
2. Ideals in Quadratic Number Fields

In this chapter we introduce some of the main actors: the ring of integers in
quadratic number fields, as well as modules and ideals.

2.1 Algebraic Integers

In the last chapter we have studied some rings of the form Z[
√
m ]. It turned

out, however, that these are not always the right domains to work with. The
reason becomes apparent in the following example.

Consider the ring R = Z[
√
−3 ]. There we have the factorization 2 · 2 =

(1+
√
−3 )(1−

√
−3 ) into irreducibles, showing that R does not have unique

factorization. The problem is that these factorizations cannot be explained
by ideal factorization. In fact, consider the ideal a = (1 +

√
−3 ); then a2 =

(−2 + 2
√
−3 ) = (2)a′ with a′ = (1−

√
−3 ). Multiplying through by a shows

that a3 = (8). If we had unique factorization into prime ideals, this would
imply a = (2). But two principal ideals are equal if and only if their generators
differ by a unit, hence we would have to conclude that 1+

√
−3

2 is a unit; in
fact, it is not even an element in R.

Help comes from studying Fermat’s Last Theorem for exponent 3: for
solving x3 + y3 = z3 we could factor the left hand side as

x3 + y3 = (x+ y)(x2 − xy + y2).

The quadratic factor is irreducible in Z, but can be factored in C as

x2 − xy + y2 = (x+ yρ)(x+ yρ2),

where ρ = −1+
√
−3

2 is a primitive cube root of unity, i.e. a complex number
ρ 6= 1 with the property ρ3 = 1. Thus for studying this diophantine equation
it seems we should work with the ring (!) Z[ρ] = {a+ bρ : a, b ∈ Z}; this ring
contains Z[

√
−3 ] properly because 2ρ+ 1 =

√
−3.

Norm and Trace

Before we give the final definition of the “correct” rings of integers, let us
introduce some notation. Consider the quadratic number field
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K = Q(
√
m ) = {a+ b

√
m : a, b ∈ Q}.

This is a Galois extension of Q, i.e., there are two automorphisms, the identity
and the conjugation map σ sending α = a + b

√
m ∈ K to σ(α) = α′ =

a− b
√
m. Clearly σ2 = 1, and Gal(K/Q) = {1, σ}. It is obvious that α ∈ K

is fixed by σ if and only if b = 0, that is, if and only if α ∈ Q. We say that K
is real or complex quadratic according as m > 0 or m < 0.

The element α = a + b
√
m ∈ K is a root of the quadratic polynomial

Pα(X) = X2 − 2aX + a2 − mb2 ∈ Q[X]; its second root α′ = a − b
√
m is

called the conjugate of α. We also define

Nα = αα′ = a2 −mb2 the norm of α,
Trα = α+ α′ = 2a the trace of α, and
disc(α) = (α− α′)2 = 4mb2 the discriminant of α.

The basic properties of norm and trace are

Proposition 2.1. For all α, β ∈ K we have N(αβ) = NαNβ and Tr(α +
β) = Trα + Trβ. Moreover Nα = 0 if and only if α = 0, Trα = 0 if and
only if α = b

√
m, and disc(α) = 0 if and only if α ∈ Q.

Proof. Left as an exercise.

In particular, the norm is a group homomorphism K× −→ Q×, and the
trace is a group homomorphism from the additive group (K,+) to the addi-
tive group (Q,+).

The Power of Linear Algebra

Let K ⊆ L be fields; then L may be viewed as a K-vector space: the vectors
are the elements from L (they form an additive group), the scalars are the
elements of K, and the scalar multiplication is the restriction of the usual
multiplication in L. The dimension dimK L of L as a K-vector space is called
the degree of L/K and is denoted by (L : K).

Clearly K = Q(
√
m ) has degree 2 over Q: a basis is given by{1,

√
m}

since every element of K can be written uniquely as a Q-linear combination
of 1 and

√
m.

In algebraic number theory, fields of higher degree are also studied; for
example,

Q( 3
√

2 ) = {a+ b
3
√

2 + c
3
√

4 : a, b, c ∈ Q}

is a number field of degree 3 with basis {1, 3
√

2, 3
√

4}.
Norm and trace can be defined in arbitrary number fields by generalizing

the following approach: Let {1, ω} denote a basis of K = Q(
√
m ) as a Q-

vector space (for example, take ω =
√
m). Multiplication by α is a linear map

because α(λβ + µγ) = λ(αβ) + µ(αγ) for λ, µ ∈ Q and β, γ ∈ K. Now once
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a basis is chosen, linear maps can be represented by a matrix; in fact, all we
have to do is compute the action of α = a+ bω on the basis {1, ω}.

To this end let us identify a+ b
√
m with the vector

(
a
b

)
; then 1 and

√
m

correspond to
(
1
0

)
and

(
0
1

)
. The images of these vectors under multiplication

by α are, in light of α · 1 = a + bω and α · ω = bm + aω for ω =
√
m, the

vectors
(
a
b

)
and

(
mb
a

)
. Thus multiplication by α is represented by the matrix

Mα = (( a mb
b a )). Now we see that N(α) = detMα and Tr(α) = TrMα. It is

an easy exercise to show that the norm and the trace in this definition do
not depend on the choice of the basis.

From linear algebra we know that the characteristic polynomial of the
matrix Mα is given by

det(Mα −XI) =
∣∣∣∣( a−X mb

b a−X

)∣∣∣∣ = X2 − Tr(α)X + N(α) = Pα(X).

We now say that α is integral if the characteristic polynomial Pα(X) has
integral coefficients. Clearly α is integral if its norm and trace are ordinary
rational integers. Thus all elements in Z[

√
m ] are algebraic integers, but so

are e.g. ρ = −1+
√
−3

2 and 1+
√

5
2 , as is easily checked. Moreover, a rational

number a ∈ Q is integral if and only if Pa(X) = X2 − 2aX + a2 = (X − a)2

has integral coefficients, which happens if and only if a ∈ Z. This is a good
sign: the integral numbers among the rationals according to our definition
coincide with the integers!

Rings of Integers

Now let OK denote the set of all algebraic integers in K = Q(
√
m ), where

m is a squarefree integer. In the following, we will determine OK and show
that it forms a ring.

Lemma 2.2. We have a+ b
√
m ∈ OK if and only if u = 2a and v = 2b are

integers with u2 −mv2 ≡ 0 mod 4.

Proof. Assume that α = a + b
√
m ∈ OK ; then u := 2a = Tr(α) ∈ Z and

a2−mb2 = N(α) ∈ Z. Multiplying the last equation through by 4 we find that
4mb2 must be an integer. Since m is squarefree, it cannot cancel any denom-
inators in 4b2, hence 4b2 and therefore also v := 2b are integers. Moreover,
u2−mv2 = 4a2−4mb2 = 4N(α) is a multiple of 4, hence u2−mv2 ≡ 0 mod 4.

Now assume that u = 2a and v = 2b are integers with u2−mv2 ≡ 0 mod 4.
Then for α = a + b

√
m we find that Pα(X) = X2 − uX + 1

4 (u2 −mv2) has
integral coefficients, hence α ∈ OK .

This lemma is now used to classify the algebraic integers in K:

Proposition 2.3. We have
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OK =

{
{a+ b

√
m : a, b ∈ Z} if m ≡ 2, 3 mod 4,

{a+b
√

m
2 : a ≡ b mod 2} if m ≡ 1 mod 4.

In particular, OK = Z[
√
m ] is the ring of integers in K whenever m ≡

2, 3 mod 4.

Proof. Assume that a+ b
√
m with a, b ∈ Q is an algebraic integer. Then 2a,

2b and a2 −mb2 are integers by Lemma 2.2.
1. If m ≡ 2 mod 4, then u2 − mv2 ≡ 0 mod 4 for integers u = 2a and

v = 2b implies that u and v are even, hence a and b are integers.
2. If m ≡ 2 mod 4, then u2 − mv2 ≡ 0 mod 4 for integers u = 2a and

v = 2b can only happen if u and v have the same parity; if they are both
odd, then u2 ≡ v2 ≡ 1 mod 4 and u2 −mv2 ≡ 2 mod 4: contradiction. Thus
u and v are even, and a and b are integers.

3. Finally assume that m ≡ 1 mod 4. Again, u2 −mv2 ≡ 0 mod 4 if and
only if u and v have the same parity. If u and v are both even, then a and b are
integers; if not, then u ≡ v ≡ 1 mod 2 are both odd, and a+ b

√
m = u+v

√
m

2
is an algebraic integer with trace u and norm 1

2 (u2 −mv2).

In the cases m ≡ 2, 3 mod 4, every integer in OK can be written uniquely
as a Z-linear combination of 1 and

√
m: we say that {1,

√
m} is an integral

basis in this case. These are not unique: other examples are {1, a+
√
m} for

any a ∈ Z or {1 +
√
m,
√
m}.

In the case m ≡ 1 mod 4 we claim that OK also has an integral basis,
namely {1, ω} with ω = 1

2 (1 +
√
m ). In fact, for any pair of integers a, b ∈ Z,

the number a+bω = 2a+b+b
√

m
2 is integral since 2a+b ≡ b mod 2; conversely,

any integer a+b
√

m
2 with a ≡ b mod 2 can be written in the form a−b

2 + bω

with a−b
2 , b ∈ Z. We have proved:

Corollary 2.4. The ring OK of integers in a quadratic number field K is a
free abelian group, i.e., for

ω =

{√
m if m ≡ 2, 3 mod 4,

1+
√

m
2 if m ≡ 1 mod 4

we have OK = Z⊕ ωZ.

Now that we have constructed the rings of integers in a quadratic number
field, we want to prove that they are Dedekind rings, i.e., domains in which
every ideal is the product of prime ideals in a unique way. As a first step we
review the basics of ideals and modules in commutative rings – the actual
proof of unique factorization into prime ideals will then actually be quite fast
and easy.
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2.2 Ideals

What is an ideal? Recall that a subset I of a ring R is called a subring
if I it is closed under the ring operations, that is, adding and multiplying
elements of I again produces elements of I. This is similar to the concepts
of subgroups or subspaces of vector spaces; what is different in the category
of rings is that the quotient R/I = {r + I : r ∈ R} in general is not a ring
with respect to addition (r + I) + (s + I) = r + s + I and multiplication
(r+ I) · (s+ I) = rs+ I. In fact, this multiplication is in general not defined:
if r + I = r′ + I and s+ I = s′ + I, i.e., if a = r − r′ ∈ I and b = s− s′ ∈ I,
then r′s′ + I = (r− a)(s− b) + I = rs+ (ab− rb− sa) + I, and this is equal
to the coset rs+ I only if ab− rb− sa ∈ I; since a, b ∈ I implies that ab ∈ I,
this is equivalent to rb + sa ∈ I. But for general subrings I of R this is not
necessarily the case (see Exercise 7).

In order to guarantee that rb+ sa ∈ I for a, b ∈ I and r, s ∈ R we have to
demand that I be an ideal: this is a subring of R with the additional property
that ri ∈ I whenever i ∈ I and r ∈ R (we abbreviate this by writing RI ⊆ I).

Note that if I and J are ideals in R, then so are

I + J = {i+ j : i ∈ I, j ∈ J},
IJ = {i1j1 + . . .+ injn : i1, . . . , in ∈ I, j1, . . . , jn ∈ J},

as well as I ∩ J . The index n in the product IJ is meant to indicate that
we only form finite sums. If A and B are ideals in some ring R, we say that
B | A if A = BC for some ideal C.

The difference between additive subgroups, subrings, and ideals is not
visible in the ring R = Z of integers: see Exercise 2.

We say that an nonzero ideal I 6= R is

• irreducible if I = AB for ideals A, B implies A = R or B = R;
• a prime ideal if AB ⊆ I for ideals A, B always implies A ⊆ I or B ⊆ I;
• a maximal ideal if I ⊆ J ⊆ R for an ideal J implies J = I or J = R.

For principal ideals, this coincides with the usual usage of prime and
irreducible elements: an ideal (a) is irreducible (prime) if and only if a is
irreducible (prime). In fact, (r) | (s) is equivalent to r | s.

Prime ideals and maximal ideals can be characterized as follows:

Proposition 2.5. An ideal I is

• prime in R if and only if R/I is an integral domain;
• maximal in R if and only if R/I is a field.

Proof. R/I is an integral domain if and only if it has no zero divisors. But
0 = (r + I)(s + I) = rs + I is equivalent to rs ∈ I; if I is prime, then this
implies r ∈ I or s ∈ I, i.e., r+ I = 0 or s+ I = 0, and R/I is a domain. The
converse is also clear.
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Now let I be maximal and take some a ∈ R\I; we have to show that a+I
has a multiplicative inverse. Since I is maximal, the ideal generated by I and
a must be the unit ideal, hence there exist elements m ∈ I and r, s ∈ R such
that 1 = rm+ sa. But then (a+ I)(s+ I) = as+ I = (1− rm) + I = 1 + I.

Conversely, assume that every coset r + I 6= 0 + I has a multiplicative
inverse. Then we claim that I is maximal. In fact, assume that M is an
ideal strictly bigger than I. Then there is some m ∈ M \ I. Pick r ∈ R sith
(m+ I)(r + I) = 1 + I; then mr − 1 ∈ I ⊂ M , and m ∈ M now shows that
1 ∈M .

Note that an integral domain is a ring with 1 in which 0 6= 1; thus (1) is
not prime since the null ring R/R only has one element.

It follows from this proposition that every maximal ideal is prime; the
converse is not true in general. In fact, consider the ring Z[X] of polynomials
with integral coefficients. Then I = (X) is an ideal, and R/I ' Z is an
integral domain but not a field, hence I is prime but not maximal.

Example. Now consider the domain R = Z[
√
−5 ] and the ideal p = (2, 1 +√

−5 ). We claim that R/p ' Z/2Z; this will imply that p is prime, and even
a maximal ideal.

We first prove that every element of R is congruent to 0 or 1 modulo
p. This is easy: reducing a + b

√
−5 modulo 2 shows that every element is

congruent to a + b
√
−5 mod (2) with a, b ∈ {0, 1}, i.e., to one of 0, 1,

√
−5,

1 +
√
−5.1 Reducing these classes modulo p we find that

√
−5 ≡≡ 1 mod p

(the difference is in p and 1 +
√
−5 ≡ 0 mod p. Thus every element is ≡

0, 1 mod p. Moreover, these residue classes are different since 0 ≡ 1 mod p
would imply 1 ∈ p, which is not true: 1 = α · 2 + β · (1 +

√
−5 ) is impossible

for α, β ∈ R, as a little calculation will show.

An important result is

Theorem 2.6 (Chinese Remainder Theorem). If A and B are ideals in R
with A+B = R, then R/AB ' R/A⊕R/B as rings.

Proof. Since A + B = R, there exist a ∈ A and b ∈ B such that a + b = 1.
Consider the map φ : R/A ⊕ R/B −→ R/AB defined by φ(r + A, s + B) =
rb + sa + AB. We claim that φ is a ring homomorphism. Checking that
φ(r + A, s + B) + φ(r′ + A, s′ + B) = φ(r + r′ + A, s + s′ + B) is easy.
Multiplication is more tricky: we have

φ(r +A, s+B)φ(r′ +A, s′ +B) = (rb+ sa)(r′b+ s′a) +AB

= rr′b2 + ss′a2 +AB

= rr′b(1− a) + ss′a(1− b) +AB

= rr′b+ ss′a+AB = φ(rr′ +A, ss′ +B).
1 Actually this is a complete set of residue classes modulo a = (2) in R. The ring

R/(2) has zero divisors because (1 +
√
−5 )2 = −4 + 2

√
−5 ≡ 0 mod (2); in

particular, (2) is not a prime ideal in R.
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In order to show that φ is bijective, it is sufficient to define the inverse map
ψ : R/AB −→ R/A⊕R/B by ψ(r+AB) = (r+A, r+B) and verifying that
ψ ◦ φ and φ ◦ ψ are the identity maps; this is again easily done.

2.3 Modules

Let R be a commutative ring; an (additively written) abelian group M is
said to be an R-module if there is a map R×M −→M : (r,m) 7−→ rm with
the following properties:

• 1m = m for all m ∈M ;
• r(sm) = (rs)m for all r, s ∈ R and m ∈M ;
• r(m+ n) = rm+ rn for all r ∈ R and m,n ∈M ;
• (r + s)m = rm+ sm for all r, s ∈ R and m ∈M .

The most important examples are abelian groups G: they are all Z-
modules via ng = g + . . . + g (n terms) for n > 0 and ng = −(−n)g for
n < 0. In particular, a subring M of a commutative ring R is a Z-module; it
is alsoan R-module if and only if M is an ideal.

If M and N are R-modules, then so is M⊕N = {(m,n) : m ∈M,n ∈ N}
via the action r(m,n) = (rm, rn).

In the following, K = Q(
√
d ) is a quadratic number field, and {1, ω} is

a basis of its ring of integers OK . Our first job is the classification of all
Z-modules in OK .

Proposition 2.7. Let M ⊂ OK be a Z-module in OK . Then there exist
natural numbers m,n and and integer a ∈ Z such that M = [n, a + mω] :=
nZ⊕ (a+mω)Z.

Note that this says that every element in M is a unique Z-linear com-
bination of n and a + mω; the elements n and a + mω are therefore called
a basis of the Z-module M in analogy to linear algebra. Actually, studying
R-modules is a generalization of linear algebra in the sense that R-modules
are essentially vector spaces with the field of scalars replaced by a ring.

Note that, in general, not every R-module has a basis; R-modules pos-
sessing a basis are called free, and the number of elements in a basis is called
the rank of the R-module. Proposition 2.7 claims that all Z-modules in OK

are free of rank ≤ 2. In fact, the Z-modules M = {0} = [0, 0], M = Z = [1, 0]
and M = OK = [1, ω] have ranks 0, 1 and 2, respectively.

Proof of Prop. 2.7. Consider the subgroup H = {s : r+sω ∈M} of Z. Every
subgroup of Z is automatically an ideal, hence H has the form H = mZ for
some m ≥ 0. By construction, there is an a ∈ Z such that a + mω ∈ M .
Finally, M ∩ Z is a subgroup of Z, hence M ∩ Z = nZ for some n ≥ 0.

We now claim that M = nZ⊕(a+mω)Z. The inclusion ⊇ is clear; assume
therefore that r+ sω ∈M . Since s ∈ H we have s = um for some u ∈ Z, and
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then r − ua = r + sω − u(a + mω) ∈ M ∩ Z, hence r − ua = vn. But then
r + sω = r − ua+ u(a+mω) = vn+ u(a+mω) ∈ nZ⊕ (a+mω)Z.

Clearly every ideal in OK is a Z-module (and therefore is generated by
at most two elements); the converse is not true since e.g. M = [1, 0] = Z is a
Z-module in OK but clearly not an ideal: the only ideal containing 1 is the
unit ideal (1) = OK . A different way of looking at this is the following: ideals
in OK are OK-modules, and the fact that Z ⊂ OK implies that every ideal
is a Z-module.

Given a Z-module M = [n, a+mω], under what conditions on a,m, n is
M an ideal? This question is answered by the next

Proposition 2.8. A nonzero Z-module M = [n, a +mω] is an ideal if and
only if m | n, m | a (hence a = mb for some b ∈ Z) and n | m ·N(b+ ω).

Proof. Since M is an ideal, c ∈ M ∩ Z implies cω ∈ M , hence c ∈ H (see
the proof of Prop. 2.7) by definition of H. This shows that nZ = M ∩ Z ⊆
H = mZ, hence m | n (if the multiples of n are contained in the multiples of
m, then m must divide n; this instance of “to divide means to contain” will
reoccur frequently in the following).

In order to show that m | a we observe that ω2 = x+yω for suitable x, y ∈
Z. SinceM is an ideal, a+mω ∈M implies (a+mω)ω = mx+(a+my)ω ∈M ,
hence a+my ∈ H by definition of H, and therefore a+my is a multiple of
m. This implies immediately that m | a, hence a = mb for some b ∈ Z.

In order to prove the last divisibility relation we put α = a + mω =
m(b+ω). Then α ∈M implies α(b+ω′) ∈M . Since 1

mNα = m(b+ω)(b+ω′) ∈
M ∩ Z, we conclude that 1

mN(b+ ω) is a multiple of n.

Norms of Modules

For an ideal I in some ring R, we define its norm as the cardinality of the
quotient ring R/I, that is, as the index (R : I) of the additive subgroup I of
R in R. The same definition works for Z-submodules M of R: the quotient
R/M is an additive group, and can be given a ring structure of M happens
to be an ideal.

In general, the norm N(M) = (R : M) will not be finite: just consider the
module M = Z = [1, 0] in some ring R = OK . Reducing a+ b

√
m modulo M

gives a + b
√
m ≡ b

√
m mod M , and in fact we have R/M = {b

√
m : b ∈ Z}

since b
√
m ≡ b′

√
m mod M implies b = b′. In particular, (R : M) = ∞.

This cannot happen if the Z-module M has rank 2 (and in particular,
if M is an ideal). Note that a Z-module M = [n, a + mω)] in OK has rank
2 if and only if mn 6= 0. Modules of maximal rank in OK (in the case of
quadratic extensions K/Q this means rank 2) are also called full modules.
Now we claim
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Proposition 2.9. Let M = [n, a+mω)] be a full Z-module in OK . Then

S = {r + sω : 0 ≤ r < n, 0 ≤ s < m}

is a complete residue system modulo M in OK , and in particular N(M) =
mn.

Proof. We first show that every x + yω ∈ OK is congruent mod M to an
element of S. Write y = mq + s for some q ∈ Z and 0 ≤ s < m; then
x+yω−q(a+mω) = x′+sω for some integer x′, hence x+yω ≡ x′+sω mod M .
Now write x′ = nq′+r for q′ ∈ Z and 0 ≤ r < n; then x′+sω ≡ r+sω mod M .

Now we claim that the elements of S are pairwise incongruent modulo M .
Assume that r + sω ≡ r′ + s′ω mod M for 0 ≤ r, r′ < n and 0 ≤ s, s′ < m;
then r− r′ + (s− s′)ω ∈M implies that s− s′ ∈ mZ and r− r′ ∈ nZ, hence
r = r′ and s = s′.

We will also need a second way of characterizing the norm of ideals in
OK . In contrast to the results above, which are valid in more general orders
(they hold, for example, in rings Z[

√
−m ]), this characterization of the norm

only holds in the ring of integers OK (also called the maximal order). In fact,
the following lemma due to Hurwitz exploits that we are working in OK :

Lemma 2.10. Let α, β ∈ OK and m ∈ N. If Nα, Nβ and Trαβ′ are divisible
by m, then m | αβ′ and m | α′β.

Proof. Put γ = αβ′/m; then γ′ = α′β/m, and we know that γ + γ′ =
(Trαβ′)/m and γγ′ = Nα

m
Nβ
m are integers. But if the norm and the trace of

some γ in a quadratic number field are integral, then we have γ ∈ OK .

Remark: the last sentence of the proof demands that any element in
Q(
√
m ) with integral norm and trace is in the ring. This means that the

lemma holds in any subring of K containing OK , but not in smaller rings.

Proposition 2.11. Let K be a quadratic number field with ring of integers
OK and integral basis {1, ω}. If M is a full Z-module in OK , then there is
an f ∈ N such that MM ′ = fOK .

Proof. Using Proposition 2.7 we can write M = [α, β] for α, β ∈ OK (actually
Prop. 2.7 is more precise, but this is all we need for now). Then M ′ = [α′, β′]
and therefore MM ′ = [Nα,αβ′, α′β,Nβ]. Now there is some integer f > 0
with f = gcd(Nα,Nβ,Trαβ′) (in Z); Hurwitz’s Lemma shows that αβ′

f and
α′β
f are integral; thus we get MM ′ = [f ][Nα

f , Nβ
f , αβ′

f , α′β
f ] (the generators

of this Z-module are all integral by Hurwitz’s Lemma). In order to prove
MM ′ = fOK it is therefore sufficient to show that 1 ∈ [Nα

f , Nβ
f , αβ′

f , α′β
f ].

But 1 is a Z-linear combination of Nα
f , Nβ

f and Tr αβ′

f (by the definition of

f), hence in particular a Z-linear combination of Nα
f , Nβ

f , αβ′

f and α′β
f . This

proves the claim.
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Once we know that such a natural number a exists it is easy to show that,
for ideals a, we have Na = f .

Proposition 2.12. Let a be an ideal in OK , and write aa′ = fOK for some
natural number f . Then f = N(a).

Proof. By Prop. 2.7 we can write a = [n,m(b+ω)], and we have N(a) = mn.
It remains to show that aa′ = (mn). To this end, we compute

aa′ = (n, a+mω)(n, a+mω′)

= (n2,mn(b+ ω),mn(b+ ω′),m2N(b+ ω))

= (mn)(c, b+ ω, b+ ω′,
1
c
N(b+ ω)).

The second ideal is integral because of Proposition 2.8. We want to show
that it is the unit ideal. Note that the ideal must be generated by an integer
since aa′ = (a). But the only integers dividing b+ω are ±1 since {1, ω} is an
integral basis.

This implies in particular that N(ab) = N(a)N(b) because both sides
generate the same ideal aba′b′. Here are a few more useful properties:

• Na = 1 ⇐⇒ a = (1): if Na = 1, then (1) = aa′ ⊆ a ⊆ OK = (1), and
the converse is clear.

• Na = 0 ⇐⇒ a = (0): if aa′ = (0), then Nα = αα′ = 0 for all α ∈ a.

2.4 Unique Factorization into Prime Ideals

We want to show that every ideal in the ring OK of integers in a quadratic
number field K = Q(

√
d ) can be factored uniquely into prime ideals.

The Cancellation Law

Now we turn to the proof of unique factorization for ideals. The idea behind
the proof is the same as in the proof of unique factorization for numbers:
from equality of two products, conclude that there must be two equal factors,
and then cancel. Now cancelling a factor is the same as multiplying with its
inverse; the problem is that we do not have an inverse for ideals.

In the ring R = Z/6Z we have (2)(3) = (2)(0), but cancelling (2) yields
nonsense. Similar examples exist in all rings with zero divisors. Are there
examples in integral domains? Yes, there are. Simple calculations show that
(a, b)3 = (a2, b2)(a, b) in arbitrary commutative rings; whenever (a2, b2) 6=
(a, b)2, we have a counter example to the cancellation law. For an example,
take R = Z[X,Y ] and observe that XY ∈ (X,Y )2, but XY /∈ (X2, Y 2).
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The cancellation law even fails in subrings of OK : consider e.g. the ring
R = Z[

√
−3 ]; then a simple calculation shows that (2)(2, 1 +

√
−3 ) = (1 +√

−3 )(2, 1 +
√
−3 ), and cancelling would produce the incorrect statement

(2) = (1 +
√
−3 ). It was Dedekind who realized that his ideal theory only

works in rings OK :

Proposition 2.13. If a, b, c are nonzero ideals in OK with ab = ac, then
b = c.

Proof. The idea is to reduce the cancellation law for ideals to the one for
numbers, or rather for principal ideals.

Thus assume first that a = (α) is principal. Then αb = ab = ac = αc. For
every β ∈ b we have αβ ∈ αc, hence there is a γ ∈ c such that αβ = αγ. This
shows β = γ ∈ c, hence b ⊆ c. By symmetry we conclude that b = c.

Now assume that a is an arbitrary ideal. Then ab = ac implies that
(aa′)b = (aa′)c. Since aa′ = (Na) is principal, the claim follows from the first
part of the proof.

This shows that the ideals in OK form a monoid with cancellation law,
analogous to the natural numbers.

Divisibility of Ideals

We say that an ideal b is divisible by an ideal a if there is an ideal c such that
b = ac. Since c ⊆ OK we see b = ac ⊆ a(1) = a; this fact is often expressed
by saying “to divide is to contain”. As a matter of fact, the converse is also
true:

Proposition 2.14. If a, b are nonzero ideals in OK , then a ⊇ b if and only
if a | b.

Proof. From a ⊇ b we deduce ba′ ⊆ aa′ = (a), where a = Na. Then c = 1
aba′

is an ideal because of 1
aa′b ⊆ OK (the ideal axioms are easily checked) Now

the claim follows from ac = 1
abaa′ = b.

We know that maximal ideals are always prime, as it is known that a is
maximal in a ring R if and only if R/a is a field, and it is prime if and only
if R/a is an integral domain.

In the rings of integers in algebraic number fields all three notions coincide;
irreducible and maximal ideals are the same:

• irreducible ideals are maximal: if a were not maximal, then there were
an ideal b with a ( b ( (1); this implies b | a with b 6= (1), a.

• maximal ideals are irreducible: for a = bc implies a ( b ( (1).

It remains to show that, in our rings, prime ideals are maximal; note that
this is not true in general rings. In fact we have to use Proposition 2.14 in
the proof.
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Proposition 2.15. In rings of integers of qadratic number fields, prime
ideals are maximal.

Proof. Assume that a = bc and a - b; then a | c, and since c | a (to divide is
to contain) we have a = c and therefore b = (1).

Observe that from a | c and c | a we cannot conclude equality a = c: we
do get a = cd and c = ae, hence a = dea. But without the cancellation law
we cannot conclude that de = (1).

In R = Z[X], the ideal (X) is prime since Z[X]/(X) ' Z is an integral
domain; it is not maximal, since Z is not a field, and in fact we have (X) ⊂
(2, X) ⊂ R.

Now we can prove

Theorem 2.16. Every nonzero ideal a in the ring of integers OK of a
quadratic number field K can be written uniquely (up to order) as a prod-
uct of prime ideals.

Proof. We start with showing the existence of a factorization into irreducible
ideals. If a is irreducible, we are done. If not, then a = bc; if b and c are
irreducible, we are done. If not, we keep on factoring. Since Na = NbNc and
1 < Nb, Nc < Na etc. this process must terminate, since the norms are
natural numbers and cannot decrease indefinitely.

Now we prove uniqueness. Assume that a = p1 · · · pr = q1 · · · qs are two
decompositions of a into prime ideals. We claim that r = s and that we can
reorder the qi in such a way that we have pi = qi for 1 ≤ i ≤ r. Since p1

is prime, it divides some qj on the right hand side, say p1 | q1. Since q1 is
irreducible, we must have equality p1 = q1, and the cancellation law yields
p2 · · · pr = q2 · · · qs. The claim now follows by induction.

2.5 Decomposition of Primes

Now that we know that ideals in OK can be factored uniquely into prime
ideals, we have to come up with a description of these prime ideals. For
quadratic (and, as we will see, also for cyclotomic) fields this is not hard.

Lemma 2.17. Let p be a prime ideal; then there is a unique prime number
p such that p | (p).

Proof. We have p | pp′ = (Np); decomposing Np in Z into prime factors and
using the fact that p is prime shows that p divides (hence contains) some ideal
(p) for prime p. If p would divide (hence contain) prime ideals (p) and (q) for
different primes p and q, it would also contain 1, since p and q are coprime:
this implies, by Bezout, the existence of x, y ∈ Z with px+ qy = 1.

If p is the prime contained in p, then we say that the prime ideal p lies
above p. Since (p) has norm p2, we find that Np equals p oder p2.
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Lemma 2.18. If p is an ideal in OK with norm p, then it is prime.

Proof. The ideal is clearly irreducible (p = ab implies p = Np = Na · Nb),
hence prime.

For describing the prime ideals in quadratic number fields it is useful to
have the notion of the discriminant. If K = Q(

√
m ) with m squarefree, let

{1, ω} denote an integral basis. We then define

discK =
∣∣ 1 ω
1 ω′

∣∣2 = (ω − ω′)2 =

{
m if m ≡ 1 mod 4,
4m if m ≡ 2, 3 mod 4.

Theorem 2.19. Let p be an odd prime, K = Q(
√
m ) a quadratic number

field, and d = discK its discriminant.

• If p | d, then pOK = (p,
√
m )2; we say that p is ramified in K.

• If (d/p) = +1, then pOK = pp′ for prime ideals p 6= p′; we say that p
splits (completely) in K.

• If (d/p) = −1, then pOK is prime, and we say that p is inert in K.

Proof. Assume first that p | d; since p is odd, we also have p | m. Now

(p,
√
m )2 = (p2, p

√
m,m) = (p)(p,

√
m,

m

p
) = (p),

since the ideal (p,
√
m, m

p ) contains the coprime integers p and m
p , hence

equals (1).
Next assume that (d/p) = 1; then d ≡ x2 mod p for some integer x ∈ Z.

Putting p = (p, x+
√
m ) we find

pp′ = (p2, p(x+
√
m ), p(x−

√
m ), x2 −m)

= (p)(p, x+
√
m,x−

√
m, (x2 −m)/p).

Clearly 2
√
m = x+

√
m−(x−

√
m ) and therefore 4m = (2

√
m)2 are contained

in the last ideal; since p and 4m are coprime, this ideal equals (1), and we
have pp′ = (p). If we had p = p′, then it would follow that 4m ∈ p and
p = (1): contradiction.

Finally assume that (d/p) = −1. If there were an ideal p of norm p,
Proposition 2.8 would show that it has the form p = (p, b + ω) with p |
N(b+ω). If ω =

√
m, this means b2−m ≡ 0 mod p, hence (d/p) = (4m/p) =

(m/p) = +1 in contradiction to our assumption. If ω = 1
2 (1 +

√
m ), then

(2b+ 1)2 ≡ m mod p, and this again is a contradiction.

The description of all prime ideals above 2 is taken care of by the following

Exercise. Let K = Q(
√
m ) be a quadratic number field, where m is square-

free.
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• If m ≡ 2 mod 4 then 2OK = (2,
√
m )2.

• If m ≡ 3 mod 4 then 2OK = (2, 1 +
√
m )2.

• If m ≡ 1 mod 8 then 2OK = aa′, where a = (2, 1+
√

m
2 ) and a 6= a′.

• If m ≡ 5 mod 8 then 2OK is prime.

The two cases p odd and p = 2 can be subsumed into one by introducing
the Kronecker-Symbol (d/p). This agrees with the Legendre symbol for odd
primes p and is defined for p = 2 and d ≡ 1 mod 4 by (d/2) = (−1)(d−1)/4;
for d 6≡ 1 mod 4 we put (d/2) = 0.

Before we go on, let us recall a few notions from algebra. A domain R is
called a principal ideal domain (PID) if every ideal in R is principal. Every
Euclidean ring (such as Z, Z[i], K[X]) is a PID, and every PID is a unique
factorization domain (UFD). The knowledge that some ring OK is a PID
would allow us to prove results about the representation of primes by binary
quadratic forms:

Proposition 2.20. Assume that OK is a PID, where K = Q(
√
m ). Then

every prime p with (d/p) = +1 can be written in the form ±p = x2 −my2 if
m ≡ 2, 3 mod 4, and in the form ±4p = x2 −my2 if m ≡ 1 mod 4.

Proof. Assume that (d/p) = +1; then p splits in K, hence p = pp′ for prime
ideals p, p′ of norm p. Since OK is a PID, there is an α ∈ OK such that
p = (α). Taking the norm show that (Nα) = (p) as ideals, hence Nα = ±p.
The claim now follows by writing α = x + yω, where {1, ω} is the standard
integral basis of OK .

If we could show that the rings of integers in Q(
√
m ) for m = −1 and m =

−2 were PIDs (actually this is easy to prove by showing they are Euclidean),
this would imply

p ≡ 1 mod 4 =⇒ p = x2 + y2,

p ≡ 1, 3 mod 8 =⇒ p = x2 + 2y2,

as well as many similar results.
This stresses the importance of finding a method for determining when

OK is a PID. We will present such a method in the next two chapters: the
main ingredients are the unit group and the ideal class group of a number
field K.

Exercises

2.1 Compute the matrix Mα for α = a+ bω + cω2 in the cubic number field Q(ω)
with ω3 = 2.

2.2 Show that every subgroup A of Z is automatically a subring and even an ideal
in Z, and that there is an a ∈ Z such that A = aZ.
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2.3 Let n ∈ N be a natural number. Find a basis for the ideal (n) in OK , where
K = Q(

√
m ) is a quadratic number field.

2.4 Show that (3, 1 +
√
−5 ) = [3, 1 +

√
−5 ] in R = Z[

√
−5 ], i.e., that every R-

linear combination 3α + (1 +
√
−5 )β with α, β ∈ R can already be written in

the form 3a + (1 +
√
−5 )b with a, b ∈ Z.

2.5 Show that in R = Z[
√
−5 ] we have R/(

√
−5 ) ' Z/5Z and deduce that (

√
−5 )

is a maximal ideal.

2.6 Show that all ideals of prime norm p in OK have the form [p, a + ω], where
p | N(a + ω).

2.7 Show that the set of upper triangular 2× 2-matrices with coefficients in some
ring R is a subring, but not an ideal of the ring of all 2× 2-matrices.

2.8 Consider the space S of all sequences of rational numbers. This is a ring with
respect to pointwise addition and multiplication:

(a1, a2, a3, . . .) + (b1, b2, b3, . . .) = (a1 + b1, a2 + b2, a3 + b3, . . .),

(a1, a2, a3, . . .) · (b1, b2, b3, . . .) = (a1b1, a2b2, a3b3, . . .).

Show that the the following subsets of S actually are subrings:
1. the set N of sequences converging to 0;
2. the set D of sequences converging in Q;
3. the set C of Cauchy sequences;
4. the set B of bounded sequences.

Observe that N ⊂ D ⊂ C ⊂ B ⊂ S. Determine which of these subrings are
ideals in B (resp. C, D). Show that all of these rings contain zero divisors,
and that N is maximal in C (so C/N is a field; actually C/N ' R: this is one
possible way of constructing the field of real numbers).


