Here are a few questions:

- What is the multiplicity of a point?
- What is a local ring?
- What is the local ring of a curve at \(P \)?
- How is the intersection multiplicity of two plane affine curves in \(P \) defined?
- Is there a connection between multiplicities of points and intersection multiplicities?
- State the theorem of Bezout, and give examples that show the necessity of the conditions under which it is valid.

1. Consider the cubic \(C_f : y^2 = x^3 + x^2 \). Compute the points of intersection with the lines \(C_1 : x = 0 \) and \(C_2 : y = 0 \).

 Hint: By Bezout, there must be 3 such points, counting multiplicities. Use the lower bound \(m_P(C_f)m_P(C_j) \) and the upper bound from Bezout to compute \(I(P, C_f \cap C_j) \) for each of these points.

2. Compute the intersection multiplicity for \(C_1 \) and \(P = (0,0) \) using the definition.

 Let \(P = (0,0) \); we have to study \(\mathcal{O}_1 = \mathcal{O}_P/(y^2 - x^3 - x^2, x) \) and \(\mathcal{O}_2 = \mathcal{O}_P/(y^2 - x^3 - x^2, y) \). Clearly \(\mathcal{O}_1 = \mathcal{O}_P/(y^2, x) \). Show that every element in this ring is represented by a polynomial of the form \(a + by \) and conclude that \(\dim \mathcal{O}_1 = 2 \).

 Equivalently, show that \(\mathcal{V}(x, y^2) = \{P\} \), use the theorem that \(\mathcal{O}_P/(x, y^2) \simeq K[x, y]/(x, y^2) \) in this case, and show that the last ring is isomorphic to \(K[y]/(y^2) \), which has dimension 2 over \(K \).

3. Compute the intersection multiplicity for \(C : x^2 + y^2 = 1 \) and \(x = 1 \) in \(P = (1, 0) \).

 (a) using the definition;
 (b) using the lower bound via multiplicity of points;
 (c) using Bezout’s theorem.

 The intersection multiplicity is 2.

4. Compute the intersection multiplicity for the points of intersection of \(y = x^2 \) and \(y = -x^2 \).

 Answer: there are two points of intersection. Show that the multiplicity is at least 2 in either point, and use Bezout to show equality.
(5) Compute the multiplicity $m_P(\mathcal{C})$ of the point $P = (0,0)$ for $\mathcal{C}: y^2 x - x^4 + xy^3 = 0$.

Answer: $m_P(\mathcal{C}) = 3$.

(6) Compute the multiplicity $m_P(\mathcal{C})$ of the point at infinity of $y^2 = x^5 + 1$.

Hint: homogenize and dehomogenize with respect to y. The correct answer is $m_P(\mathcal{C}) = 3$. Show that this agrees with the answer you get from applying Bezout’s theorem to \mathcal{C} and the line $x = 0$.

(7) Let $\mathcal{C}_f : f(x, y)$ be an irreducible curve of degree n, and let $P = (0,0)$ be a point with multiplicity $m_P(\mathcal{C}_f) = n - 1$. Show that \mathcal{C}_f can be parametrized.

Hint: use the information about multiplicity to show that $f = f_{n-1} + f_n$. Then use sweeping lines through the singularity (your formulas will involve f_n and f_{n-1}).