LECTURE 18, MONDAY APRIL 19, 2004

FRANZ LEMMERMEYER

1. EXAMPLES

Consider e.g. the parabola Cy defined by f(X,Y) =Y — X2 =0at P = (0,0).
A uniformizer is given by the image x of the line defined by X = 0. Consider
the line L : Y — mX = 0; what is ordp(y — mz)? Since f = Y — X2, we have
y — 22 = 0, hence ordp(y) = 2ordp(z). Now ordp(y — mz) = ordp(z? — mz) =
ordp(x)+ordp(x—m) =14 ordp(x —m), and  —m is a unit in Op unless m = 0.
Thus ordp(y — maz) =1 or 2 according as m # 0 or m = 0.

As another example take the unit circle X2 + Y2 = 1; by changing coordinate
system we get the equation X2 + (Y —1)2 = 1,ie. f(X,Y)= X2+Y2—-2Y. Here
we have f(X,Y) =Y (Y —2) + X2, hence g(X,Y) =Y —2 and h(X) = —1 in the
proof of the theorem above. Thus ordp(y) = ordp(22h/g) = 2 since both y — 2 and
—1 are units in Op.

Now consider f(X,Y) = Y2 — X3, Here ¢ = Y and h = X, hence g is
not a unit in Cp at P = (0,0). The maximal ideal mp = (x,y) is not prin-
cipal: assume that (z,y) = (g); then ordp(g) = 1 and 2ordp(y) = 3ordp(z).
But g € (z,y) implies ¢ = hyz + hoy, and then ordp(g) = ordp(hiz + hoy) >
min{ordp(h1x),ordp(hoy)} > 2, which is a contradiction.

2. EXACT SEQUENCES
Lemma 2.1. Let M be an ideal in some ring R. Then the sequence
0 —— Mr/Mmt — L g/ttt L RN ——— 0
is exact. Here f is the inclusion map and g the projection r + M"™ ! —— r + M™.

Note that a sequence

0 A—1.B-2.C 0

of groups, rings etc. is exact if the image of the ingoing morphism is equal to the
kernel of the outgoing morphism at each point. Thus 0 — A — B is exact at
A if and only if the image of the map 0 — A (which is the neutral element of A)
is equal to the kernel of f : A — B, i.e., if and only if f is injective. Similarly,
B — C — 0is exact if and only if g : B — C'is surjective. Finally, the sequence
is exact at B if and only if im f = ker g.

Note that a sequence of abelian groups as above is exact if and only if C ~ B/A.

Proof. First we have to make clear what the involved maps are. Clearly f sends
m+ M e M™/M" to m + M"H € R/M™ ! hence is injective.

Next g(r + M™H1) = r + M™ is well defined: changing r by some element in
M™*+! does not change the coset r + M™ since M™*+! C M™. Moreover, g is clearly
surjective since © + M™ is the image of r + M™+1.
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Now im f C ker g: in fact, the image of f comsists of elements m + M™*! with
m € M", and they get mapped to m + M™ = 0+ M™ by g. Conversely, assume
r + M"*t1 € ker g. This means that g(r + M"Y = r + M"™ = 0+ M", i.e., that
r € M™. But then r + M"*! € im f. O

Once you are familiar with the abstract language, such proofs become pretty
mindless.

Lemma 2.2. Assume that U, V,W are finite dimensional K -vector spaces. If the
sequence

0 U 1% W 0
is exact, then dimV =dimU + dim W.

Proof. Let uq,...,u, be a basis of U and ws,...,ws a basis of W. Since g :
V — W is onto, there exist vq,...vs € V such that g(v;) = w;. We claim that
ULy ..., Up,V1,...Vs is & basis of V.

First, these vectors are independent: if A\juy + ... 4+ Apuyp + piv1 + ... psvs = 0,
then applying ¢ to this relation and observing that the u; are in the kernel gives
piwy + ... usws = 0. Since the w; form a basis of W, this means that u; = ... =
s = 0. But then A\ju; 4+ ...+ A-u,. = 0, and since the u; form a basis of U, we
conclude that A\ = ... =\, = 0.

Now we have to show that any vector v € V can be written as a linear com-
bination of the w; and v;. Clearly g(v) = pjwi + ... psws for some p; € K. Put
U =v— v + ... usvs; then g(u) = 0, hence u € ker g = im f = U, and this shows
that u = A\ug + ...+ Aru,.. O

3. MISCELLANEA

In this section we will discuss various properties of the ideal m = (z,y) in Op,
as well as its relatives in the polynomial or the coordinate ring.

Lemma 3.1. Let R = K[x,y] be a polynomial ring in two variables over some field
K. Then, for any ideal I in R, the quotient ring R/I is a K-vector space.

Proof. This is because R is a vector space (it has basis {1, z,y, 2%, xy,4?,...} and
because I is a subspace of R: it is closed under addition of vectors and under scalar
multiplication by K C R. O

Lemma 3.2. Consider the ideal I = (z,y) in R = K[z,y]. Thendimg K[z, y]/I" =
n(n+1)

2

n—1 ,n—2
)

Proof. We claim that B = {1,z,y,2% 2y,9%, ..., % 2" 2y oy} is a K-
basis for V = K[z, y]/I"™. First let us show that these elements generate V. Given
any polynomial f, we can reduce it modulo I™ by omitting any term x%y® with
a + b > n. The reduced polynomial is then a K-linear combination of elements in
B.

Next we have to show that the elements in B are linearly independent. As-
sume theref(_)re_ that Zi+j<n a;;x'y? € I™. This means that Ei+j<n aijrly’ =
Zi+j>n bijx'y? for suitable b;; € K. But then the difference of both sides is
the zero polynomial, and since there cannot occur any cancellation, we must have

Q5 = 0. [l
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Let Op(A?) be the ring of all rational functions g € K(X,Y) such that g = ¢
with b(P) # 0. We clearly have K[X,Y] C Op(A?). The map Op(A?) —
Op(Cs);g+— g+ (f) is well defined with kernel (f)Op(A?).

Lemma 3.3. Let I = (X,Y) be the ideal generated by X andY in K[X,Y]. Then
K[X,Y]/I" ~ Op(A?)/I", where P = (0,0) is the point with the property g(P) = 0
forall g € I.

Proof. Consider the ring homomorphism
¢: K[X,Y]/I" — Op(A?)/T"Op(A?) : g+ I" +— g+ I"Op(A?).
We claim that ¢ is an isomorphism.

Now consider a function b € K[X,Y] with 5(0,0) = 1. Then ¢ =1—-b € I,
and (1 —c)(l+c+c2+...+c" ) =1—-c" € 1+I" Thus bh—1 € I" for
h=1+4c+c®+...+c" L

First we claim that ¢ is injective. In fact, if g + I™ € ker ¢, then g € I"Op(A?),
ie. g=7%- ZH—J‘Zn ai;x'y? for some polynomials a,b with b(0,0) # 0. But then
bg € I'". Multiplying through by A shows that bhg € I", and this implies g € I".
Thus ker ¢ = 0, and ¢ is injective.

In order to show that ¢ is surjective, take some g = ¢ € K(X,Y) with b(0,0) # 1.
Replacing a and b by a/b(0,0) and b/b(0,0), respectively, we may assume that
b(0,0) = 1. But then ¢ 4+ I"Op(A?) = 9 4 ["Op(A?) = ah + I"Op(A?), where h
is chosen as above. Thus g + I"Op(A?%) = ¢(ah). O

Corollary 3.4. We have K[X,Y]/(I", f) ~ Op(A%)/(I", f) for any polynomial
feK[X,Y].

Using these preparations, we will prove (next time)
Theorem 3.5. Let P be a point on the irreducible curve Cy : f(X,Y) =0. Then
mp(Cf) = dimK m}é/m?jl

for all sufficiently large n. In particular, the multiplicity of P only depends on the
local ring Op(Cr).

The proofs given today are not too interesting; what is important are, first of all,
the notion of exact sequences, and second, the observation that you need to know
a lot of algebra to do algebraic geometry properly.



