 = (2);
• 31 = (3, 1 +

√
478 ), 32 = (3, 1 +

√
478 ), 31 · 32 = (3);

• 71 = (7, 3 +
√

478 ), 72 = (7, 3−
√

478 ), 71 · 72 = (7).

Now we need relations between these ideals. We find some by factoring ele-
ments of small norm; such elements can be found in the vicinity of a+

√
478

with a ≈
√

478 = 21.863 . . .. In fact, we find

• (22+
√

478 ) has norm 6, so it must be equal to 31 or 32. Now 22 ≡ 1 mod 3
shows that 22 +

√
478 ∈ (3, 1 +

√
478 ), and we conclude that 31 ∼ 2−1

(and therefore 32 ∼ 2).
• We need relations involving 2 and 7j . We find elements with norm divis-

ible by 7 as follows: any α = a +
√

478 with a ≡ 3 mod 7 is divisible by
71, and by 72 if a ≡ 4 mod 7. The norm of such elements is small around
a = 22, and we easily find that (17 +

√
478 ) = 33

271.
Similarly we get (24 +

√
478 ) = 2 · 72

1 and (25 +
√

478 ) = 31 · 72
2, as well

as (10 +
√

478 ) = 2 · 33
171.

Now the real computation begins. From 2 · 31 ∼ 1 and 22 = (2) we conclude
that 32

1 ∼ 1, and we can actually compute generators: from 2232
1 = (22 +√

478 )2 we deduce that 32
1 = 1

2 (22 +
√

478 )2 = (481 + 22
√

478 ).
Also, 33

271 ∼ (1) implies 71 ∼ 33
1 ∼ 31. Next 31 · 72

2 ∼ (1) implies 72
1 ∼ 31,

and we conclude that 71 ∼ 72 ∼ (1). But now everything collapses, and we
find that K has class number 1.

Repeating the above reasoning with actual numbers will give us a gen-
erator α for 2, and then 1

2α
2 = ε will be a nontrivial unit. Let’s do this

now.
We have (25 +

√
478 ) = 31 · 72

2, (17 −
√

478 ) = 33
172, as well as 32

1 =
1
2 (22 +

√
478 )2. Thus 31 · 72 =

( 2(17−
√

478 )

(22+
√

478 )2

)
, and therefore
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72 =
(

(25 +
√

478 )(22 +
√

478 )2

2(17−
√

478 )

)
.

The actual calculation shows that 72 is generated by the element 4635 +
212

√
478.

Finally, (24−
√

478 ) = 272
2 gives 2 =

(
24−

√
478

(4635+212
√

478 )2

)
, hence

ε =
(

(24−
√

478 )2

2(4635 + 212
√

478 )4

)
is a unit; in fact, ε = 1617319577991743−73974475657896

√
478 is the inverse

of the fundamental unit of K.

4.3 The Bachet-Mordell Equation

Let us now see what we can say about the integral solutions of the diophantine
equation y2 = x3 − d (named after Bachet and Mordell, who studied them).
We will start with arbitrary d, but will impose conditions on d as we go along.

We start by factoring the equation over K = Q(
√
d ):

x3 = y2 + d = (y +
√
−d )(y −

√
−d ).

What can we say about the gcd of the ideals a = (y +
√
−d ) and a′? Any

common prime factor p (with p | p) also divides 2
√
−d; since p |

√
−d (and

p 6= 2) implies p | d, p | y, p | x and finally p2 | d, we can exclude this
possibility by demanding that d be squarefree .

We now have to discuss the remaining possibility p | 2:

• d ≡ 2 mod 4: then p | (
√
−d ) (since p = (2,

√
−d )), hence p | y, p | y

and finally x3 = y2 + d ≡ 2 mod 4: contradiction, since cubes cannot be
divisible exactly by 2.

• d ≡ 1 mod 4: here p = (2, 1 +
√
−d ), hence p | (y +

√
−d ) if and only if

y is odd. This implies x3 = y2 + d ≡ 1 + 1 ≡ 2 mod 4, which again is a
contradiction.

• d ≡ 3 mod 4: here y+
√
−d is divisible by p (even by 2) if y is odd. Then

d = x3 − y2 implies that x is even, hence d ≡ −y2 ≡ −1 mod 8. Thus
if we assume that d 6≡ 7 mod 8 , find that no p | 2 can be a common
divisor of a and a′.

Thus a and a′ are coprime. Since their product is a cube, there exists an ideal
b such that a = b3; conjugation then shows that a′

3 = b′
3.

Now let h denote the class number of Q(
√
−d ). Since both b3 as well as

bh are principal, we can conclude that b is principal if we assume that 3 - h .

Thus b = ( r+s
√
−d

2 ) with r ≡ s mod 2.
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In the case d > 0, d 6= 1, 3 the only units are ±1, hence the ideal equation
yields the equation of numbers

y +
√
−d =

(
r + s

√
−d

2

)3

,

where we have subsumed the sign into the cube. Comparing coefficients now
yields 1 = 1

8 (3r2s− ds3), hence 8 = 3r2s− ds3 = s(3r2 − ds2).
This implies s | 8, hence s = ±1 or r ≡ s ≡ 0 mod 2. In the first case we

get ±8 = 3r2−d, hence d = 3r2∓8; in the second case we put r = 2t, s = 2u
and find 1 = u(3t2 − du2), that is u = ±1 and d = 3t2 ∓ 1.

Thus we have shown: if d, under the above assumptions, does not have
the form 3t2 ± 1 or 3t2 ± 8, then the diophantine equation y2 = x3 − d does
not have an integral solution.

What happens if d has this form? Assume e.g. that d = 3r2 − 8; then
comparing coefficients (using s = 1) yields 8y = r3 − 3dr = r3 − 9r3 + 24r =
24r−8r3, that is y = (3−r2)r, as well as y2+d = r6−6r4+12r2−8 = (r−2)3,
hence x = r−2. Thus d = 3r2−8 yields the solution (r2−2,±(3−r2)r) of our
diophantine equation. Similarly, other representations yield other solutions:
d = 3r2 + 8, 3t2 + 1, 3t2 − 1 gives rise to the solutions (r2 + 2,±r(r2 + 3)),
(4t2 + 1,±t(8t2 + 3)), (4t2 − 1,±t(8t2 − 3)).

The only question that remains is: can d have more than one of these
representations? The answer is: d = 11 has exactly two representations, all
other d have at most one. The proof is simple: equations such as 3r2 − 8 =
3t2−1 are impossible modulo 3; 3r2−8 = 3t2+1 leads to 3(r2−t2) = 9, hence
r2 − t2 = (r − t)(r + t) = 3, whose only solution is r = ±2, t = ±1, which
leads to d = 4, but this is not squarefree; the possibility 3r2 + 8 = 3t2 − 1
yields 3 = t2−r2, hence t = ±2, r = ±1 and thus d = 3+8 = 3 ·22−1 = 11).

We have proved:

Theorem 4.5. Let d 6= 1, 3 be a squarefree natural number, and assume that
d 6≡ 7 mod 8. If the class number of Q(

√
−d ) is not divisible by 3, then the

diophantine equation y2 = x3 − d has

1. exactly two pairs of integral solutions (3,±4) and (15,±58) for d = 11;
2. exactly one pair of integral solutions if d 6= 11 has the form d = 3t2 ± 1

or d = 3t2 ± 8, namely:

(x, y) =


(4t2 − 1,±t(8t2 − 3)) if d = 3t2 − 1,
(4t2 + 1,±t(8t2 + 3)) if d = 3t2 + 1,
(t2 − 2,±t(3− t2)) if d = 3t2 − 8,
(t2 + 2,±t(t2 + 3)) if d = 3t2 + 8.

3. no integral solutions otherwise.
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Consider the case d = 26 = 3 · 32 − 1: the equation y2 = x3 − 26 has the
predicted solution (207,±42849) as well as (3,±1). The theorem implies that
the class number of Q(

√
−26 ) must be divisible by 3; in fact we have h = 6.

This can be generalized:

Proposition 4.6. Let u be an odd integer, and put d = 27u6 − 1. If d is
squarefree, then Q(

√
−d ) has class number divisible by 3.

Proof. We have d = 3t2 − 1 for t = 3u3, and Thm. 4.5 predicts the integral
solutions (4t2 − 1,±t(8t2 − 3)) of y2 = x3 − d. In addition, there is the
solution (3u2, 1), hence one of the conditions of the theorem is not satisfied.
Since d 6≡ 7 mod 8, we conclude that the class number of Q(

√
−d ) must be

divisible by 3.

Similarly it can be proved that the integral solutions of xp + yp = zp are
only the trivial solutions if p does not divide the class number of Q(ζp) – this
is Kummer’s approach to Fermat’s problem.

4.4 Quadratic Reciprocity

Genus theory of quadratic number fields K is an elementary special case of
class field theory that predicts the structure of Cl(K)/Cl(K)2, that is, the
2-rank of Cl(K). We do not have time to develop this beautiful theory here
(see e.g. Chapter 2 in my Reciprocity Laws), but I want to give you at least
an idea of what is going on.

Proposition 4.7. For an odd prime p, put p∗ = (−1)(p−1)/2p, that is, p∗ = p
for p ≡ 1 mod 4 and p∗ = −p if p ≡ 3 mod 4. Then the quadratic number
field K = Q(

√
p∗ ) with discriminant p∗ has odd class number.

If K has even class number, then by Cauchy’s theorem there must exist
an element of order 2. Thus for proving that hK is odd we need to show that
any ideal a with a2 ∼ (1) is principal.

From a2 ∼ (1) and aa′ = (Na) ∼ (1) we deduce that a ∼ a′. Thus there
exists some α ∈ K× with αa = a′. If Nα < 0 (this can only happen if K is
real), we replace α by αε, where ε is the fundamental unit (we know it has
norm −1). Thus we may assume that Nα > 0. Taking the norm of αa = a′

then shows that Nα = +1 (of course this does not imply that α is a unit –
in general, α will not even be an algebraic integer).

Now we invoke

Lemma 4.8 (Hilbert’s Satz 90). Let K = Q(
√
m ) be a quadratic number

field, and assume that Nα = +1 for some α ∈ K×. Then there is a β ∈ K×

such that α = β/β′.
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Proof. If α = −1, take β =
√
m. If α 6= −1, put β = α

α+1 ; then β
β′ =

α(α′+1)
(α+1)α′ = α(α′+1)

1+α′ = α.

Hilbert’s Satz 90 provides us with some β ∈ K such that α = β/β′; this
shows that βa = β′a′. In other words: the ideal b = βa has the property
that b = b′ (such ideals are called ambiguous). Ambiguous ideals have a very
special form:

Lemma 4.9. Let b be an ambiguous ideal in a quadratic number field. Then
b = (b)d for some integer b ∈ N and some ideal d whose prime ideal factor-
ization only contains distinct ramified prime ideals.

Proof. It is clear that such ideals are ambiguous: clearly the nontrivial auto-
morpism σ fixes b ∈ Z and therefore (b); moreover, all ramified prime ideals
p have the property that p = pσ.

Assume now that b = b′, and let b be the maximal natural number di-
viding b. Then b = bd for some ambiguous ideal d. We claim that d is not
divisibly by split or inert primes, and this will prove our claim.

Clearly d is not divisible by inert primes, because these are generated by
integers p ∈ N, contradicting the choice of b. Assume therefore that (p) = pp′

splits and that p | d. Then p′ | d′ = d, hence (p) = pp′ divides d, and again
this contradicts our choice of b.

In the case at hand, there is only one ramified prime ideal, namely (
√
p∗ ),

which happens to be principal. Thus all ambiguous ideals are principal, and
in particular we conclude that a ∼ b ∼ 1. Thus Prop. 4.7 is proved.

Proof of the Quadratic Reciprocity Law

The basic idea behind the following proof of the quadratic reciprocity law
goes back to Kummer. Since we already know that (p

q ) = −( q
p ) for primes

p ≡ q ≡ 3 mod 4, we may assume that p or q is ≡ 1 mod 4.
Let us start with the first supplementary law:

a)
(−1

p

)
= +1 ⇐⇒ p ≡ 1 mod 4.

If p ≡ 1 mod 4, then k = Q(
√
p ) has a unit ε with Nε = −1. Writing

ε = 1
2 (x+y

√
p ), we get x2−py2 = −4, and this implies

(−1
p

)
= +1. Now

assume that
(−1

p

)
= +1; then p splits in the Euclidean field Q(

√
−1 ),

which implies p = a2 + b2. Hence, p ≡ 1 mod 4.
b) If p ≡ 1 mod 4, then

(
p
q

)
= +1 ⇐⇒

(
q
p

)
= +1.

First note that
(

p
q

)
= +1 implies that q splits in k = Q(

√
p), i.e. qOk =

qq′; from Proposition 4.7 we know that h is odd. Therefore qh is principal,
and there exist x, y ∈ Z such that ±4qh = x2 − py2. This yields the
congruence ±4qh ≡ x2 mod p, and

(−1
p

)
= +1 shows that

(
q
p

)
= +1 as

claimed.
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Now suppose that
(

q
p

)
= +1; then k = Q(

√
q∗ ) has odd class number,

where q∗ = (−1)(q−1)/2q, and p splits in k. Hence there exist x, y ∈ Z
such that ±4ph = x2 − q∗y2, and this implies

(±p
q

)
= +1. But since the

negative sign can hold only if q∗ ≥ 0, i.e., if q ≡ 1 mod 4, we get in fact(
p
q

)
= +1.

c) If p ≡ q ≡ 3 mod 4, then
(

p
q

)
= +1 ⇐⇒

(
q
p

)
= −1.

We have already proved this.
d)

(
2
p

)
= +1 ⇐⇒ p ≡ ±1 mod 8.

Put p∗ = (−1)(p−1)/2p; then p∗ ≡ 1 mod 4, and k = Q(
√
p∗ ) has odd

class number h. If p ≡ ±1 mod 8, then 2 splits in k/Q, and this implies
that x2 − p∗y2 = ±4 · 2h; we may actually assume that the positive sign
holds: if p ≡ 1 mod 4, the fundamental unit has norm −1, and in case
p ≡ 3 mod 4, we have x2 − p∗y2 > 0 anyway. Now we get

(
2
p

)
= +1.

For the proof of the other direction, assume that (2/p) = 1. Then p splits
in Q(

√
2 ) and we get ±p = x2 − 2y2 ≡ ±1 mod 8, since p is odd.

Exercises

4.1 Show that K = Q(
√
−17 ) has class group Cl(K) ' Z/4Z.

4.2 Show that K = Q(
√
−41 ) has class group Cl(K) ' Z/8Z.

4.3 Show that K = Q(
√
−47 ) has class group Cl(K) ' Z/5Z.

4.4 Show that K = Q(
√
−65 ) has class group Cl(K) ' (2, 4).

4.5 Show that K = Q(
√
−195 ) has class group Cl(K) ' (2, 2).

4.6 Show that Q(
√

79 ) has class number 3.

4.7 Compute the class group and the fundamental unit of Q(
√

195 ).

4.8 Find families Q(
√
−d ) of complex quadratic number fields with class numbers

divisible by 3 for integers d of the form d = 3t2 + 1 and d = 3t2 ± 8.

4.9 Consider the diophantine equation y2 = x3 − d for squarefree d ≡ 7 mod 8.
Show:
1. If y2 = x3−d has a solution with y even, then d = 3t2−1 for some integer

t ≡ 0 mod 4, and the only such solution is (4t2 − 1,±t(8t2 − 3)).

2. If y2 = x3 − d has a solution with y odd, then the ideals ( y+
√
−d

2
) and

( y−
√
−d

2
) are coprime.

3. Use unique factorization into prime ideals to deduce that ( y+
√
−d

2
) = pb3

and ( y−
√
−d

2
) = p′b′

3
, where p is a prime ideal above 2.

4. Assume first that p is principal. Show that this happens if and only if
d = 7, and solve the equation in this case.

5. Assume that the class number h of Q(
√
−d ) is exactly divisible by 3, i.e.,

that 3 | h and 9 - h. Assume in addition that the ideal class [p] has order
divisible by 3. Then y2 = x3− d does not have any integral solution with
y odd.
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6. Show that if a is an odd integer such that d = 23m+2 − a2 is squarefree,
then the ideal class [p] has order divisible by 3. Now solve y2 = x3−d for
d = 23 and d = 31.

4.10 Now consider the case d < 0, i.e. y2 − m = x3 for m > 0. Assume that
m ≡ 5 mod 8, and that the fundamental unit of Q(

√
m ) has the form ε =

1
2
(t + u

√
m ) for odd integers t, u. Assume finally that the class number of

Q(
√

m ) is not divisible by 3. If y2 − m = x3 has an integral solution, then
show:
1. y is even.
2. (y +

√
m ) = (α)3 for some α ∈ OK .

3. y +
√

m = ηα3 for some unit η ∈ O×K .
4. α3 ≡ 1 mod 2.
5. y +

√
m ≡ 1 mod 2.

6. η ≡ 1 mod 2.
7. Show that if η is a unit ≡ 1 mod 2, then η is a cube.

8. Deduce that y +
√

m = β3 for some β = r+s
√

m
2

. Solve the equation.

Observe that (3, 8) is a solution of y2− 37 = x3. What does this tell us about

the fundamental unit of Q(
√

37 )? If you like solving diophantine equations

such as the one above, an excellent resource is Mordell’s book “Diophantine
Equations”.

4.11 Find an analog of Theorem 4.5 for the equation y2 + d = x5.
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5. Binary Quadratic Forms

We are interested in the set of integral binary quadratic forms

Q = (A,B,C) = Ax2 +Bxy + Cy2,

where A,B,C are coprime integers. The integer ∆ = B2 − 4AC is called the
discriminant of Q. We say that a form Q represents an integer n if there are
integers x, y such that n = Q(x, y). We say that Q represents n properly if
there are coprime integers x, y such that n = Q(x, y).

5.1 The Action of the Modular Group

In this introduction, we will concentrate on positive definite forms (those with
negative discriminant) and present four different ways of looking at them.

Before we do this, we discuss the general concept of groups acting on sets.

Groups Acting on Sets

Let G be a group and S a set. We say that G acts on S from the left if there
is a map G× S −→ S : (g, s) 7−→ gs such that

1. (gh)s = g(hs)
2. 1s = s

for all g, h ∈ G and all s ∈ S. The orbit of some s ∈ S under the action
of G is the set {gs : g ∈ G}. The stabiliser of s ∈ S is the subgroup(!)
{g ∈ G : gs = s}.

It is an easy exercise to check that if G acts on S from the left, then it
also acts on S from the right via ga = s−1g.

Examples.

1. If V is a K-vector space, then the multiplicative group K× acts on V via
(r, v) 7−→ rv.

2. The groups GLn(K) act on the the K-vector spaces Kn in a natural way.
The special case n = 1 gives us back the first example.
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3. The Galois group of a normal extension K/Q acts on almost everything:
it acts on the field K, its multiplicative group K×, the ring of integers
OK , the unit group O×

K , the semigroup of ideals in OK , and on the class
group of K.

4. Every group acts on itself via g · h = gh.

Quadratic Forms

The “modular group” SL2(Z) of 2× 2-matrices with integral coefficients acts
on the set of binary quadratic forms in the following way: given a quadratic
form Q = (A,B,C) and a matrix M = ( r s

t u ) ∈ SL2(Z) we define the
quadratic form Q′ = Q|M = (A′, B′, C ′) by Q|M (x, y) = Q(rx+ sy, tx+ uy).
A simple calculation shows that

A′ = Ar2 +Brt+ Ct2,

B′ = 2(Ars+ Ctu) +B(ru+ st),

C ′ = As2 +Bsu+ Cu2.

It is easily verified that ∆′ = B′2 − 4A′C ′ = (ru − st)2∆, and now the fact
that M ∈ SL2(Z) implies that ∆′ = ∆. In order to prove that SL2(Z) “acts”
on forms of discriminant ∆ we now have to verify (Q|M )|N ) = Q|MN for
M,N ∈ SL2(Z). This is a simple if somewhat technical calculation; we can
avoid the technicalities by using some linear algebra.

Linear Algebra

To every binary quadratic form Q = (A,B,C) we associate the matrix MQ =
( A B/2

B/2 C ) (the occurrence of half-integers made Gauss look only at binary
quadratic forms whose middle coefficient B is even); then a simple calculation
shows that Ax2+Bxy+Cy2 = (x, y)MQ

( x
y

)
. Moreover we find that discQ =

B2 − 4AC = −4 detMQ. Another simple calculation shows that MQ|M =
M tMQM . This allows us to give a simple proof for the fact that discQ|M =
discQ:

discQ|M = −4 detM tMQM = −4 detMQ(detM)2 = discQ.

Moreover we see that MQ|MN
= (MN)tMQ(MN) = N tM tMQMN , hence

Q|MN = (Q|M )|N : this means that SL2(Z) acts on quadratic forms from the
right.

We now prove the fundamental

Proposition 5.1. If Q represents an integer n, then so does Q|M for any
M ∈ SL2(Z).
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Proof. Assume that n = Q(x, y) for integers x, y; then n = (x, y)MQ

( x
y

)
.

Since MQ|M = M tMQM , we have n = Q|M (u, v) = (u, v)M tMQM
(

u
v

)
for

the vector
(

u
v

)
= M−1

( x
y

)
. Since M ∈ SL2(Z), we have M−1 ∈ SL2(Z) as

well, and this means that u and v are integers.

Thus Q and Q|M represent exactly the same numbers. In fact, they also
represent the same integers properly: if n = Q(x, y) with gcd(x, y) = 1, then
n = Q|M (u, v) for coprime integers u, v; for if p | gcd(u, v), then

( x
y

)
= M

(
u
v

)
would show that p | gcd(x, y).

Proposition 5.2. If Q properly represents an integer n, then so does Q|M
for any M ∈ SL2(Z).

Let us call a form Q = (A,B,C) primitive if gcd(A,B,C) = 1. A similar
argument as the one above shows

Lemma 5.3. If Q is primitive, then so is Q|M for any M ∈ SL2(Z).

The Upper Half Plane

To every binary quadratic form Q = (A,B,C) with negative discriminant ∆

we associate the point zQ = −B+i
√
|∆|

2A in the upper half plane

H = {z ∈ C : Im(z) > 0}.

Note that we can compute the coefficient C from zQ by first reading off A,
B and ∆, and then setting C = B2−∆

4A . The group SL2(Z) acts on H via
( a b

c d )z = az+b
cz+d . In fact, a simple calculation shows that Im(Mz) = Im(z)

|cz+d|2 for
any M ∈ SL2(Z), so if Im(Mz) > 0 if Im z > 0. Another simple calculation
shows that (MN)z = M(Nz) for M,N ∈ SL2(Z), so we really do have a
group action. An easier way to prove this is via reduction to the action of
SL2(Z) on quadratic forms: simply observe that zQ|M = M−1zQ: this means
that the action of SL2(Z) on quadratic forms from the right corresponds to
the action of SL2(Z) on the upper half plane from the left.

In the following, the matrices T = ( 1 1
0 1 ) and S = ( 0 −1

1 0 ) will play a
prominent role. T represents a shift by 1 to the right since T (z) = z+ 1, and
S is the composition of a reflection at the unit circle and a reflection at the
imaginary axis (S(z) = − 1

z ). It is easily checked that S2 = (ST )3 = I. Note
that although S and ST have finite order, the product S ·ST = T has infinite
order.

5.2 Reduction

In practice, the action of SL2(Z) on binary quadratic forms is used to make
the coefficients of a form Q “as small as possible”.
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Quadratic Forms

From now on, all our forms will be primitive, that is, we assume that
gcd(A,B,C) = 1 for all our forms (A,B,C).

Now let Q = (A,B,C) be a binary quadratic form with negative dis-
criminant ∆ = B2 − 4AC; let us also assume that A > 0: in this case, Q is a
positive definite quadratic form since 4AQ(x, y) = (2AX +BY )2 −∆Y 2.

We say that a quadratic form Q with negative discriminant is reduced
if −A < B ≤ A ≤ C or 0 ≤ B ≤ A = C. Equivalently we may demand
|B| ≤ A ≤ C, and B > 0 if we have equality |B| = A or A = C.

Lemma 5.4. If Q = (A,B,C) is a reduced binary quadratic form with neg-
ative discriminant ∆, then |B| ≤ A ≤

√
−∆/3 and C ≤ 1−∆

4 .

Proof. We know B2 ≤ A2 and A ≤ C, hence −∆ = 4AC−B2 ≥ 4A2−A2 =
3A2.

From 4AC = B2 −∆ and the fact that A > 0 we get

C =
B2

4A
− ∆

4A
≤ A2

4A
− ∆

4A
=
A

4
− ∆

4A
.

As a function of A (assuming ∆ to be constant), the expression on the right
hand side is decreasing in the interval [1,

√
−∆ ], hence attains its maximum

at the boundary A = 1. This implies the claim.

As a corollary we observe that there are only finitely many reduced forms
of given discriminant ∆ < 0: there are only finitely many A by Lemma 5.4,
hence only finitely many B with |B| ≤ A. Finally, for each pair (A,B) there
is at most one C because ∆ = B2 − 4AC is fixed.

Since discriminants satisfy ∆ = B2 − 4AC ≡ B2 ≡ 0, 1 mod 4, every
discriminant has the form ∆ = −4m or ∆ = 1−4m. The forms Q0 = (1, 0,m)
of discriminant ∆ = −4m and Q0 = (1, 1,m) of discriminant ∆ = 1 − 4m
are reduced; they are called the principal form of discriminant ∆. We have
h(∆) = 1 if and only if Q0 is the only reduced form of discriminant ∆.

The number of reduced forms of discriminant ∆ < 0 is denoted by h(∆)
and is called the class number. As an example, let us compute the class
number h(−20). We know that 0 < A <

√
20/3 < 3, hence A ∈ {1, 2}.

Moreover, −20 = B2− 4AC shows that B must be even. The following table
then lists all possibilities:

A B forms
1 0 x2 + 5y2

2 0 −−−
2 2x2 + 2xy + 3y2

Thus there are only two reduced forms, and h(−20) = 2.
It is quite easy to compute all reduced forms of small discriminant:
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∆ h(∆) reduced forms
−3 1 x2 + xy + y2

−4 1 x2 + y2

−7 1 x2 + xy + 2y2

−8 1 x2 + 2y2

−11 1 x2 + xy + 3y2

−12 1 x2 + 3y2

−15 2 x2 + xy + 4y2, 2x2 + xy + 2y2

−16 1 x2 + 4y2

−19 1 x2 + xy + 5y2

−20 2 x2 + 5y2, 2x2 + 2xy + 3y2

−23 3 x2 + xy + 6y2, 2x2 ± xy + 3y2

−24 2 x2 + 6x2, 2x2 + 3y2

−27 1 x2 + xy + 7y2

If you compare this table with the class numbers you computed for the fields
K with discriminants −3 ≥ ∆ ≥ −23, then you will notice that we have
exactly h(∆) = hK reduced forms if ∆ is a fundamental discriminant; note
also that the results for ∆ = −12,−16,−27 cannot be explained with our
results on class groups of quadratic fields.

This is exactly what we will prove; in fact, the set Cl(∆) of binary
quadratic forms with discriminant ∆ can be given a natural group struc-
ture, and then we have Cl(K) ' Cl(∆) for K = Q(

√
∆ ), at least if ∆ < 0.

Here is a more complex example: let us explicitly compute the class num-
ber for ∆ = −4 · 65. We know that |A| ≤

√
−∆/3 < 10. Thus we have

−9 ≤ A < B ≤ 9 ≤ C and −∆ = 260 = 4AC − B2. Clearly B = 2b is even,
and we have 65 = AC − b2. Now we go through the individual cases; the
congruence 65 ≡ b2 mod A will occasionally help us to save work.

• A = 1: since B is even, we have B = 0 and therefore C = 65. We find
the form (1, 0, 65).

• A = 2: then B = 0 and B = −2 are impossible, so we must have B = 2.
Now 65 = 2C − 1 gives C = 33, and we get the form (2, 2, 33).

• A = 3: clearly b 6= 0; b = ±1 leads to C = 22 and to the form (3,±2, 22).
• A = 4: this is again impossible since 65 ≡ −b2 mod 4 is not solvable.
• A = 5: For B = 0 we find (5, 0, 13). From 65 = 5C − b2 we see that b

must be divisible by 5, hence B must be divisible by 10, and this only
works for B = 0.

• A = 6: here we find b = 1 and C = 11, that is, the forms (6,±2, 11). The
cases b = 2 and b = 3 lead to contradictions.

• A = 7: this is impossible since (−65
7 ) = −1.

• A = 8: this contradicts 65 ≡ −b2 mod 4.
• A = 9: here we check that 65 = 9C− b2 for integers b with |b| ≤ 4 is only

solvable for b = 4, leading to the form (9, 8, 9).
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Thus the set of reduced forms of discriminant −4 · 65 is

{(1, 0, 65), (2, 2, 33), (3,±2, 22), (5, 0, 13), (6,±2, 11), (9, 8, 9)}.

Given a quadratic form (A,B,C) with negative discriminant, how can we
find an equivalent reduced form? The algorithm below is a consequence of
several simple observations.

First, for M = ( 1 b
0 1 ) we find Q|M (x, y) = A(x+ by)2 +B(x+ by)y+Cy2,

hence
Q|M = (A,B + 2Ab,Ab2 +Bb+ C). (5.1)

Thus we can use such a transformation to decrease the size of B while keeping
A fixed.

Next, for S = ( 0 −1
1 0 ) we get Q|S(x, y) = A(−y)2 +B(−xy) + Cx2:

Q|S = (C,−B,A). (5.2)

Thus S can be used to exchange A and C.
Here’s the algorithm:

input: a primitive quadratic form (A,B,C) with ∆ < 0 and A > 0.
output: an equivalent reduced form (A′′, B′′, C ′′).

1. If |B| > A, find b ∈ Z with |B+2Ab| ≤ A, and put (A′, B′, C ′) =
Q|M for M = ( 1 b

0 1 ). Then |B′| ≤ A′ = A (see (5.1)).
2. If A′ ≤ C ′ goto step 3. If A′ > C ′, use S to replace the form

(A′, B′, C ′) by (C ′,−B′, A′). If |B′| > C ′, goto step 1.
3. Now we have a quadratic form (A′′, B′′, C ′′) with |B′′| ≤ A′′ ≤ C ′′.

If C ′′ ≥ A′′, this form is reduced unless C ′′ = A′′ and B′′ < 0;
in this case, replace the form by (C ′′,−B′′, A′′).

This algorithm terminates: in fact, every time the algorithm runs through
step 1, the absolute value of the middle coefficient is decreased by at least 1;
this clearly can happen only finitely often.

Note that this algorithm also can compute the matrix M for which Q′ =
Q|M : all you have to do is keep track of the matrices used in each step and
multiply them together.

Here’s an example: start with the form (3, 9, 7) with discriminant ∆ =
82 − 4 · 3 · 7 = −3. From |9 + 6b| ≤ 3 we find that we may take b = −1 or
b = −2. With b = −2 we get (A′, B′, C ′) = (3,−3, 1). Since 3 > 1, we switch
and get (1, 3, 3). Now we repeat step 1: we find |3 + 2b| ≤ 1 for b = −1, and
get (1, 1, 1). Thus (3, 9, 7) ∼ (1, 1, 1), and this form is reduced.

Theorem 5.5. Every primitive positive definite binary quadratic form Q is
equivalent to a unique reduced form.

For the proof that there is a unique such form we need another nice
property of reduced forms, which will turn out to be an important tool in
various proofs:
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Lemma 5.6. If Q = (A,B,C) is reduced, then the three smallest integers
properly represented by Q are A, C, and A− |B|+ C.

Proof. Clearly these integers are represented by Q since Q(1, 0) = A,
Q(0, 1) = C and Q(1,±1) = A±B + C.

In order to show that these are the smallest integers represented by Q we
have to show that Q(x, y) ≥ A − |B| + C for integers x, y with xy > 1. We
now distinguish three cases:

• |x| = |y|. Then |x| = |y| = 1 since the representation is proper, and we
find Q(x, y) ≥ A− |B|+ C.

• |x| > |y|. Then

Q(x, y) ≥ Ax2 − |B||xy|+ Cy2 > (A− |B|)|xy|+ Cy2

≥ (A− |B|+ C)y2 > A− |B|+ C.

• |x| < |y|. Then Q(x, y) ≥ (A− |B|+ C)x2 > A− |B|+ C.

Note that these three integers A, C, and A−|B|+C need not be distinct:
if Q = (1, 1, 1), then actually A = C = A− |B|+ C = 1.

Corollary 5.7. A (positive definite) quadratic form representing 1 is equiv-
alent to the principal form.

Proof. Let Q be such a quadratic form. Then Q is equivalent to some reduced
form Q′, which also represents 1. Since 1 is the smallest natural number
represented by Q′, Lemma 5.6 implies that Q′ = (A,B,C) with A = 1.
Since Q′ is reduced, we must have |B| ≤ |A| = 1, hence Q′ = (1, 0, C) or
Q′ = (1, 1, C). But these are exactly the principal forms.

Proof of Thm. 5.5. We have to show that if Q = (A,B,C) and Q′ =
(A′, B′, C ′) are reduced forms with Q ∼ Q′, then Q = Q′.

First we observe that the smallest natural number represented by Q and
Q′ is A and A′, respectively. Since Q ∼ Q′, they represent the same integers,
hence we must have A = A′. Note that C ≥ A since Q is reduced; we now
distinguish some cases.

1. C > A. Since A = Q(±1, 0) is represented exactly twice by Q, it is also
represented exactly twice by Q′, hence C ′ = Q′(0,±1) > A′ = A. Now
C is the second smallest integer represented by Q, and therefore also by
Q′. Since Q and Q′ represent the same integers, we must have C = C ′.
Since discQ = discQ′, we see that |B| = |B′|. If we had B′ = −B,
then (A,B,C) = Q ∼ Q′ = (A,−B,C). Assume that Q′ = Q|S for
S = ( r s

t u ) ∈ SL2(Z). Then A = A′ = Ar2 +Brt+Ct2, and since C > A,
the only solutions of this equation are r = ±1, t = 0. Thus S = ( 1 s

0 1 ) or
S = (−1 s

0 −1 ), hence −B = B′ = 2As + B, or As = −B. Since |B| ≤ A,
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we must have s = 0 (and then B = 0 = −B = B′) or s = 1 (and then
B = −A, which contradicts the assumption that Q is reduced). Thus we
have Q = Q′ in all cases considered here.

2. C = A. Then A = Q(±1, 0) = Q(0,±1), hence A is represented at least
four times by Q, hence also by Q′. But this implies C ′ = A and therefore
C = C ′. As above this implies B′ = ±B. But since (A,B,A) ∼ (A,B′, A)
are reduced, B and B′ must be positive, and we get Q = Q′.

The proof is now complete.

The Upper Half Plane

Now observe that Mz = (−M)z for any M ∈ SL2(Z); in other words: −I acts
trivially on H. This shows that we actually have Γ = SL2(Z)/{±I} acting
on the upper half plane. The elements of Γ are represented by matrices in
SL2(Z), with M and −M being regarded as equal.

Linear Algebra

I do not know if the fact that some form Q is reduced can be read off from
basic properties of the matrix MQ in a simple form. Is there a connection
between reduced forms and the eigenvalues or the characteristic polynomial
of MQ?

5.3 The Class Group

Recall that two quadratic forms Q,Q′ are called equivalent if there is a matrix
M ∈ SL2(Z) such that Q′ = Q|M . We know that equivalent forms have
the same discriminant. Now consider the equivalence classes [Q] of primitive
positive definite forms. We have seen that each such class contains a unique
reduced form, and that the number h(∆) of classes is finite. In this section we
will show how to make the set Cl(∆) of quadratic forms with discriminant ∆
(positive definite if ∆ < 0) into a group; in the next section we will show that
Cl(∆) ' Cl(K) if ∆ < 0 is a fundamental discriminant, i.e., if ∆ = discK
for some quadratic number field.

Giving Cl(∆) the structure of a group is not a trivial thing to do. The
method that is probably the easiest to memorize is via Bhargava’s cubes.
This method uses cubes of integers such as

c

a

d

b

g

e

h

f

� �

� �



5.3 The Class Group 69

to construct a triple of quadratic forms in the following way. Each such cube
can be sliced in three different ways, producing three pairs of 2× 2-matrices
(front-back, left-right, up-down):

FB M1 =
(
a b
c d

)
, N1 =

(
e f
g h

)
,

LR M2 =
( a c
e g

)
, N2 =

( b d
f h

)
,

UD M3 =
( a e
b f

)
, N3 =

( c g
d h

)
.

To each cube A we can associate three binary quadratic forms Qi = QA
i

by putting1

Qi(x, y) = −det(Mix+Niy).

This way we find

Q1(x, y) = (bc− ad)x2 + (bg + cf − ah− de)xy + (fg − eh)y2,

Q2(x, y) = (ce− ag)x2 + (cf + de− ah− bg)xy + (df − bh)y2,

Q3(x, y) = (be− af)x2 + (bg + de− ah− cf)xy + (dg − ch)y2.

Setting Qi = (Ai, Bi, Ci) we find that in the FB-slicing we have A1 = −detF
and C1 = −detB, where F and B denote the matrices forming the front and
the back face of the cube. Similarly we have A2 = −detL and C2 = −detR
in the LR-slicing. The matrices F and L have the edge ac in common; the
diagonal matrix DFB satisfies 1

2 (B1 +B2) = −detDFB .
A simple calculation shows that discQ1 = discQ2 = discQ3; thus we can

define2

disc(A) = a2h2 + b2g2 + c2f2 + d2e2

− 2(abgh+ cdef + acfh+ bdeg + aedh+ bfcg) + 4(adfg + bceh).

We now introduce an action of SL2(Z) on a cube A (or, rather, on its FB-
slicing) as follows: for S = ( r s

t u ) ∈ SL2(Z) we replace the cube A defined by
the pair of matrices (M1, N1) by the cube A|S defined by (rM1 + tN1, sM1 +
uN1). Adding the back to the front face, for example, means applying ( 1 0

1 1 )
to the cube.

Lemma 5.8. Let A be a cube, M ∈ SL2(Z), and let A′ = A|M be the cube we
get by letting M act on A; then discA′ = discA. If the associated quadratic
forms are denoted by Qi and Q′

i, then Q′
1 = Q1|M , Q′

2 = Q2, and Q′
3 = Q3.

1 The following formulas differ from those found in Bhargava’s work.
2 This discriminant is what Cayley had called the hyperdeterminant of the 2×2×2-

hypermatrix defined by the cube A.
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Proof. We know that Q1 = −det(M1x + N1y); applying M = ( r s
t u ) we see

that

Q′
1(x, y) = −det

(
(rM1 + tN1)x+ (sM1 + uN1)y)

)
= −det

(
M1(rx+ sy) +N1(tx+ uy)

)
.

Since Q1 = (A,B,C) = −det(M1x+N1y), we find

Q′
1(x, y) = A(rx+ sy)2 +B(rx+ sy)(tx+ uy) + C(tx+ uy)2

= (A′, B′, C ′)

for

A′ = Ar2 +Brt+ Ct2,

B′ = 2(Ars+ Ctu) +B(ru+ st),

C ′ = As2 +Bsu+ Cu2.

Thus we see that Q′
1(x, y) = Q|M (x, y) as claimed.

Since S acts via elementary row and column operations on the matrices
defining Q2 and Q3, we immediately see that Q′

2 = Q2 and Q′
3 = Q3.

Now instead of letting SL2(Z) act on the pair (M1, N1) as above we can
also let it act on (M2, N2) and (M3, N3). In this way we get an action of the
group Γ = SL2(Z)×SL2(Z)×SL2(Z) on the set of cubes; note that the action
of the three factors in Γ commutes: if you let an element (T1, T2, T3) act on
a cube then it does not matter whether you first let T1 act on (M1, N1) and
then T2 on (M2, N2) or the other way round (check this!).

Observe also that the action of the subgroup I × SL2(Z) × SL2(Z) of Γ
is trivial on the quadratic form Q1, since this subgroup acts by row and
column operations on M1 and N1, hence does not change the determinant
det(Mix+Niy).

What have we achieved now? We know that if Q1, Q2, Q3 are quadratic
forms attached to some cube A and if M ∈ SL2(Z), then there is a cube with
associated quadratic forms Q1|M , Q2, Q3. This shows that we cannot hope
for a composition law on quadratic forms; what we should be looking for is
a composition law on equivalence classes of quadratic forms.

Then we define a group law on the set of equivalence classes of quadratic
forms with the same discriminant d by [Q1]⊕ [Q2]⊕ [Q3] = 0 whenever there
is a cube A with associated quadratic forms Q1, Q2, Q3.

Actually, to get a group law from this formula we need to specify the neu-
tral element or the inverse of a form. Let us fix the group law by demanding
that the class I of the principal form Q0 is the neutral element.

Lemma 5.9. The inverse of the class [Q], where Q = (A,B,C), is the class
[−Q], where −Q = (A,−B,C).
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Proof. If ∆ = 4m, put B = 2b and consider the cube

1

0

0

1

b

A

−C

−b

� �

� �

.

Its quadratic forms are

Q1(x, y) = x2 −my2,

Q2(x, y) = Ax2 +Bxy + Cy2,

Q3(x, y) = Ax2 −Bxy + Cy2.

This implies that [I] + [Q] + [−Q] = 0 = [I], and now the claim follows.

Since composition is clearly commutative (if A is a cube giving Q1, Q2,
Q3, a suitable reflection of A produces a cube that gives Q2, Q1, Q3), all
that remains is to check associativity. This is rather technical if you stick to
forms; we will instead use the map sending forms to modules.

We also have to show that two primitive forms of discriminant ∆ can be
composed, i.e., that there is a cube giving rise to these two forms and their
composed forms. This is done as follows.

We have seen how to attach three binary quadratic forms of the same
discriminant to a cube A. Now we show that, conversely, to each pair of
primitive binary quadratic forms of the same discriminant ∆ we can find a
cube A giving rise to these forms.

Proposition 5.10. Given two primitive forms Q1, Q2 of discriminant ∆,
there exists a primitive cube A such that QA

1 = Q1 and QA
2 = Q2.

Proof. The proof we will give goes back to Shanks. The basic idea is the
following: write Qi = (Ai, Bi, Ci) and set B = 1

2 (B1 +B2); note that B is an
integer since B1 ≡ B2 ≡ ∆ mod 2. Let d = gcd(A1, A2, B), write A1 = dα1,
A2 = dα2 and B = dβ1, and form the cube

d

0

α

α1

β

α2

γ

β1

� �

� �

Then the determinants of the front face, the left face, and the diagonal already
have the right values, namely −A1, −A2, and −B. Also observe that we have
A3 = α1α2 = A1A2/d

2. The values of α, β and γ can now be determined
from the three equations
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β1α− α1γ = C2,
α2α− α1β = (B2 −B1)/2,
β1β − α2γ = C1.

 (5.3)

We first have to show that these equations are consistent; to this end,
multiply the first and the third equation by α2 and α1, respectively, and
subtract them from each other; this gives

β1(α1β − α2α) = α2C2 − α1C1. (5.4)

But Q1 and Q2 have the same discriminant ∆ = B2
1 − 4A1C1 = B2

2 − 4A2C2;
this equality implies

B2 +B1

2
B2 −B1

2
= A2C2 −A1C1. (5.5)

Dividing through by d shows that the right hand side of (5.4) equals β1(B2−
B1)/2; if β1 6= 0, then dividing through by β1 gives the second equation. If
β1 = 0, on the other hand, it is immediately clear that the first and the third
equation in (5.3) are equivalent since α2C2 = α1C1 in this case.

We have seen that if we can manage to solve two out of these three
equations, then we have won. In the case where gcd(α1, α2) = 1, this can be
easily done: solve the equation α1x−α2y = 1 using the Euclidean algorithm,
then then put β = B2−B1

2 x and α = B2−B1
2 y. Then determine γ from either

the first or the last equation. Now α1γ = C2 + β1α and α2γ = C1 + β1α are
both integers; thus the denominator of γ must divide both α1 and α2, hence
divides gcd(α1, α2) = 1. Thus γ is an integer.

The same method works if gcd(α1, β1) = 1 or gcd(α2, β1) = 1: in these
cases use Euclid to solve the first and the third equation, respectively, and
then continue as above.

This leaves us with the case where gcd(α1, α2), gcd(α1, β1) and gcd(α2, β1)
are all nontrivial. This can indeed happen, say if α1 = pq, α2 = pr and
β1 = qr for distinct primes p, q, r.

In this case, recall the equation (5.5), which in our case reads

β1
B2 −B1

2
= α2C2 − α1C1.

This equation immediately shows that gcd(α1, β1) | α2C2; but since gcd(α1, β1)
and α2 are coprime, this implies gcd(α1, β1) | C2. Thus we see that the first
equation in (5.3), namely β1α − α1γ = C2, has an integral solution. The
other two equations then show that α1β and β1β are integers, which im-
plies that the denominator of β divides H = gcd(α1, β1). Write β = h

H and
determine an integer r such that rα2 ≡ h mod H (this can be done since
gcd(H,α2) = 1). If we add r

H of the top matrix ( 0 α1
α2 β ) of our cube to the

matrix ( G α
β γ ) at the bottom, then G will remain invariant, α and γ will be

changed by integers (since α1 and β1 are multiples of H), and β will be re-
placed by β − r

Hα2 = h−rα2
H , which is an integer. Since this transformation
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does not change Q1 and Q2, we have finally found a cube A with the desired
properties.

Example. Consider the two forms Q1 = (2, 2, 21) and Q2 = (5, 6, 10) of
discriminant −4 · 41. The system (5.3) of equations now becomes

4α− 2γ = 10,
5α− 2β = 2,
4β − 5γ = 21.

The solutions (α, β, γ) = (0,−1,−5) and (2, 4,−1) give the cubes

1

0

0

2

−1

5

−5

4

� �

� �

and
1

0

2

2

4

5

−1

4

� �

� �

Computing the associated forms gives Q1 and Q2 (of course), as well as

Q3 = (10,−6, 5) and Q′
3 = (10, 14, 9).

In particular we have [Q1] + [Q2] + [Q3] = 0, or [Q1] + [Q2] = [(10, 6, 5)] =
[(5,−6, 10)].

Note that you can get the second cube from the first by adding the top
face to the bottom. This proves in particular that Q3 ∼ Q′

3.
Of course we know that there must be infinitely many solutions since we

can make SL2(Z) act on the cube in such a way that the two forms Q1 and
Q2 are not changed.

Example. Consider the forms Q1 = (2, 2, 21) and Q2 = (6, 2, 7) of discrim-
inant −4 · 41. Here G = gcd(A1, A2, B) = 2 and gcd(α1, β1) = 1. We get
the system of equations α − γ = 7 and β − 3γ = 21, which has the solution
γ = −7 and α = β = 0. This gives us the cube

2

0

0

1

0

3

−7

1

� �

� �

with the associated forms Q1, Q2 and Q3 = (3,−2, 14), and we find [Q1] +
[Q2] = [(3, 2, 14)].

Let us now derive a few explicit formulas for composition. Assume that
gcd(A1, A2, B) = 1. Then we have seen above that A3 = A1A2. Using A2α =
A1β + B2−B1

2 , we now find
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B3 = A1β +A2α−B

= 2A1β −
B2 +B1

2
+
B2 −B1

2
= 2A1β −B1

≡ −B1 mod 2A1,

and similarly we can prove

B3 ≡ −B2 mod 2A2.

Finally we find

B3B = (A1β +A2α−B)B

= −B2 +A1Bβ +A2Bα

= −B2 +A1(C1 +A2γ) +A2(C2 +A1γ)

= −B2 +A1C1 +A2C2 + 2A1A2γ

≡ −B2 +A1C1 +A2C2

= −B2 + 2A1C1 +B
B2 −B1

2

= −∆+B1B2

2
mod 2A1A2

Thus B3 satisfies the congruences

A2B3 ≡ −B1 mod 2A1A2,

A1B3 ≡ −B2 mod 2A1A2,

BB3 ≡ −∆+B1B2

2
mod 2A1A2.

Since the coefficients of B3 on the left hand side have greatest common divisor
1, these congruences determine B3 uniquely modulo 2A1A2 = 2A3. In fact,
if we write λA1 + µA2 + νB = 1, then clearly

B3 = (λA1 + µA2 + νB)B3

≡ −λB2 − µB1 − ν
∆+B1B2

2
mod 2A1A2.

But now we observe that the residue class B3 mod 2A3 determines the
equivalence class of Q3; in fact we find

Corollary 5.11. Let Qi = (Ai, Bi, Ci) be primitive binary quadratic forms
with discriminant ∆ and gcd(A1, A2, B) = 1, where B = B1+B2

2 . Then [Q1]+
[Q2]+[Q3] = [Q0] for Q3 = (A3, B3, C3), where A3 = A1A2, B3 is determined
by the congruences above, and C3 = B2

3−∆
4A3

.
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This is what some authors call “Dirichlet composition”.
In order to show that we do indeed get a composition on Cl(∆), we have

to show that different choices of the cube A in Prop. 5.10 give equivalent
forms:

Lemma 5.12. Let A and A′ be primitive cubes with QA
1 = QA′

1 and QA
2 =

QA′

2 . Then QA
3 ∼ QA′

3 .

Proof. This is best done via “Gauss’s Lemma”, given in his Disquisitiones.
Details later.

I would like to conclude this section with the following problems. Let
us call a primitive cube A reduced if the three associated quadratic forms
QA

i are all reduced. Is there a simple way of characterizing reduced cubes in
terms of the integers a, b, . . . , h? Can we at least find good bounds on these
integers? If a cubeA is not reduced, is there a simple algorithm for reducingA
directly? Finally: the definition of composition via primitive cubes works over
any UFD; is there a sufficiently simple proof that composition is associative
over general UFDs? In special cases like Z or K[T ] (see the next chapter)
this can be done via “Dirichlet composition”.

5.4 Orders and Modules

Modules

Finally consider the order O = [1, ω∆] for

ω∆ =

{
1
2

√
∆ if ∆ ≡ 0 mod 4,

1+
√

∆
2 if ∆ ≡ 1 mod 4.

∆ is called a fundamental discriminant if O is the full ring of integers in
Q(
√
∆ ), that is, if ∆/4 or ∆ is squarefree.

To every quadratic form Q = (A,B,C) of discriminant ∆ < 0 we now
can attach a Z-module i(Q) in the order O = [1, ω∆] by putting

i(Q) = [A, −B+
√

∆
2 ].

How can we make SL2(Z) act on full Z-modules [α, β]? The naive idea of
setting [α, β]|M = [rα+ sβ, tα+ uβ] for M = ( r s

t u ) ∈ SL2(Z) does not really
work, since it is an easy matter to show that M just changes the basis of the
module, in other words: [α, β]|M = [α, β], i.e., SL2(Z) would act trivially.

Now consider a quadratic form Q, as well as Q′ = Q|M = (A′, B′, C ′);
then ι(Q′) = [A′, −B′+

√
∆

2 ] = A′[1, zQ′ ], where zQ′ is the point in the upper
half plane attached to Q′. We have already seen that zQ′ = M−1zQ, hence
we find ι(Q′) = A′[1,M−1zQ].
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Let Q = (A,B,C) be a positive definite quadratic form with discriminant
∆, and consider the Z-module ι(Q) = IQ. If ∆ is a fundamental discriminant,
i.e., ∆ = discK for some quadratic field K = Q(

√
m ), then IQ is an ideal in

OK . In other words, IQ is a Z-module, but in general not a OK-module. It
turns out that we can always find an order O (a subring of OK containing Z
and with quotient field K) such that IQ is an O-module, that is, an ideal in
O.

If O is not the maximal order OK , then O is not a Dedekind ring, and
there won’t be unique factorization into prime ideals. Nevertheless it turns
out that we can at least imitate the definition of the class group; in fact, the
class group Cl(O) of this order will be isomorphic to the class group Cl(∆)
of binary quadratic forms.

Stabilizer Rings

Let M be a Z-module in OK . An element γ ∈ OK is called a stabilizer of M
if γM ⊆M . Let OM denote the set of all stabilizers of M .

Lemma 5.13. Let M be a module; then OM is a ring with Z ⊆ OM ⊆ OK .

Proof. It is easy to see that all integers in Z are stabilizers, and that γ, γ′ ∈
OM implies γ + γ′ ∈ OM and γγ′ ∈ OM .

An order of OK is a subring of OK containing Z, which has rank 2 as
a Z-module. For example, the Z-module [1, gω] is an order for any nonzero
g ∈ Z. The maximal order is [1, ω] = OK .

Lemma 5.14. If M is a full Z-module in OK , then OM is an order.

Proof. Assume thatM = [α, β] is full; then every element inK can be written
as a Q-linear combination of α and β. In particular we have

ωα = rα+ sβ,

ωβ = tα+ uβ

for r, s, t, u ∈ Q. Let d be the lowest common multiple of the denominators
of these rational numbers; then dr, ds, dt, du ∈ Z, and this implies that dω ∈
OM . Since we already know that Z ⊆ OM , this proves that OM is an order.

Modules in Orders

Let K be a quadratic number field and O ⊆ OK an order (a subring contain-
ing Z with quotient field K). With O = Zα + Zβ, the discriminant of O is
defined to be discO = ∆ = (αβ′ −α′β)2; this does not depend on the choice
of the basis. Every order has the form [1, fω] for some integer f ∈ N called
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the conductor of O (here Z ⊕ Zω = OK is the maximal order); comparing
discriminants we see that discO = f2 discK, where discK = discOK .

A full Z-module M is a subset M = Zα + Zβ for α, β ∈ K such that
β
α ∈ K \ Q. The product MN of two full Z-modules is the full Z-module
MN = {mn : m ∈M,n ∈ N}.

A Z-module M is called an O-ideal if OM = M . An O-ideal M is called
invertible if there is an O-ideal N with MN = O.

Lemma 5.15. Inverses are unique: if MN = MN1 = O, then N = N1.

Proof. We have N = NO = N(MN1) = (NM)N1 = ON1 = N1.

Thus we can write N = M−1 if MN = O. It is now easily checked that
the set of invertible O-ideal forms a group IO with respect to multiplication.

Lemma 5.16. Let M be an invertible O-ideal. Then OM = O.

Proof. Since M is an O-ideal, we have OM ⊆ M and therefore O ⊆ OM .
Conversely, assume that α ∈ OM , that is, αM ⊆ M , and that MN = O.
Then α = α · 1 ∈ αO = αMN ⊆MN = O.

Now let α, β ∈ K and M = Zα+ Zβ be an O-module. Since α and β are
linearly independent over Q, the element γ = β

α is a quadratic irrationality,
and there exist integers a, b, c ∈ Z with aγ2+bγ+c = 0, where we may assume
that gcd(a, b, c) = 1. Since M = α[1, γ], we see that (aγ)γ = −bγ− c ∈ [1, γ],
which in turn implies that Z[aγ] ⊆ O. Now observe that γ′ = −γ− b

a , γγ′ = c
a ;

using these relations we find

MM ′ = α[1, γ] · α′[1, γ′] = N(α)[1, γ, γ′, γγ′]

= N(α)[1, γ, b
a ,

c
a ] = Nα

a [a, aγ, b, c] = Nα
a [1, aγ],

where, in the last step, we have used gcd(a, b, c) = 1. Thus we find that M is
an invertible Z[aγ]-ideal with inverseM−1 = a

NαM
′. Lemma 5.16 now implies

that O = Z[aγ], i.e., M is an invertible O-ideal if and only if O = Z[aγ]. This
is equivalent to discO = disc Z[aγ] = b2 − 4ac, as can be seen easily from
γ = −b+

√
b2−4ac
2a . We have shown:

Lemma 5.17. Let M be an O-module. Then M is an invertible O-ideal if
and only if one of the following equivalent conditions is satisfied:

1. There is a O-module N with MN = O;
2. O = OM ;
3. discO = b2 − 4ac with a, b, c as above.

In the following, we will often write M = (α, a, b) if M is given as above.
A nonzero O-ideal M is called principal if M = αO for some α ∈ K×.

Principal ideals are invertible: we easily find that the inverse of M = (α, a, b)
is given by M−1 = ( a

α , a,−b). Thus principal O-ideals form a subgroup PO
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of the group IO of invertible ideals in O; the quotient group Cl(O) = IO/PO
is called the class group of O, and its cardinality the class number h(O) of
O. If O = OK , every OK-ideal is invertible, and Cl(OK) coincides with the
ideal class group of K we have studied before.

For positive discriminants ∆ > 0, we do in general not get a bijection
between Cl(O) and Cl(∆). This can be remedied by slightly modifying the
definition of Cl(O). Call an invertible O-ideal M principal in the strict sense
if M = αO with Nα > 0, and let P+

O denote the group of principal O-ideals
in the strict sense. Then Cl+(O) = IO/P

+
O is called the class group in the

strict sense. If ∆ < 0, the condition Nα > 0 is automatically satisfied, and
we always have Cl+(O) = Cl(O) in this case. If ∆ > 0, however, we have
h+(O) = h(O) or h+(O) = 2h(O), and both cases occur.

For orders O of discriminant ∆ > 0 it can be shown that Cl+(O) ' Cl(∆).

5.5 The Bijection

The bijection is easy to define (showing that the bijection is an isomorphism,
that is, respects the group laws, will require at lot more effort). We will define
maps i : Cl(∆) −→ Cl(K) and f : Cl(K) −→ Cl(∆) and then show that f ◦ i
and i ◦ f are the identity maps on Cl(∆) and Cl(K), respectively.

The map i sending quadratic forms Q = (A,B,C) of discriminant ∆ =
B2−4AC = f2 discK to integral ideals aQ in O is easily defined: we just put

i(Q) = [A, −B+
√

∆
2 ]. (5.6)

This is an invertible O-ideal, where O = [1, fω], since A | N
(−B+

√
∆

2

)
= AC.

Example 1. The principal form

Q(x, y) =

{
x2 −my2 if ∆ = 4m,
x2 + xy −my2 if ∆ = 4m+ 1

has image i(Q) = (1).

Example 2. The two reduced forms (1, 0, 5) and (2, 2, 3) of discriminant −20
get mapped to (1) and (2,−1 +

√
−5 ), respectively.

We now want to show that i is induces a map on the classes, i.e., that
i(Q|M ) ∼ i(Q) for M ∈ SL2(Z). To this end, observe that i(Q) = [A, −B+

√
∆

2 ]
for Q = (A,B,C). Now we write i(Q) = A[1, γ], where γ = −B+

√
∆

2A =
zQ is the point in the upper half plane associated to Q. But with Q′ =
(A′, B′, C ′) = Q|M we now find i(Q|M ) = A′[1, γ′] = A′[1,M−1γ]. It remains
to show that the two ideals A[1, γ] and A′[1,M−1γ] are equivalent.

Now let M = ( r s
t u ) ∈ SL2(Z); then {γ, 1} is the basis of a Z-module [1, γ]

in K if and only if {rγ + s, tγ + u} is. But
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[tγ + u, rγ + s] = (tγ + u)[1, rγ+s
tγ+u ] ∼ [1,Mγ],

hence [1, γ] = (tγ + u)[1,Mγ] for any M ∈ SL2(Z). Since M−1 = ( u −s
−t r ),

we see that [1, γ] = (−tγ + r)[1,M−1γ] and therefore

A′i(Q) = AA′[1, γ] = AA′(−tγ + r)[1,M−1γ] = A(−tγ + r)i(Q|M ).

Thus equivalent quadratic forms correspond to equivalent ideals, and we have
proved:

Proposition 5.18. The map i defined in (5.6) satisfies i(Q|M ) ∼ i(Q), and
therefore maps classes of forms to ideal classes.

Now let us define the inverse map: given an ideal a in some order O of
the complex quadratic number field K with discriminant ∆ = f2 discK, we
write a = [α, β] and put

f(a) = Qa(x, y) =
N(αx− βy)

N(a)
. (5.7)

For this to make sense we must prove that Qa has integral coefficients and
discriminant ∆. In fact, we have

N(αx+ βy) = (αx− βy)(α′x− β′y)

= αα′x2 − (αβ′ + α′β)xy + ββ′y2

= Ax2 +Bxy + Cy2.

Clearly, A, B and C are integers, since they are norms and traces of elements
in O. Moreover, αα′ ∈ aa′ = (Na), hence A is divisible by Na. But for the
very same reason we have B,C ∈ aa′, hence Qa = N(αx−βy)

Na also has integral
coefficients.

Next, the discriminant of Qa is discQa = B2−4AC
Na2 = (αβ′−α′β)2)

Na2 = ∆.
The last equality follows from the observation that an ideal a = [α, β] satisfies
(Exercise!) ∣∣∣∣α α′β β′

∣∣∣∣ = ∆ ·Na2.

Finally, the equivalence class of f(a) does not depend on the choice of the
basis of a: in fact, let {γ, δ} denote another basis of a; then

( γ
δ

)
= M

( α
β

)
for

some M ∈ SL2(Z). Since the norm of a does not depend on the basis, we only
have to study the effects of M on N(αβ′−α′β). Now αβ′−α′β = det( α β

α′ β′ );
but then

γδ′ − γ′δ = det( γ δ
γ′ δ′ ) = detM( α β

α′ β′ ) = αβ′ − α′β.

Moreover, f(γa) = Nγ·N(αx−βy)
N(γa) = Nγ

N(γ)f(a) = f(a) because Nγ = N(γ)
for complex quadratic fields (note that the definition of f involves the norm



80 5. Binary Quadratic Forms

of an element in the numerator and the norm of an ideal in the denominator;
if ∆ < 0, then Nγ > 0; if ∆ > 0, then it can happen that N(γ) = −Nγ, and
this is exactly the reason why there sometimes are more equivalence classes
of forms than ideal classes in this case).

This shows

Proposition 5.19. The map f defined in (5.7) maps ideal classes to equiv-
alence classes of quadratic forms.

Now we can state

Theorem 5.20. Consider the ideal class group Cl(O) of some order O of
discriminant ∆ < 0, and the class group Cl(∆) of primitive quadratic forms
of discriminant ∆. Then the maps i : Cl(∆) −→ Cl(O) and f : Cl(O) −→
Cl(∆) are group homomorphisms and inverse to each other. In particular,
Cl(O) ' Cl(∆).

Proof. Write a = [A, 1
2 (−B+

√
∆)]. Then Q = f(a) = (A,B,C) since AA′

Na =
A2

A = A and − 1
Na (αβ′ + α′β) = 1

2 (B +
√
∆ ) + 1

2 (−B +
√
∆ ) = B. But then

i(f(a)) = i(Q) = a.
Showing that f ◦ i is the identity map is left as an exercise.
It remains to show that ι is a homomorphism. Assume for simplicity that

the forms Q1 and Q2 satisfy gcd(A1, A2, B) = 1. Then [Q1] + [Q2] = [Q3],
where Q3 is determined up to equivalence by A3 = A1A2 and the unique
integer B3 mod 2A3 determined by the congruences

B3 ≡ −B1 mod 2A1,

B3 ≡ −B2 mod 2A2,

BB3 ≡
∆−B1B2

2
mod 2A3.

Now

ι(Q1) = [A1,
−B1+

√
∆

2 ] = [A1,
−B3+

√
∆

2 ],

ι(Q2) = [A2,
−B2+

√
∆

2 ] = [A2,
−B3+

√
∆

2 ],

ι(Q3) = [A3,
−B3+

√
∆

2 ].

Setting γ = −B3+
√

∆
2 we find that we have to show that [A1, γ][A2, γ] =

[A1A2, γ]. But

[A1, γ][A2, γ] = [A1A2, A1γ,A2γ, γ
2] = [A1A2, A1γ,A2γ,−B3γ] = [A1A2, γ]

since γ2 ≡ −B3γ mod A1A2 and gcd(A1, A2, B3) = 1.
In fact, we have
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γ2 =
(B3 −

√
∆

2

)2

=
B2

3 − 2B3

√
∆+B2

3 − 4A3C3

4

= −B3
−B3 +

√
∆

2
−A3C3 ≡ −B3γ mod A3,

and this implies the claimed congruence since A3 = A1A2.

Consider e.g. the three reduced forms of discriminant ∆ = −23; they are
Q0 = x2 + xy + 6y2, Q2 = 2x2 + xy + 3y2 and Q3 = 2x2 + xy + 3y2. These
correspond to the ideals I1 = [1, ω] = (1), I2 = (2, ω) and I3 = (2,−1 + ω) =
I ′2, where ω = −1+

√
−23

2 . The fact that [Q2] + [Q3] = [Q1] corresponds to the
ideal relation I2I3 = (2) ∼ (1).

Exercises

5.1 Show that SL2(Z) acts on the upper half plane, i.e., that (MN)z = M(Nz)
for z ∈ H.

5.2 Show that Q ∼ Q|M for M ∈ SL2(Z) defines an equivalence relation on the
set of binary quadratic forms of fixed discriminant ∆.

5.3 Show that if Q corresponds to z ∈ H, then for M ∈ SL2(Z), the form
Q|M corresponds to M−1z. In particular, Q|MN corresponds to (MN)−1z =
N−1M−1z.

5.4 Show that if a group G acts on X from the left via (g, x) 7−→ gx, then G acts
on X from the right via (g, x) 7−→ xg−1.

5.5 Show that the two binary quadratic forms (1, 0, 3) and (1, 1, 1) represent the
same integers, but that they are not equivalent.

5.6 Show that every form with discriminant ∆ < 0 represents some integer n 6= 0
with n ≤

p
−∆/3.

5.7 Show that if (A, B, C) and (A′, B′, C′) have the same discriminant, then B ≡
B′ mod 2.

5.8 Show that [α, β] = [γ, δ] for elements α, β, γ, δ ∈ OK if and only if there is
some M ∈ SL2(Z) such that

� γ
δ

�
= M

� α
β

�
.

5.9 Show that

(1,−B, AC) ∼

(
(1, 0,−m) if B2 − 4AC = 4m,

(1, 1,−m) if B2 − 4AC = 4m + 1.

5.10 Show that any quadratic form of type (a, 0, c) or (a, a, c) and a > 1 has order
2 in the class group.

5.11 Consider a discriminant ∆ = 4m < 0 with squarefree m ≡ 3 mod 4. Assume
that m has exactly t distinct (odd) prime factors. Show that the following
forms are all reduced, and that they form a subgroup of Cl(∆) isomorphic to
(Z/2Z)t:
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1. Q = (a, 0, c) for all factorizations m = ac with a < c.
2. Q = (2a, 2a, c) for all factorizations m = a(a− 2c) with 2a < c.

5.12 Prove analogs for the statements in the preceding exercises for forms of dis-
criminants ∆ = 8m and ∆ = m ≡ 1 mod 4.



6. Elliptic and Hyperelliptic Curves

Let K be a field of characteristic 6= 2. Then an equation C : Y 2 = f(X),
where f ∈ K[X] is a squarefree polynomial, A defines a hyperelliptic curve.
We will usually assume that f has odd degree; in this case, deg f = 2g + 1,
and the integer g is called the genus of C.

In this chapter we will construct a group Jac(C) called the Jacobian of
C; if C is elliptic, i.e., if it has genus 1, then Jac(C) can be identified with
the group of points on E. For the construction we consider quadratic forms
with coefficients in the polynomial ring O = K[T ], which is a UFD with unit
group O× = K×. The sign of some nonzero f ∈ O is defined by sgn(f) = an,
where f(T ) = anT

n + . . . + a1T + a0. Note that a necessary condition for
a ∈ Z to be a square is that a > 0, and a necessary condition for f ∈ O to
be a square is that deg f is even and sgn(f) is a square.

6.1 Quadratic Forms

A quadratic form is a triple Q = (A,B,C) of elements A,B,C ∈ O. It is
called primitive if gcd(A,B,C) = 1. The discriminant of Q is the class of
B2 − 4AC modulo squares, that is, ∆ = (B2 − 4AC)K× 2.

In order to get a reduction theory for quadratic forms, we need a measure
for the size of the coefficients; such a measure is provided by the degree
function. In order to make it multiplicative, we choose a real number ρ > 1
and put |A| = ρdeg A for A ∈ O.

Two forms Q,Q′ are called equivalent if there is a matrix M ∈ SL2(O)
such that Q′ = Q|M . We say that a primitive form (A,B,C) of discriminant
∆ is reduced if

|B| < |A| ≤ |C| and sgn(A) = 1.

Since ∆ = B2 − 4AC and |B2| < |∆|, we must have |AC| = |∆|.

Lemma 6.1. If the form (A,B,C) is reduced, then |A| <
√
|∆|.

Proof. If Q is reduced, then B2 − ∆ = 4AC shows that deg∆ = degA +
degC ≥ 2 degA.
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Note that if K is a finite field, then there are only finitely many reduced
forms since there are only finitely many polynomials A with degree bounded
by 1

2 deg∆. If K has infinitely many elements (for example if K = Q), then
it is often difficult to decide whether there are infinitely many reduced forms
or not.

Example. Let us determine all reduced forms of discriminant ∆ = 1 − T 2

over F3. If degA = 0, then A = 1. If degA = 1, then A = T − a for some
a ∈ F3, and going through all possibilities shows that the following list of
reduced forms is complete:

A B Q

1 0 (1, 0, T 2)

T ±1 (T,±1, T )

T − 1 0 (T − 1, 0, T + 1)

T + 1 0 (T + 1, 0, T − 1)

The last two forms are clearly equivalent (switch A and C). The second pair
of forms similarly are equivalent to each other since (T, 1, T ) ∼ (T,−1, T ). In
particular, there are reduced forms that are equivalent to each other.

In order to keep things as simple as possible we restrict our attention from
now on to discriminants ∆ satisfying the following properties:

1. ∆(T ) is squarefree;
2. deg∆ is odd;
3. sgn(∆) = −1.

Remark. If deg∆ is odd, we always have degA < degC for reduced forms.
In fact, from B2−4AC = ∆ and degB < degA,degC it follows that degA+
degC = deg∆. This implies that degA and degC have distinct parity, hence
we cannot have |A| = |C| in this case.

A form Q is called positive definite if sgn(Q(x, y)) is a square for all
nonzero x, y ∈ O. Since equivalent forms represent the same elements, Q|M
will be positive definite if and only if Q is. Note that over an algebraically
closed field, every form is positive definite.

Example. The form Q = (1, 0, T 2) over F3 is not positive definite since it
represents 2T 2 = Q(T, 1), and sgn(2T 2) = 2 is not a square in F3.

Lemma 6.2. If deg∆ is odd, then the form Q = (A,B,C) is positive definite
if and only if sgn(A) is a square.

Proof. Using the action of SL2(O) we may assume that Q is reduced, i.e., that
|B| < |A| ≤ |C|. Now consider the expression Q(x, y) = Ax2 + Bxy + Cy2.
Since |B| < |A|, |C|, the middle term never influences the leading coefficient
sgn(Q(x, y)): in fact,
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• if |x| ≥ |y| then |Bxy| ≤ |Bx2| < |Ax2|;
• if |x| ≤ |y| then |Bxy| ≤ |By2| < |Cy2|;

thus the dominating term is either Ax2 or Cy2. Since 4AC = B2 − ∆ and
−∆ is monic, we have A > 0 if and only if C > 0.

Theorem 6.3. If deg∆ is odd, then every positive definite form of discrim-
inant ∆ is equivalent to a unique reduced form.

Proof. Let us first recall that, for M = ( 1 b
0 1 ) and a quadratic form Q =

(A,B,C), we have

Q|M = (A,B + 2Ab,Ab2 +Bb+ C). (6.1)

Similarly,
Q|S = (C,−B,A) (6.2)

for S = ( 0 −1
1 0 ).

Now take a positive definite primitive quadratic form (A,B,C) with dis-
criminant ∆, and perform the following operations:

1. If degB > degA, find b ∈ O with deg(B + 2Ab) < degA, and replace
(A,B,C) by (A′, B′, C ′) = (A,B,C)|M = Q|M for M = ( 1 b

0 1 ). Then
degB′ = deg(B + 2Ab) < degA′ since A′ = A.

2. If degA′ ≤ degC ′ goto step 3. If degA′ > degC ′, use S to replace the
form (A′, B′, C ′) by (C ′,−B′, A′). If degB′ > degC ′, goto step 1.

3. Now we have a quadratic form (A′′, B′′, C ′′) with degB′′ < degA′′ ≤
degC ′′. Since Q was assumed to be positive definite, sgn(A) = a2 will be
a square. Now replace Q′′ by Q′′|R, where R = ( 1/a 0

0 a
).

For showing that two reduced forms are never equivalent we use Lemma
6.4 below. Assume that (A,B,C) ∼ (A′, B′, C ′) are reduced forms of the
same discriminant. Then A is the minimal element represented by the first,
and since equivalent forms represent the same elements, also by the second
form. This implies A = A′.

Now write (A′, B′, C ′) = (A,B,C)|M for M = ( r s
t u ) ∈ SL2(O); then

A = A′ = Ar2 +Brt+Ct2. Since (A,B,C) is reduced, the dominating term
on the right hand side is either Ar2 or Ct2 (these cannot cancel since degA
and degC have different parity). But this term must have the same degree as
A, hence r = ±1 and t = 0. Since M ∈ SL2(O), we must have r = u, hence
M = (±1 s

0 ±1 ).
But now B′ = B ± 2sA; since degB,degB′ < degA, this is only possible

if s = 0. Since M = (−1 0
0 −1 ) acts trivially on forms, we now see that B′ = B

and C ′ = C as claimed.

Lemma 6.4. The minimal monic element represented properly by a reduced
form Q is Q(1, 0) = A.
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Proof. Assume that R = Q(x, y) = Ax2 + Bxy + Cy2 satisfies degR ≤
degA. We have already observed that the middle term never dominates, hence
degR = degA+2 deg x ≥ degA or degR = degC+2 deg y ≥ degC ≥ degA.
Thus if R is minimal, we must have degR = degA and x ∈ K×. Since R and
A are monic, this implies R = A.

Let us now determine all reduced forms of discriminant ∆ = 1 − T 3

over F5 (note that 1 − T 3 = (1 − T )3 over F3). Except for the principal
form Q0 = (1, 0,−T 3), a reduced form can be written as (A,B,C) with
1 ≤ degA < deg∆. Since deg∆ = 3, we find degA = 1, hence A = T + a
for some a ∈ K = F5. From 1− T 3 = ∆ = B2 − 4AC = B2 − 4(T + a)C we
deduce that we have to choose B = b ∈ K for a given A = T + a in such a
way that (T + a) | b2 −∆. This is equivalent to ∆(−a) = b2. This equation
in K will not always have a solution; we find

A B Q (a, b)
T ±1 (T,±1,−T 2) (0,±1)

T − 1 0 (T − 1, 0,−T 2 − T − 1) (1, 0)
T − 2 − − −
T − 3 ±2 (T − 3,±2,−T 2 + 2T − 1) (3,±2)
T − 4 − −

Thus there are exactly 6 reduced forms of discriminant 1− T 3.

Elliptic Curves

Now assume that ∆(T ) = −T 3 + −aT + b. Every form of discriminant ∆ is
equivalent to a reduced form (A,B,C); such a form is reduced if degB <
degA < deg∆ = 3, that is, if degA ≤ 1 and degB ≤ 0.

If degA = 0 and sgn(A) = 1, then A = 1, and the unique reduced form
is Q0 = (1, 0,−∆

4 ). This form is called the principal form of discriminant ∆.
If degA = 1 and sgn(A) = 1, then A = T − a and B = b for a, b ∈ K.

From ∆(T ) = B2 − 4AC = b2 − 4(T − a)C we get ∆(a) = b2 by plugging
in T = a. Thus the reduced quadratic form (A,B,C) corresponds to a point
(a, b) on the elliptic curve Y 2 = ∆(T ). Conversely, any such point (a, b) gives
rise to a reduced form (A,B,C) with discriminant ∆ by putting A = T − a,
B = b, and C = B2−∆

4A (note that b2 − ∆(T ) is divisible by T − a, so we
do in fact have C ∈ O). If we agree to send the principal quadratic form
Q0 = (1, 0,−∆

4 ) to the point at infinity on E : Y 2 = ∆(T ), we get

Theorem 6.5. There is a bijection between the points on the projective ellip-
tic curve E : Y 2 = ∆(T ) with ∆(T ) = −T 3 + aT + b ∈ K[T ] and the reduced
quadratic forms of discriminant ∆.

We observe again that if K = Fq is a finite field, then there are only
finitely many points on E (and thus only finitely many reduced forms); in
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this case, the class number of forms of discriminant ∆ coincides with the
number of points on E(Fp).

If ∆ is squarefree of odd degree ≥ 5, the curves C : Y 2 = ∆(X) are called
hyperelliptic curves. In this case, the curve has too few points to carry a nice
group structure. Our discussion above, however, shows exactly what we have
to do to get a group law. A reduced quadratic form (A,B,C) for hyperelliptic
curves with deg∆ = 5 satisfies degA ≤ 2 and degB ≤ 1. Consider the case
degA = 2; let α, α′ denote the two roots of A in some extension of K. Then
B2 − 4AC = ∆ implies ∆(α) = B(α)2, hence (α,B(α)) and (α′, B(α′))
are points on C defined over some quadratic extension of K. Thus we get
essentially a bijection between pairs of such points and reduced forms (there
are a couple of details to fill in for forms with degA ≤ 1 etc.). The group of
such pairs of points on C is called the Jacobian of C; as for elliptic curves, the
group law has a geometric interpretation.

Example. Consider the hyperelliptic curve Y 2 = 1−T 5 over F3. Its points O,
(a, b) = (0,±1), (1, 0) correspond to the reduced forms (1, 0,−∆), (T,±1, T 4)
and (T−1, 0, T 4+T 3+T 2+T+1). A brute force enumeration shows that the
remaining reduced forms are given by (T 2,±1, T 3), (T 2 − T,±(T − 1), T 3 +
T 2 + T − 1) and (T 2 − T − 1,±T, T 3 + T 2 − T + 1).

6.2 The Class Group

If F is a finite field with p elements, then we always take ρ = p; in this case,
|A| is the number of elements in the residue class ring O/A.

Now assume that K = Fp is a finite field with p > 2 elements. Let
|f | = pdeg f denote the norm of f , that is, the cardinality of the system of
residue classes O/(f).

Proposition 6.6. Assume that K = Fq is a finite field. Then there are only
finitely many reduced forms of discriminant ∆ < 0.

Proof. This is obvious since there are only finitely many linear polynomials
over K.

The equivalence classes of forms of discriminant ∆ can be made into a
group via Bhargava’s cubes as before. Now consider reduced forms Qj =
(X − xj , yj +

√
∆ ) corresponding to the points (xj , yj) on the elliptic curve

E : Y 2 = ∆(X), and assume that [Q1] + [Q2] + [Q3] = [Q0]. We would like
to derive formulas for Q3 in terms of x1, y1, x2, y2.

The forms are Qj = (T − xj , y − j, Cj); assume first that x1 6= x2; then
gcd(A1, A2) = 1, and composition is easy: recall that for composing Q1 and
Q2 we have to solve the system of equations
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Bα−A1γ = C2,

A2α−A1β = (B2 −B1)/2,
Bβ −A2γ = C1.

In our current situation, B = 1
2 (B1 +B2) is a unit in O. This means that we

can choose an arbitrary γ ∈ O, and then solve the first and the third equation
for α and β. If we take γ = 0 and introduce the abbreviations cj = Cj/B,
then we get the following cube:

1

0

c2

A1

c1

A2

0

B

� �

� �

This gives us the form Q3 = (A1A2, B3, C3), where

A3 = A1A2,

B3 = c1A1 + c2A2 −B,

C3 = c1c2.

Note that, according to our calculations in Chapter 5,

BB3 = A1C1 +A2C2 −B2 = −∆+B1B2

2
,

hence B3 = −∆+B1B2
B1+B2

.
As you can see, the new form Q3 will in general not be reduced. Our

first task will be to reduce B3 mod A3 in such a way that the degree of B3

decreases. This is done as follows:

Lemma 6.7. If A1 −A2, B1 +B2 ∈ K× then we have

∆+B1B2

B1 +B2
≡ A1B2 −A2B1

A1 −A2
mod A1A2.

In the special case deg∆ = 3, we know that B1 and B2 have degree 0,
whereas A1 and A2 will be monic of degree 1 (unless one of the forms involved
is the principal form); in particular, A1 − A2 and B1 + B2 are constants
(possibly 0). Thus the expression on the right hand side (if it is defined) has
degree 1, whereas the one on the left has degree 3.

Proof. We have to verify that

(A1 −A2)(∆+B1B2) ≡ (A1B2 −A2B1)(B1 +B2) mod A1A2.

Plugging in ∆ = B2
1 − 4A1C1, multiplying out, cancelling and omitting the

term 4A1A2C1 ≡ 0 mod A1A2 shows that this congruence is equivalent to
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A1(B2
1 −B2

2 − 4A1C1) ≡ 0 mod A1A2.

But now B2
1 − 4A1C1 = B2

2 − 4A2C2, hence the last congruence becomes
4A1A2C2 ≡ 0 mod A1A2, which is obviously correct.

Example. Consider the forms

Q1 = (T, 1,−T 2) and Q2 = (T − 1, 0,−T 2 − T − 1)

of discriminant ∆ = 1−T 3 over F5. Then A3 = T 2−T and B3 = −∆+B1B2
B1+B2

=
T 3−1; using Lemma 6.7 we get B3 ≡ −A1B2−A2B1

A1−A2
= T−1 mod A1A2: in fact,

we have T 3−1−(T +1)(T 2−T ) = T −1. Thus Q3 ∼ (T 2−T, T −1, C ′
3) with

C ′
3 = −T−2. The reduction process now yields Q3 ∼ (−T−2, 1−T, T 2−T ) ∼

(−T−2, 3, T 2−2T−1). Getting rid of the coefficient −1 = 22 via ( 2 0
0 3 ) finally

gives Q3 ∼ (T + 2,−2,−T 2 + 2T + 1).

Let us go back to the problem of composing two forms Qj = (Aj , Bj , Cj),
j = 1, 2, in the case where deg∆ = 3, and where Aj = T − aj for distinct
elements a1, a2 ∈ K. We have seen so far that [Q1] + [Q2] + [Q3] = 0 for the
form

Q3 =
(
A1A2,−

∆+B1B2

B1 +B2
, ∗

)
∼

(
A1A2,−

A1B2 −A2B1

A1 −A2
, ∗

)
.

Let us now compute the third coefficient C of the last form. It is given by
C = ∆−B2

4A , where A = A1A2 and B = A1B2−A2B1
A1−A2

. Since ∆ = −T 3 − aT + b

and degB ≤ 1, we find that ∆ − B2 is a cubic polynomial; moreover, it is
divisible by A1 = T − a1 and A2 = T − a2, hence we can write B2 − ∆ =
(T −a1)(T −a2)(T −a3) for some constant a3. The easiest way of computing
a3 is by comparing the coefficients of T 2 on both sides. For doing this we
need

Lemma 6.8. If Aj = T − aj and Bj = bj for constants a1, a2, b1, b2 ∈ K
with a1 6= a2, then

A1B2 −A2B1

A1 −A2
=
b2 − b1
a2 − a1

(T − a1) + b1.

Proof. This can be checked by a straightforward coputation:

A1B2 −A2B1

A1 −A2
=

(T − a1)b2 − (T − a2)b1
a2 − a1

=
b2 − b1
a2 − a1

(T − a1) + b1.

As we will see below, it is no accident that the expression on the right hand
side is part of the equation of a line.

Thus if we put m = b2−b1
a2−a1

, then the coefficient of T 2 in B2 − ∆ is m2,
and we find
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Theorem 6.9. Assume that Q1 = (A1, B1, C1) and Q2 = (A2, B2, C2) are
forms of discriminant ∆ = −T 3 − aT + b, where A1 = T − a1 and A2 =
T − a2 for distinct a1, a2 ∈ K. Then [Q1] + [Q2] + [Q3] = 0 for the form
Q3 = (T − a3, b3, ∗), where a3 and b3 are determined by the equations a1 +
a2 + a3 +m2 = 0, m = b2−b1

a2−a1
, and b3 = m(T − a1) + b1.

The Geometric Group Law

Let us now consider quadratic forms whose discriminant is a squarefree cubic,
and show that composition of forms induces the well known geometric group
law for adding points on the corresponding elliptic curve. The latter is defined
by the two conditions, namely that the point O at infinity be the neutral
element, and that collinear points add up to 0.

Assume that we are given points P1 = (a1, b1) and P2 = (a2, b2) on an
elliptic curve Y 2 = −X3−aX+ b. Assume first that a1 6= a2. Then the slope
of the line through P1P2 is given by m = b2−b1

a2−a1
. The line through P1 and P2

is thus given by Y = m(X − a1) + b1; intersecting this line with the cubic
gives us the equation

(m(X − a1) + b1)2 +X3 + aX − b = 0.

This is a cubic equation with solutions X = a1, a2, a3, hence we must have

(m(X − a1) + b1)2 +X3 + aX − b = (X − a1)(X − a2)(X − a3).

Comparing the coefficients of X2 on both sides shows

a1 + a2 + a3 = −m2,

that is,
a3 = −a1 − a2 −m2.

Plugging this into the line equation gives us the value of b3 as

b3 = m(a3 − a1) + b1.

The point (a3, b3) corresponds to the class of the form (T − a3, b3, ∗); since
we have seen above that (T − a3, b3, ∗) ∼ Q3 = (A3, B3, C3) for the form Q3

composed from Q1 = (T − a1, b1, ∗) and Q2 = (T − a2, b2, ∗), we are done.

Exercises

6.1 Construct a matrix in SL2(O) with nonconstant entries.

6.2 Show that if Q is a form with discriminant ∆ over some finite field K, and if
deg ∆ is even, then Q is not definite.
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6.3 Consider the cubic C : Y 2 = −X3. Show that the points on C \ {(0, 0)} carry
a natural group structure by setting up a bijection between all points on C
and the classes of forms of discriminant ∆(T ) = −T 3. Observe that the point
(0, 0) corresponds to the class of the non-primitive form (T, 0,−T 2/4). Show
that this group is isomorphic to the additive group of K.

6.4 Show similarly that the cubic Y 2 = −X3+X2 can be given a group structure.
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