ALGEBRAIC GEOMETRY

HOMEWORK 2

Due Th 04.02.04

- (1) Consider the unit circle $\mathcal{C}: X^2 + Y^2 = 1$ and the group $\mathcal{C}(\mathbb{Q})$. Show that $P = (x, y) \in \mathcal{C}(\mathbb{Q})$ with $x \neq -1$ is in $2\mathcal{C}(\mathbb{Q})$ (i.e., can be written as P = 2Qfor some $Q \in \mathcal{C}(\mathbb{Q})$ if and only if 2(x+1) is a rational square.
- (2) Find all $\mathbb{Q}(T)$ -rational points on the conic $X^2 (T^4 + T^3)Y^2 = 1$.
- (3) Show that $X^2 (T^4 + T^3)Y^2 = 1$ does not have any nontrivial solutions in $\mathbb{Q}[T]$. Hint: Mason's theorem.
- (4) Find a solution of $X^2 (T^4 + T^3)Y^2 = 1$ in $\mathbb{F}_5[T]$. Hint: solve $X^2 (T^2 + T)Y^2 = 1$ first and then compute the powers of the corresponding unit $X + Y\sqrt{T^2 + T}$ in $\mathbb{F}_q(X)[\sqrt{X^2 + X}]$.
- (5) Describe all solutions $X, Y, Z \in \mathbb{F}_p[T]$ of the Fermat equation $X^p + Y^p = Z^p$.
- (6) Does $x^4 + y^2 = z^2$ have any nontrivial solutions in $\mathbb{C}[T]$?
- (7) Let $x, y \in \mathbb{C}(t)$ be polynomials. Show that $y^2 x^3$ is either 0 or has degree $> \frac{1}{2} \deg x.$
- (8) Find all singular points on the projective closures of the following curves: (a) $x^{3} + y^{3} - 3xy = 0;$ (b) $y^{2} = x^{4} + 1;$ (c) $(x^{2} + y^{2})^{3} - 5x^{4}y + 10x^{2}y^{3} - y^{5}.$