Chapter 8

Conics over Finite Fields

Note that the conic \(X^2 + Y^2 = 3Z^2 \) does not have a point defined over \(\mathbb{Q} \). Over finite fields, the situation is different:

Proposition 8.0.4. Let \(C \) be a nondegenerate conic defined over a finite field \(\mathbb{F}_p \). Then \(C(\mathbb{F}_p) \) contains an affine point defined over \(\mathbb{F}_p \).

In particular this implies that every nondegenerate conic over \(\mathbb{F}_p \) is equivalent to the standard conic \(XY + YZ + ZX = 0 \).

Proof. The general conic is defined by an equation

\[
ax^2 + bxy + cy^2 + dx + ey + f = 0. \tag{8.1}
\]

Assume first that \(p > 2 \). If \(c = 0 \), the claim is clear (note that if \(c = b = e = 0 \), then the conic is degenerate). Assume therefore that \(c \neq 0 \). Multiplying through by \(a \) and completing the square shows that the substitution \(x' = ax + \frac{b}{2}y \) leads to a new equation in which \(b = 0 \). Afterwards, we can get rid of the term \(aey \) by a similar trick. Finally, we can achieve that \(c = 1 \).

Thus we may assume that the conic has the form \(y^2 = f(x) \) for some linear or quadratic polynomial \(f \). If \(f \) is linear, it has a zero \(x = r \), and \((r, 0)\) is a point on the affine conic.

If \(f \) is quadratic, it attains exactly \(\frac{p+1}{2} \) different values (this is trivial for \(f(x) = x^2 \), to which the general case easily reduces). Since there are exactly \(\frac{p+1}{2} \) nonsquares in \(\mathbb{F}_p \), at least one of the values of \(f \) must be a square, say \(f(r) = s^2 \); then \((r, s)\) is a point on the affine conic.

Now consider the case \(p = 2 \) and assume that the conic (8.1) defined over \(\mathbb{F}_2 \) does not have an affine point. Plugging in \(x = 0 \) we immediately see that we must have \(c = e = f = 1 \). Plugging in \(y = 0 \) we similarly get \(a = d = 1 \). Plugging in \(x = 1 \) finally gives \(b = 0 \). Thus the only conic without an affine point over \(\mathbb{F}_2 \) is \(x^2 + y^2 + x + y + 1 = 0 \). Its projective closure is \(x^2 + y^2 + xz + yz + z^2 \); it has three points at infinity, namely \([0 : 1 : 0] \), \([1 : 0 : 0] \) and \([1 : 1 : 0] \). Thus \(C \) contains the line at infinity and must be degenerate. In fact, the last point is singular. \(\square \)
Thus there is essentially only one smooth conic with a K-rational point over K. Something similar does not hold for cubics: it can be shown that smooth cubics defined over K and with a K-rational point (such curves are called elliptic curves) can be transformed into cubics of Weierstrass form

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6,$$

but the necessary transformations are in general not projective but birational. Thus the world of elliptic curves is much richer than that of conics.

8.1 Group Laws on Nonsingular Conics

Let C be a nondegenerate conic defined over some field K, and assume that C has a K-rational point, which we will denote by N. We then can define a group law on $C(K)$ as follows: given $P, Q \in C(K)$, let $P + Q$ be the second point of intersection with C of the line through N parallel to PQ; if $P = Q$, the line PQ is taken to be the tangent at P.

This addition law is clearly abelian; the neutral element is N, and the inverse of a point P is the second point of intersection with C of the line through P parallel to the tangent at N.

It remains to show that the addition is associative. Assume that we are given points P, Q, R on the conic; let $A = P + Q$ and $B = Q + R$. Then $PQRANB$ is a hexagon on the conic. Moreover, we know that

- $PQ \parallel AN$ since $P + Q = A$, and
- $QR \parallel BN$ since $Q + R = B$.

Now associativity is equivalent to $A + R = P + B$, i.e. to $AR \parallel PB$. But since the points of intersection $PQ \cap AN$ and $QR \cap BN$ lie on the line at infinity, by Pascal’s theorem the same must be true of $AR \cap PB$. Note that this proof is only valid if no two of the six points P, Q, R, A, B, N coincide. The other cases must be handled one by one.