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1. Examples

Consider e.g. the parabola Cf defined by f(X, Y ) = Y −X2 = 0 at P = (0, 0).
A uniformizer is given by the image x of the line defined by X = 0. Consider
the line L : Y − mX = 0; what is ordP (y − mx)? Since f = Y − X2, we have
y − x2 = 0, hence ordP (y) = 2 ordP (x). Now ordP (y − mx) = ordP (x2 − mx) =
ordP (x)+ordP (x−m) = 1+ordP (x−m), and x−m is a unit in OP unless m = 0.
Thus ordP (y −mx) = 1 or 2 according as m 6= 0 or m = 0.

As another example take the unit circle X2 + Y 2 = 1; by changing coordinate
system we get the equation X2 +(Y − 1)2 = 1, i.e. f(X, Y ) = X2 +Y 2− 2Y . Here
we have f(X, Y ) = Y (Y − 2) + X2, hence g(X, Y ) = Y − 2 and h(X) = −1 in the
proof of the theorem above. Thus ordP (y) = ordP (x2h/g) = 2 since both y−2 and
−1 are units in OP .

Now consider f(X, Y ) = Y 2 − X3. Here g = Y and h = X, hence g is
not a unit in CP at P = (0, 0). The maximal ideal mP = (x, y) is not prin-
cipal: assume that (x, y) = (g); then ordP (g) = 1 and 2 ordP (y) = 3 ordP (x).
But g ∈ (x, y) implies g = h1x + h2y, and then ordP (g) = ordP (h1x + h2y) ≥
min{ordP (h1x), ordP (h2y)} ≥ 2, which is a contradiction.

2. Exact Sequences

Lemma 2.1. Let M be an ideal in some ring R. Then the sequence

0 −−−−→ Mn/Mn+1 f−−−−→ R/Mn+1 g−−−−→ R/Mn −−−−→ 0

is exact. Here f is the inclusion map and g the projection r + Mn+1 7−→ r + Mn.

Note that a sequence

0 −−−−→ A
f−−−−→ B

g−−−−→ C −−−−→ 0
of groups, rings etc. is exact if the image of the ingoing morphism is equal to the
kernel of the outgoing morphism at each point. Thus 0 −→ A −→ B is exact at
A if and only if the image of the map 0 −→ A (which is the neutral element of A)
is equal to the kernel of f : A −→ B, i.e., if and only if f is injective. Similarly,
B −→ C −→ 0 is exact if and only if g : B −→ C is surjective. Finally, the sequence
is exact at B if and only if im f = ker g.

Note that a sequence of abelian groups as above is exact if and only if C ' B/A.

Proof. First we have to make clear what the involved maps are. Clearly f sends
m + Mn+1 ∈ Mn/Mn+1 to m + Mn+1 ∈ R/Mn+1, hence is injective.

Next g(r + Mn+1) = r + Mn is well defined: changing r by some element in
Mn+1 does not change the coset r + Mn since Mn+1 ⊆ Mn. Moreover, g is clearly
surjective since r + Mn is the image of r + Mn+1.
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Now im f ⊆ ker g: in fact, the image of f comsists of elements m + Mn+1 with
m ∈ Mn, and they get mapped to m + Mn = 0 + Mn by g. Conversely, assume
r + Mn+1 ∈ ker g. This means that g(r + Mn+1) = r + Mn = 0 + Mn, i.e., that
r ∈ Mn. But then r + Mn+1 ∈ im f . �

Once you are familiar with the abstract language, such proofs become pretty
mindless.

Lemma 2.2. Assume that U, V,W are finite dimensional K-vector spaces. If the
sequence

0 −−−−→ U −−−−→ V −−−−→ W −−−−→ 0
is exact, then dim V = dim U + dim W .

Proof. Let u1, . . . , ur be a basis of U and w1, . . . , ws a basis of W . Since g :
V −→ W is onto, there exist v1, . . . vs ∈ V such that g(vi) = wi. We claim that
u1, . . . , ur, v1, . . . vs is a basis of V .

First, these vectors are independent: if λ1u1 + . . . + λrur + µ1v1 + . . . µsvs = 0,
then applying g to this relation and observing that the ui are in the kernel gives
µ1w1 + . . . µsws = 0. Since the wi form a basis of W , this means that µ1 = . . . =
µs = 0. But then λ1u1 + . . . + λrur = 0, and since the ui form a basis of U , we
conclude that λ1 = . . . = λr = 0.

Now we have to show that any vector v ∈ V can be written as a linear com-
bination of the ui and vi. Clearly g(v) = µ1w1 + . . . µsws for some µi ∈ K. Put
u = v− µ1v1 + . . . µsvs; then g(u) = 0, hence u ∈ ker g = im f = U , and this shows
that u = λ1u1 + . . . + λrur. �

3. Miscellanea

In this section we will discuss various properties of the ideal m = (x, y) in OP ,
as well as its relatives in the polynomial or the coordinate ring.

Lemma 3.1. Let R = K[x, y] be a polynomial ring in two variables over some field
K. Then, for any ideal I in R, the quotient ring R/I is a K-vector space.

Proof. This is because R is a vector space (it has basis {1, x, y, x2, xy, y2, . . .} and
because I is a subspace of R: it is closed under addition of vectors and under scalar
multiplication by K ⊂ R. �

Lemma 3.2. Consider the ideal I = (x, y) in R = K[x, y]. Then dimK K[x, y]/In =
n(n+1)

2 .

Proof. We claim that B = {1, x, y, x2, xy, y2, . . . , xn−1, xn−2y, . . . , yn−1} is a K-
basis for V = K[x, y]/In. First let us show that these elements generate V . Given
any polynomial f , we can reduce it modulo In by omitting any term xayb with
a + b ≥ n. The reduced polynomial is then a K-linear combination of elements in
B.

Next we have to show that the elements in B are linearly independent. As-
sume therefore that

∑
i+j<n aijx

iyj ∈ In. This means that
∑

i+j<n aijx
iyj =∑

i+j≥n bijx
iyj for suitable bij ∈ K. But then the difference of both sides is

the zero polynomial, and since there cannot occur any cancellation, we must have
aij = 0. �
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Let OP (A2) be the ring of all rational functions g ∈ K(X, Y ) such that g = a
b

with b(P ) 6= 0. We clearly have K[X, Y ] ⊆ OP (A2). The map OP (A2) −→
OP (Cf ); g 7−→ g + (f) is well defined with kernel (f)OP (A2).

Lemma 3.3. Let I = (X, Y ) be the ideal generated by X and Y in K[X, Y ]. Then
K[X, Y ]/In ' OP (A2)/In, where P = (0, 0) is the point with the property g(P ) = 0
for all g ∈ I.

Proof. Consider the ring homomorphism

φ : K[X, Y ]/In −→ OP (A2)/InOP (A2) : g + In 7−→ g + InOP (A2).

We claim that φ is an isomorphism.
Now consider a function b ∈ K[X, Y ] with b(0, 0) = 1. Then c = 1 − b ∈ I,

and (1 − c)(1 + c + c2 + . . . + cn−1) = 1 − cn ∈ 1 + In. Thus bh − 1 ∈ In for
h = 1 + c + c2 + . . . + cn−1.

First we claim that φ is injective. In fact, if g + In ∈ ker φ, then g ∈ InOP (A2),
i.e. g = a

b ·
∑

i+j≥n aijx
iyj for some polynomials a, b with b(0, 0) 6= 0. But then

bg ∈ In. Multiplying through by h shows that bhg ∈ In, and this implies g ∈ In.
Thus kerφ = 0, and φ is injective.

In order to show that φ is surjective, take some g = a
b ∈ K(X, Y ) with b(0, 0) 6= 1.

Replacing a and b by a/b(0, 0) and b/b(0, 0), respectively, we may assume that
b(0, 0) = 1. But then a

b + InOP (A2) = ah
bh + InOP (A2) = ah + InOP (A2), where h

is chosen as above. Thus g + InOP (A2) = φ(ah). �

Corollary 3.4. We have K[X, Y ]/(In, f) ' OP (A2)/(In, f) for any polynomial
f ∈ K[X, Y ].

Using these preparations, we will prove (next time)

Theorem 3.5. Let P be a point on the irreducible curve Cf : f(X, Y ) = 0. Then

mP (Cf ) = dimK mn
P /mn+1

P

for all sufficiently large n. In particular, the multiplicity of P only depends on the
local ring OP (CF ).

The proofs given today are not too interesting; what is important are, first of all,
the notion of exact sequences, and second, the observation that you need to know
a lot of algebra to do algebraic geometry properly.


