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Abstract

For an odd prime p the cohomology ring of an elementary abelian p-group is polyno-

mial tensor exterior. We show that the ideal of essential classes is the Steenrod closure

of the class generating the top exterior power. As a module over the polynomial alge-

bra, the essential ideal is free on the set of Mùi invariants.
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1. Introduction

Let G be a finite group and k a field whose characteristic p divides the order of G. A

cohomology class x ∈ Hn(G, k) is called essential if its restriction ResH(x) is zero for

every proper subgroup H of G. The essential classes form an ideal, called the essential

ideal and denoted by Ess(G). It is standard that restriction to a Sylow p-subgroup of G

is a split injection (see for example Theorem XII,10.1 of [4]), and so the essential ideal

can only be nonzero if G is a p-group. Many p-groups have nonzero essential ideal,

for instance the quaternion group of order eight. The essential ideal plays an important

role and has therefore been the subject of many studies: two such being Carlson’s work
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on the depth of a cohomology ring [2], and the cohomological characterization due to

Adem and Karagueuzian of those p-groups whose order p elements are all central [1].

The nature of the essential ideal depends crucially on whether or not the p-group

G is elementary abelian. If G is not elementary abelian, then a celebrated result of

Quillen (Theorem 7.1 of [10]) implies that Ess(G) is a nilpotent ideal. By contrast, the

essential ideal of an elementary abelian p-group contains non-nilpotent classes. Work

to date on the essential ideal has concentrated on the non-elementary abelian case. In

this paper we give a complete treatment of the outstanding elementary abelian case. As

we shall recall in the next section, the case p = 2 is straightforward and well known.

So we shall concentrate on the case of an odd prime p.

So let p be an odd prime and V a rank n elementary abelian p-group. We may

equally well view V as an n-dimensional Fp-vector space. Recall that the cohomology

ring has the form

H∗(V,Fp) � S (V∗) ⊗Fp Λ(V∗) , (1)

where the exterior copy of the dual space V∗ is H1(V,Fp), and the polynomial copy lies

in H2(V,Fp): specifically, the polynomial copy is the image of the exterior copy under

the Bockstein boundary map β. Our first result is as follows:

Theorem 1.1. Let p be an odd prime and V a rank n elementary abelian p-group.

Then the essential ideal Ess(V) is the Steenrod closure of Λn(V∗). That is, Ess(V) is

the smallest ideal in H∗(V,Fp) which contains the one-dimensional space Λn(V∗) ⊆

Hn(V,Fp) and is closed under the action of the Steenrod algebra.

Our second result concerns the structure of Ess(V) as a module over the polynomial

subalgebra S (V∗) of H∗(V,Fp). It was conjectured by Carlson (Question 5.4 in [3]) –

and earlier in a less precise form by Mùi [8] – that the essential ideal of an arbitrary

p-group is free and finitely generated as a module over a certain polynomial subalgebra

of the cohomology ring. In [6], the second author demonstrated finite generation, and

for most p-groups of a given order was able to prove freeness as well: specifically the

method works provided the group is not a direct product in which one factor is ele-

mentary abelian of rank at least two. Our second result states that Carlson’s conjecture

holds for elementary abelian p-groups too, and gives explicit free generators.
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Theorem 1.2. Let p be an odd prime and V a rank n elementary abelian p-group. Then

as a module over the polynomial part S (V∗) of the cohomology ring H∗(V,Fp), the

essential ideal Ess(V) is free on the set of Mùi invariants, as defined in Definition 3.3.

Structure of the paper. In §2 we briefly cover the well-known case p = 2. We introduce

the Mùi invariants in §3. After proving Theorem 1.2 in §4 we consider the action of

the Steenrod algebra on the Mùi invariants in order to prove Theorem 1.1 in §5.

2. Elementary abelian p-groups and the case p = 2

The cohomology group H1(G,Fp) may be identified with the set of group homomor-

phisms Hom(G,Fp). This set is an Fp-vector space, and – assuming that G is a p-

group – the maximal subgroups of G are in bijective correspondence with the one-

dimensional subspaces: the maximal subgroup corresponding to α : G → Fp being

ker(α). Of course, the cohomology class α ∈ H1(G,Fp) has zero restriction to the max-

imal subgroup ker(α). Note that in order to determine Ess(G) it suffices to consider

restrictions to maximal subgroups.

Definition. Denote by Ln the polynomial

Ln(X1, . . . , Xn) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X1 X2 · · · Xn

Xp
1 Xp

2 · · · Xp
n

...
...

. . .
...

Xpn−1

1 Xpn−1

2 · · · Xpn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∈ Fp[X1, . . . , Xn] .

There is a well-known alternative description of Ln.

Lemma 2.1. Ln is the product of all monic linear forms in X1, . . . , Xn. So for an n-

dimensional Fp-vector space V we may define Ln(V) ∈ S (V∗) up to a nonzero scalar

multiple by

Ln(V) =
∏

[x]∈PV∗
x . (2)

Proof. First part: Here we call a linear form monic if the first nonzero coefficient is

one. The right hand side divides the left. Both sides have the same total degree. And

the coefficient of X1Xp
2 Xp2

3 · · · X
pn−1

n is +1 in both cases. The second part follows.
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Let V be an elementary abelian 2-group. Then H∗(V,F2) � S (V∗), where the dual

space V∗ is identified with H1(V,F2). Pick x1, . . . , xn to be a basis for H1(V,F2). The

following is well-known:

Lemma 2.2. For an elementary abelian 2-group V, the essential ideal is the principal

ideal in H∗(V,F2) generated by Ln(x1, . . . , xn).

Moreover, Ess(V) is the free S (V∗)-module on Ln(V), and the Steenrod closure of

this one generator.

Proof. Ln(V) is essential, because every nonzero linear form is a factor and every max-

imal subgroup is the kernel of a nonzero linear form. Now suppose that y is essential,

and let x ∈ V∗ be a nonzero linear form. Let U ⊆ V∗ be a complement of the subspace

spanned by x. So y = y′x+y′′ with y′ ∈ S (V∗) and y′′ ∈ S (U). Hence ResH(y′′) = 0 for

H = ker(x), as y is essential and ResH(x) = 0. But the map ResH : V∗ → H∗ satisfies

ker(ResH) ∩ U = 0, and so ResH is injective on S (U). Hence y′′ = 0, and x divides y.

By unique factorization in S (V∗) it follows that Ln(V) divides y. So Ess(V) is the prin-

cipal ideal generated by Ln(V), and the free module on this one generator. Finally, the

definition of the essential ideal means that it is closed under the action of the Steenrod

algebra.

We finish off this section by recalling the action of the Steenrod algebra on the coho-

mology of an elementary abelian p-group in the case of an odd prime. So let p be an

odd prime and V an elementary abelian p-group. Recall that the mod-p-cohomology

ring is the free graded commutative algebra

H∗(V,Fp) � Fp[x1, . . . , xn] ⊗Fp Λ(a1, . . . , an) ,

where ai ∈ H1(V,Fp), xi ∈ H2(V,Fp), and n is the rank of V . That is, a1, . . . , an is

a basis of the exterior copy of V∗, and x1, . . . , xn is a basis of the polynomial copy.

The product a1a2 · · · an ∈ Hn(V,Fp) is a basis of the top exterior power Λn(V∗). The

Steenrod algebraA acts on the cohomology ring, making it an unstableA-algebra with

β(ai) = xi and P1(xi) = xp
i . Observe that Ln(x1, . . . , xn) is essential, for the same reason

as in the case p = 2.
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3. The Mùi invariants

Let k be a finite field and V a finite dimensional k-vector space. Consider the natural

action of GL(V) on V∗. The Dickson invariants generate the invariants for the induced

action of GL(V) on the polynomial algebra S (V∗). But there is also an induced action

on the polynomial tensor exterior algebra S (V∗) ⊗k Λ(V∗), and the Mùi invariants are

SL(V)-invariants of this action: see Mùi’s original paper [7] as well as Crabb’s modern

treatment [5].

We shall need several properties of the Mùi invariants. For the convenience of the

reader, we rederive these from scratch: but see Mùi’s papers [7, 9] and Sum’s work [11].

Notation. Often we shall work with the direct sum decomposition

H∗(V,Fp) =
n⊕

r=0

Nr(V) ,

where n is the rank of V and we set

Nr(V) = S (V∗) ⊗Fp Λ
r(V∗) .

Observe that restriction to each subgroup respects this decomposition. This means that

the essential ideal is well-behaved with respect to this decomposition:

Ess(V) =
n⊕

r=0

Nr(V) ∩ Ess(V) . (3)

Definition. Recall that Ln(x1, . . . , xn) is the determinant of the n × n-matrix

C =


x1 x2 · · · xn

...
...

. . .
...

xpn−1

1 xpn−1

2 · · · xpn−1

n

 ,
where Cs,i = xps−1

i for 1 ≤ s ≤ n. For each such s, define E(s) to be the matrix obtained

from C by deleting row s and then prefixing
(
a1 a2 · · · an

)
as new first row: so

det E(s) =
n∑

i=1

(−1)i+1γs,iai ,

where γs,i is the determinant of the minor of C obtained by removing row s and col-

umn i.
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Now define the Mùi invariant Mn,s ∈ H∗(V,Fp) by Mn,s = det E(s). Note that our

indexing differs from Mùi’s: our Mn,s is his Mn,s−1.

Example. So M4,3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a2 a3 a4

x1 x2 x3 x4

xp
1 xp

2 xp
3 xp

4

xp3

1 xp3

2 xp3

3 xp3

4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and γ2,3 =

∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x4

xp2

1 xp2

2 xp2

4

xp3

1 xp3

2 xp3

4

∣∣∣∣∣∣∣∣∣∣∣∣.
Lemma 3.1. Mn,s ∈ N1(V) ∩ Ess(V).

Proof. By construction Mn,s ∈ N1(V). Restricting to a maximal subgroup of V involves

killing a nonzero linear form on V∗: that is, one imposes a linear dependence on the ai

and consequently the same linear dependency on the xi. So one obtains a linear depen-

dency between the columns of E(s), meaning that restriction kills Mn,s = det E(s).

Lemma 3.2. Ess(V)2 = Ln(V) · Ess(V).

Proof. As Ln(V) is essential, the left hand side contains the right. Now let H be a

maximal subgroup of V . Then H = ker(a) for some nonzero a ∈ H1(V,Fp). Let

x = β(a) ∈ H2. Observe that the kernel of restriction to H is generated by a, x. Suppose

that f , g both lie in this kernel: then we may write f = f ′a + f ′′x, g = g′a + g′′x, and

so f g = ( f ′′g′ ± f ′g′′)ax + f ′′g′′x2, that is f g = xh for h = ( f ′′g′ ± f ′g′′)a + f ′′g′′x ∈

ker ResH .

Since H∗(V,Fp) is a free module over the unique factorization ring S (V∗), this

means that f g = Ln(V) · y for some y ∈ H∗(V,Fp). So h = Ln(V)
x · y. As ResH(h) = 0 and

ResH

(
Ln(V)

x

)
is a non-zero divisor, we deduce that ResH(y) = 0. So y ∈ Ess(V).

Definition 3.3. Let S = {s1, . . . , sr} ⊆ {1, . . . , n} be a subset with s1 < s2 < · · · < sr. In

view of Lemmas 3.1 and 3.2 we may define the Mùi invariant Mn,S ∈ Nr(V) ∩ Ess(V)

by

Mn,S =
1

Ln(V)r−1 Mn,s1 Mn,s2 · · ·Mn,sr .

Note in particular that Mn,∅ = Ln(V).

Remark. Observe that

Mn,S Mn,T =


±Ln(V)Mn,S∪T if S ∩ T = ∅;

0 otherwise.
(4)
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4. Joint annihilators

In this section we study the joint annihilators of the Mn,S with |S | = r as a means to

prove Theorem 1.2.

Lemma 4.1. The joint annihilator of Mn,1, . . . ,Mn,n is Nn(V).

Proof. The element a1 . . . an is a basis forΛn(V) and is clearly annihilated by each Mn,s.

Conversely, suppose that y , 0 is annihilated by every Mn,s. As Mn,sNr(V) ⊆ Nr+1(V)

we may assume without loss of generality that y ∈ Nr(V) for some r. Multiplying once

or more by suitably chosen elements ai, we reduce to the case y ∈ Nn−1(V).

Denote by K the field of fractions of S (V∗), and let W = K ⊗k Λ
n−1(V∗). Each Mn,s

induces a linear form φs : W → K given by φs(w)a1 · · · an = Mn,sw. By assumption,

y , 0 lies in the kernel of every φs. A basis for W consists of the elements a1 · · · âr · · · an

for 1 ≤ r ≤ n, where the hat denotes omission. Now,

Mn,s · a1 · · · âr · · · an = (−1)r+1γs,rar · a1 · · · âr · · · an ,

and so

φs(a1 · · · âr · · · an) = γs,r .

Now consider the matrix Γ ∈ Mn(K) given by Γs,r = γs,r. If one transposes and then

multiplies the ith row by (−1)i and the jth column by (−1) j, then one obtains the adju-

gate matrix of C. As the determinant of C is Ln(V) and in particular nonzero, it follows

that det Γ , 0.

So by construction of Γ, the φs form a basis of W∗. So their common kernel is zero,

contradicting our assumption on y.

Corollary 4.2. The joint annihilator of {Mn,S : |S | = r} is
⊕

s≥n−r+1 Ns(V).

Proof. By induction on r, Lemma 4.1 being the case r = 1. As Mn,S ∈ N|S |(V) and

Nr(V)Ns(V) ⊆ Nr+s(V), the annihilator is at least as large as claimed. Now suppose

that y ∈ H∗(V,Fp) does not lie in
⊕

s≥n−r+1 Ns(V). We may therefore write

y =
n∑

s=0

ys
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with ys ∈ Ns(V), and we know that s0 ≤ n − r for s0 = min{s | ys , 0}. As ys0 , 0

and ys0 < Nn(V), Lemma 4.1 tells us that ys0 Mn,t , 0 for some 1 ≤ t ≤ n. As

ys0 Mn,t ∈ Ns0+1(V), we conclude that yMn,t lies outside
⊕

s≥n−r+2 Ns(V). So the in-

ductive hypothesis means that there is some T with |T | = r − 1 and yMn,t Mn,T , 0. So

yMn,S , 0 for S = T ∪ {t} and |S | = r: note that t ∈ T is impossible.

Corollary 4.3. Every Mn,S is nonzero. For S = n = {1, . . . , n} we have

Mn,n is a nonzero scalar multiple of a1a2 · · · an.

Proof. Observe that Mn,n is a scalar multiple of a1 · · · an for degree reasons. The case

r = n of Corollary 4.2 says that 1 ∈ N0(V) does not annihilate Mn,n and therefore

Mn,n , 0. But from Eqn (4) we see that every Mn,S divides Ln(V)Mn,n , 0.

Proof of Theorem 1.2. In view of Eqn (3) it suffices to show that for each r the Mùi

invariants Mn,S with |S | = r are a basis of the S (V∗)-module Nr(V) ∩ Ess(V). We

observed in Definition 3.3 that these Mn,S lie in this module.

So suppose that y ∈ Nr(V) ∩ Ess(V). We should like there to be fS ∈ S (V∗) such

that

y =
∑
|S |=r

fS Mn,S . (5)

Note that for T = n − S we have Mn,S Mn,T = ±Ln(V)Mn,n by Eqn (4). Define εS ∈

{+1,−1} by Mn,S Mn,T = εS Ln(V)Mn,n. So Eqn. (5) implies that we should define fS by

fS Mn,n =
1

Ln(V)
εS yMn,T ,

since T ∩ S ′ , ∅ and therefore Mn,S ′Mn,T = 0 for all S ′ , S with |S | = r. Note that

this definition of fS makes sense, as yMn,T lies in both Nr(V)Nn−r(V) = Nn(V) and

Ln(V) Ess(V), the latter inclusion coming from Lemma 3.2.

With this definition of fS we havey −∑
|S |=r

fS Mn,S

Mn,T = 0

for every |T | = n−r. As y−
∑
|S |=r fS Mn,S lies in Nr(V), this means that y =

∑
|S |=r fS Mn,S

by Corollary 4.2.
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Finally we show linear independence. Suppose that gS ∈ S (V∗) are such that∑
|S |=r gS Mn,S = 0. Pick one S and set T = n− S . Multiplying by Mn,T , we deduce that

gS = 0.

5. The action of the Steenrod algebra

To prepare for the proof of Theorem 1.1 we shall study the operation of the Steenrod

algebra on the Mùi invariants.

Lemma 5.1.

β(Mn,s) =


Ln(V) s = 1

0 otherwise
β(Ln(V)) = 0 . (6)

For 0 ≤ s ≤ n − 2 we have:

Pps
(Mn,r) =


Mn,r−1 r = s + 2

0 otherwise
Pps

(Ln(V)) = 0 . (7)

Proof. One sees Eqn (6) by inspecting the determinants in the definition of Mn,s and

Ln(V). The proof of Eqn (7) is also based on an inspection of these determinants. Recall

thatPm(ai) = 0 for every m > 0, and thatPm(xps

i ) is zero too except forPps
(xps

i ) = xps+1

i .

We may use the Cartan formula

Pm(xy) =
∑

a+b=m

Pa(x)Pb(y)

to distribute Pps
over the rows of the determinant. As ps cannot be expressed as a sum

of distinct smaller powers of p, we only have to consider summands where all of Pps

is applied to one row and the other rows are unchanged. This will result in two rows

being equal unless it is the row consisting of the xps+1

i that is missing.

Lemma 5.2. Let S = {s1, . . . , sr} with 1 ≤ s1 < s2 < · · · < sr ≤ n.

1. Suppose that 1 < S . Then Mn,S = β(Mn,S∪{1}).

2. Ln(V)r−1Pm(Mn,S ) = Pm(Mn,s1 · · ·Mn,sr ) for each m < pn−1.
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3. For 2 ≤ u ≤ n set X = {s ∈ S | s ≤ u} and Y = {s ∈ S | s > u}. Then

Ln(V)Ppu−2
(Mn,S ) = Ppu−2

(Mn,X) · Mn,Y .

4. For 1 ≤ r ≤ n and 0 < m < pn−1 one has Pm(Mn,{1,...,r}) = 0.

5. For 2 ≤ u ≤ n one has Ppu−2
(Mn,{1,...,u−2,u}) = Mn,{1,...,u−1}.

Proof. Recall that

Ln(V)r Mn,S = Ln(V)Mn,s1 · · ·Mn,sr . (8)

The first two parts follow by applying Equations (6) and (7).

Recall that by the Adem relations each Pm may be expressed in terms of the Pps

with ps ≤ m. So the third part follows from the second, since we deduce from Eqn. (7)

that Pm(Mn,s) = 0 if 0 < m ≤ pu−2 and s > u.

Fourth part: By induction on r. Follows for r = 1 from the Adem relations and

Eqn (7). Inductive step: Enough to consider Pps
for 0 ≤ s ≤ n − 2. By the inductive

hypothesis and a similar argument to the third part, deduce that

Ln(V)Pps
(Mn,{1,...,r}) = Mn,{1,...,r−1}P

ps
(Mn,r) .

But this is zero by Eqn (7), since Mn,{1,...,r−1}Mn,r−1 = 0.

Fifth part: Using the fourth part and an argument similar to the third part, deduce

that

Ln(V)Ppu−2
(Mn,{1,...,u−2,u}) = Mn,{1,...,u−2}P

pu−2
(Mn,u) = Mn,{1,...,u−2}Mn,u−1 :

but this is Ln(V)Mn,{1,...,u−1}.

Proof of Theorem 1.1. We shall show that for every Mn,S there is an element θ of the

Steenrod algebra with Mn,S = θ(Mn,n). We do this by decreasing induction on r = |S |.

It is trivially true for r = n, so assume now that r < n. Amongst the S with |S | = r we

shall proceed by induction over u, the smallest element of n − S . So

S = {1, . . . , u − 1} ∪ Y with s > u for every s ∈ Y .

Part 1 of Lemma 5.2 covers the case u = 1, so assume that u ≥ 2. Set T = {1, . . . , u −

2, u}. We complete the induction by showing that Mn,S = Ppu−2
(Mn,T∪Y ). Part 3 of

10



Lemma 5.2 gives us

Ln(V)Ppu−2
(Mn,T∪Y ) = Ppu−2

(Mn,T )Mn,Y .

But Ppu−2
(Mn,T ) = Mn,{1,...,u−1}, by Part 5 of that lemma. So Ppu−2

(Mn,T∪Y ) = Mn,S , as

claimed.

Remark. Theorem 1.2 shows that the S (V∗)-module generated by the Mùi invariants

Mn,S is the essential ideal and therefore closed under the action of the Steenrod algebra.

One may however see more directly that this S (V∗)-module is Steenrod closed. This

is observed for example in [11]. In view of Lemma 5.2 and Equations (6) and (7) it

only remains to show that Ppn−1
(Mn,s) lies in our S (V∗)-module. Now Ppn−1

(Mn,n) = 0

by the unstable condition, so suppose s < n. Recall that Mn,s is a determinant, the last

row of the matrix having entries xpn−1

i . So applying Ppn−1
replaces these entries by xpn

i .

But it is well known that xpn

i is an S (V∗)-linear combination of the xpr

i for r ≤ n − 1,

and that the coefficients are independent of i: this is the “fundamental equation” in the

sense of [12], and the coefficients are the Dickson invariants cn,r in S (V∗). Applying

S (V∗)-linearity of the determinant in the bottom row of the matrix, one deduces that

Ppn−1
(Mn,s) is an S (V∗)-linear combination of the Mn,r.
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