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Abstract. We give an alternative proof to a theorem of Jon F. Carlson [5] which states
that if G is a finite group and k is a field of characteristic p, then any kG-module is a direct
summand of a module which has a filtration whose sections are induced from elementary
abelian p-subgroups of G. We also prove two new theorems which are closely related to
Carlson’s theorem.

1. Introduction

Let G be a finite group and let k be a field of characteristic p > 0. Let H be a collection of
subgroups of G. We say that a kG-module M is filtered by modules induced from H if there
is a filtration

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn−1 ⊆ Mn = M

such that for each i = 1, 2, . . . , n, there is a subgroup Hi ∈ H and a kHi-module Wi such
that Mi/Mi−1

∼= Wi ↑G
Hi

. We consider the following theorem of Jon F. Carlson.

Theorem 1.1 (Carlson [5]). Any kG-module M is a direct summand of a module that is
filtered by modules induced from elementary abelian p-subgroups.

This theorem provides another way to see the role of elementary abelian p-groups in mod-
ular representation theory, and has many applications, including the Chouinard’s theorem
for finitely generated modules (see Theorem 8.2.12 in [7]). Carlson proves Theorem 1.1 by
first reducing it to p-groups and then by showing that it follows from the following statement
by induction.

Theorem 1.2 (Carlson [5]). Suppose that G is a p-group which is not elementary abelian.
Then there is a sequence H1, . . . ,Hn of maximal subgroups of G such that k⊕Ω1−n(k)⊕(proj)
has a filtration

0 = L0 ⊆ L1 ⊆ · · · ⊆ Ln = k ⊕ Ω1−n(k)⊕ (proj)
where Li/Li−1

∼= Ω1−i(k) ↑G
Hi

for i = 1, . . . , n.

The maximal subgroups H1, . . . ,Hn in the above theorem are not necessarily distinct.
In fact, for p > 2 we take n = 2k and H2i = H2i−1 for all i = 1, . . . , k. Carlson proves the
existence of such a filtration using Serre’s theorem on vanishing products in group cohomology
(see Theorem 3.1 for the statement of Serre’s theorem) and a hypercohomology calculation
with coefficients in a chain complex obtained from Serre’s theorem. Theorem 1.2 plays an
important role in [6] where the authors use this filtration to find an upper bound for the
dimensions of critical endo-trivial modules.
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Yalçın is partially supported by the Turkish Academy of Sciences in the framework of the Young Scientist

Award Program (TÜBA-GEBİP/2005-16).
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In this paper we give an alternative proof to Theorem 1.2 using Lζ-modules. The Lζ-
modules are defined as follows: Associated to a cohomology class ζ ∈ Hn(G, k), there is a
module Lζ defined as the kernel of the representing homomorphism ζ̂ : Ωn(k) → k. Modules
of this form are called Lζ-modules. They are commonly used to relate cohomology theory
with modular representation theory; for example, they appear in many results about varieties
of modules (see [1], [2], [3], [7], [8]).

In our proof for Theorem 1.2, we still use Serre’s theorem, but we avoid the hypercoho-
mology calculation. Given ζ1, . . . , ζn ∈ H1(G, Fp) satisfying the conclusion of Serre’s theo-
rem, i.e., β(ζ1) · · ·β(ζn) = 0 where β is the Bockstein map, we observe that Lβ(ζ1)···β(ζn) =
Ω(k)⊕Ω2n(k) has a filtration whose sections are isomorphic to Heller shifts of Lβ(ζi)’s. This
is an easy consequence of a known exact sequence for the Lζ when ζ is a product of two
cohomology classes (see Proposition 2.3). Next, we show that for every ζ ∈ H1(G, Fp) with
kernel H ≤ G, there is a 2-step filtration for Lβ(ζ)⊕ (proj) such that the sections are induced
from H (see Proposition 2.4 and 2.5). In fact, for p = 2, the argument is much simpler since,
in this case, Serre’s theorem is true without Bocksteins, and we have Lζ

∼= k ↑G
H for every

ζ ∈ H1(G, F2) with kernel H. We present our alternative proof in Section 3.
In the rest of the paper, we prove two theorems which are variations of Carlson’s theorems.

The first one is a generalization of Proposition 2.4 and 2.5, and it is strong enough to imply
Theorem 1.2 when it is applied to a suitable extension.

Theorem 1.3. Let ζ be the cohomology class in Hn(G, k) which is represented by the exten-
sion

E : 0 → k → Mn−1 → · · · → M0 → k → 0.

Then, Lζ ⊕ (proj) has a filtration

0 = L0 ⊆ L1 ⊆ · · · ⊆ Ln = Lζ ⊕ (proj)

with Li/Li−1
∼= Ωn−i+1(Mi−1) for i = 1, . . . , n.

Here the notation (proj) means that the statement is true after adding a suitable projective
summand. We will be using this notation throughout the paper.

In section 5, we introduce the varieties of modules, and prove

Theorem 1.4. Let H be a collection of subgroups of G. Then, for a finitely generated kG-
module M , the following are equivalent:

(i) VG(M) =
⋃

H∈H res∗G,H(VH(M ↓G
H)).

(ii) There exists a finitely generated kG-module V such that M ⊕ V is filtered by modules
induced from H.

We conclude the paper with the following application:

Corollary 1.5. Let G be an elementary abelian 2-group. If ζ ∈ Hn(G, k) is represented by
the extension

E : 0 → k → Mn−1 → · · · → M0 → k → 0
where Mi’s are direct sums of modules induced from proper subgroups, then ζ is a scalar
multiple of a product of one dimensional classes in H1(G, F2). In particular, E is equivalent
to an extension coming from a topological group action on a sphere.

There is a similar result for p > 2 under stronger conditions. This result is also proved in
Section 5.

Throughout this paper, G always denotes a finite group, k is a field of characteristic p > 0.
We assume that all kG-modules are finitely generated, and all tensor products are over k
unless otherwise is stated clearly.
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2. Preliminaries

Given a kG-module M , the Heller shift of M is defined as the kernel of the surjection
P (M) → M where P (M) denotes the projective cover of M . We denote the Heller shift of
M by Ω(M). The n-th Heller shift of M is defined inductively by Ωn(M) = Ω(Ωn−1(M)) for
positive n. Similarly, the negative shift is defined inductively by Ω−n(M) = Ω−1(Ω−n+1(M))
where minus one Heller shift Ω−1(M) of a kG-module M is defined as the cokernel of the
injection M → I(M), where I(M) is the injective hull of M . Uniqueness of projective cover
and injective hull gives the uniqueness of the modules Ωn(M) up to isomorphism. The details
about Heller shifts can be found in many books on modular representation theory. We will
use the standard properties of Heller shifts without listing them here. We refer the reader to
Proposition 4.4 of [4] for a complete list of these properties.

Given a projective resolution

· · · → Pn+1
∂n+1−→ Pn

∂n−→Pn−1
∂n−1−→ · · · → P1

∂1−→P0
ε−→ k → 0

of k as a kG-module, we say that it is minimal if P0 is the projective cover of k, P1 is the
projective cover of ker ε, and Pn is the projective cover of ker ∂n−1 for n ≥ 2. So, by the
above description of Heller shifts, we have Ω(k) = ker ε, and Ωn(k) = ker ∂n−1 for all n ≥ 2.
Note that the cohomology group Hn(G, k) is the n-th cohomology of the cochain complex
HomkG(P∗, k). Let f ∈ HomkG(Pn, k) be a cocycle representing ζ ∈ Hn(G, k), then the
cocycle condition gives that f restricted to the image of ∂n+1 is zero. Thus f gives a map
ζ̂ : Ωn(k) → k called the representing homomorphism for ζ ∈ Hn(G, k). Two homomorphisms
ζ̂ and ζ̂ ′ represent the same cohomology class if they differ by a homomorphism which factors
through a projective module. The only homomorphism Ωn(k) → k that factors through a
projective module is the zero homomorphism, so the representing homomorphism is unique
(see page 140 in [1] or page 16-17 of [4] for details). The Lζ-modules are defined as follows:

Definition 2.1. Let ζ be a cohomology class in Hn(G, k)−{0} for n ≥ 1 and let ζ̂ : Ωn(k) → k

be the homomorphism representing ζ. We define Lζ as the kernel of the homomorphism ζ̂.
When ζ = 0, we set Lζ = Ω(k)⊕ Ωn(k).

Since the representing homomorphism ζ̂ is uniquely defined, Lζ is well defined up to iso-
morphism. As a consequence of the definition we have the following diagram:

Lζ Lζy y
0 −−−−→ Ωn(k) −−−−→ Pn−1 −−−−→ Pn−2 −−−−→ . −−−−→ k −−−−→ 0

ζ̂

y y ∥∥∥ ∥∥∥ ∥∥∥
0 −−−−→ k −−−−→ Pn−1/Lζ −−−−→ Pn−2 −−−−→ ... −−−−→ k −−−−→ 0

In particular, we have

Lemma 2.2. For every ζ ∈ Hn(G, k)− {0}, there is an exact sequence

0 → k → Ω−1(Lζ)⊕ (proj) → Ωn−1(k) → 0

with an extension class corresponding to ζ under the isomorphisms

Hn(G, k) ∼= Ext1kG(Ωn−1(k), k).

When Lζ 6= 0, the above sequence is exact without a (proj) summand.
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Proof. The above diagram gives the short exact sequence

0 → k → Pn−1/Lζ → Ωn−1(k) → 0.

which gives the desired sequence after applying the isomorphism Pn−1/Lζ
∼= Ω−1(Lζ)⊕(proj).

When Lζ 6= 0, the module Pn−1 is the injective hull of Lζ , hence Pn−1/Lζ
∼= Ω−1(Lζ). So,

when ζ is not a periodicity generator (for example when G is not a periodic group), then the
above sequence is exact without a (proj) summand in the middle. �

In our alternative proof for Theorem 1.2, the main ingredient is the following exact se-
quence:

Proposition 2.3. If ζ1 ∈ Hr(G, k) and ζ2 ∈ Hs(G, k), then there is an exact sequence

0 → Ωr(Lζ2) → Lζ1·ζ2 ⊕ (proj) → Lζ1 → 0.

Proof. See Lemma 5.9.3 on page 191 of [2]. �

For the rest of the section, we assume G is a (finite) p-group. Recall that

H1(G, Fp) ∼= Hom(G, Z/p).

Given a one dimensional class ζ ∈ H1(G, Fp), the kernel of the corresponding homomorphism
is usually referred as the kernel of ζ.

Lemma 2.4. Let G be a 2-group, and ζ be a cohomology class in H1(G, F2) considered as a
class in H1(G, k). Then Lζ

∼= Ω(k) ↑G
H where H is the kernel of ζ.

Proof. We have the following commutative diagram

Lζ Lζy y
0 −−−−→ Ω(k) −−−−→ P0 −−−−→ k −−−−→ 0

ζ̂

y y ∥∥∥
0 −−−−→ k −−−−→ P0/Lζ −−−−→ k −−−−→ 0.

from which we obtain that the extension class of the sequence 0 → k → P0/Lζ → k → 0
corresponds to ζ under the isomorphism H1(G, k) ∼= Ext1kG(k, k). There is an extension of
the form

0 → k → k ↑G
H→ k → 0

with extension class equal to ζ. From the equivalence of the exact sequences we get k ↑G
H
∼=

P0/Lζ
∼= Ω−1(Lζ)⊕ (proj). Taking the first Heller shift of this isomorphism, we obtain Lζ

∼=
Ω(k ↑G

H). Note that for p-groups, Ω(k ↑G
H) ∼= Ω(k) ↑G

H . We conclude that Lζ
∼= Ω(k) ↑G

H . �

In the case where p is an odd prime we have a similar result.

Lemma 2.5. Let G be a finite p-group, and let β(ζ) be the Bockstein of a one dimensional
class ζ ∈ H1(G, Fp). Consider β(ζ) as a class in H2(G, k). Then, Lβ(ζ) ⊕ (proj) has a
filtration 0 = M0 ⊆ M1 ⊆ M2 = Lβ(ζ) ⊕ (proj) with the property M2/M1

∼= Ω(k) ↑G
H and

M1
∼= Ω2(k) ↑G

H where H is the kernel of ζ.
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Proof. By Proposition 5.7.6 in [7], there is an extension of the form

0 → k → k ↑G
H→ k ↑G

H→ k → 0

with extension class equal to β(ζ). Thus, we have a diagram

0 −−−−→ Ω2(k) −−−−→ P1 −−−−→ P0 −−−−→ k −−−−→ 0

β̂(ζ)

y yf1

yf0

∥∥∥
0 −−−−→ k −−−−→ k ↑G

H −−−−→ k ↑G
H −−−−→ k −−−−→ 0

where the left most homomorphism is the representing homomorphism for β(ζ).
Thus, we have the diagram

kerf̃1
∼=−−−−→ kerf0y y

0 −−−−→ k −−−−→ P1/Lβ(ζ) −−−−→ P0 −−−−→ k −−−−→ 0∥∥∥ yf̃1

yf0

∥∥∥
0 −−−−→ k −−−−→ k ↑G

H −−−−→ k ↑G
H −−−−→ k −−−−→ 0

where kerf0 = Ω(k ↑G
H)⊕ (proj). The first vertical short exact sequence in the above diagram

gives us the sequence

0 → Ω(k ↑G
H)⊕ (proj) → Ω−1(Lβ(ζ))⊕ (proj) → k ↑G

H→ 0.

If we tensor this exact sequence with Ω(k) over k, we get

0 → Ω2(k ↑G
H)⊕ (proj) → Lβ(ζ) ⊕ (proj) → Ω(k ↑G

H)⊕ (proj) → 0.

Note that we can cancel projective modules at both ends of the sequence since projective
kG-modules are also injective. Thus, we get an exact sequence

0 → Ω2(k ↑G
H) → Lβ(ζ) ⊕ (proj) → Ω(k ↑G

H) → 0

which gives the desired filtration. �

Throughout the paper, we will come across the situations, where we will need to cancel
projective modules from both ends of exact sequences as we did in the above proof. More
generally, we will need to cancel projective modules from sections of filtrations of modules.
We quote the following lemma from [7]. The proof easily follows from the fact that projective
kG-modules are injective.

Lemma 2.6. Suppose that M is a kG-module which has a filtration

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M

with Mi/Mi−1
∼= Xi ⊕ Pi for some projective modules Pi. Then, M ∼= M ′ ⊕ P for some

projective module P such that M ′ has a filtration

0 = M ′
0 ⊆ M ′

1 ⊆ · · · ⊆ M ′
n = M ′

with M ′
i/M

′
i−1

∼= Xi for all i = 1, . . . , n.
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3. The Alternative Proof

The aim of this section is to give a proof for Theorem 1.2 using Lζ-modules. First, we
recall Serre’s theorem on vanishing products in group cohomology.

Theorem 3.1 (Serre [9]). Suppose that G is a p-group which is not elementary abelian. Then
there is a sequence ζ1, . . . , ζn ∈ H1(G, Fp) of nonzero elements such that

ζ1ζ2 · · · ζn = 0 if p = 2,

β(ζ1)β(ζ2) · · ·β(ζn) = 0 if p > 2.

Now, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. First lets assume p = 2. Let ζ1, . . . , ζn be classes in H1(G, F2) satis-
fying the conclusion of Serre’s theorem. Then, we have

Lζ1···ζn
∼= Ω(k)⊕ Ωn(k).

By Proposition 2.3, for each i = 1, . . . , n− 1, there is an exact sequence of the form

0 → Ωn−i(Lζi
) → Lζi···ζn ⊕ Pi → Lζi+1···ζn → 0

where P1, . . . , Pn−1 are projective modules. By adding projective summands to the last two
terms of the exact sequences above, we find exact sequences of the form

0 → Ωn−i(Lζi
) → Lζi···ζn ⊕Qi → Lζi+1···ζn ⊕Qi+1 → 0

for i = 1, . . . , n− 1 where
Qi = ⊕n−1

k=i Pk.

Using these exact sequences, we obtain a filtration for

Lζ1···ζn ⊕Q1
∼= Ω(k)⊕ Ωn(k)⊕Q1

as follows: Let Mn = Lζ1···ζn ⊕ Q1 and M1 = Ωn−1(Lζ1). Then, Mn/M1
∼= Lζ2···ζn ⊕ Q2.

Choose M2 such that M2/M1
∼= Ωn−2(Lζ2). Then the exact sequence

0 → Ωn−2(Lζ2) → Lζ2···ζn ⊕Q2 → Lζ3···ζn ⊕Q3 → 0

gives that Mn/M2
∼= Lζ3···ζn ⊕Q3 which will be the middle term of the next exact sequence.

Continuing this way we obtain a filtration

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = Ω(k)⊕ Ωn(k)⊕Q1

with Mn/Mi
∼= Lζi+1···ζn ⊕ Qi+1 and Mi/Mi−1

∼= Ωn−i(Lζi
) for i = 1, . . . , n. Tensoring

the entire filtration by Ω−n(k), and cancelling the projective summands from sections as in
Lemma 2.6, we obtain a filtration

0 = L0 ⊆ · · · ⊆ Ln = Ω1−n(k)⊕ k ⊕ (proj)

with Li/Li−1
∼= Ω−i(Lζi

). Note that by Proposition 2.4, we have Lζi
∼= Ω1(k ↑G

Hi
). Thus,

Li/Li−1
∼= Ω−i(Ω(k ↑G

Hi
)) ∼= Ω1−i(k ↑G

Hi
) ∼= Ω1−i(k) ↑G

Hi

where the last isomorphism is true because G is a p-group. So, the proof for p = 2 is complete.
Now, assume p > 2. As above, we can obtain a filtration

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = Ω(k)⊕ Ω2n(k)⊕ (proj)

such that Mi/Mi−1
∼= Ω2n−2i(Lβ(ζi)) for i = 1, . . . , n. By Proposition 2.5, Lβ(ζi) ⊕ (proj)

has a filtration with sections isomorphic to Ω2(k) ↑G
H and Ω1(k) ↑G

H . After adding projective
modules to each Mi, we can assume Mi/Mi−1 has a filtration with sections isomorphic to



A THEOREM OF JON F. CARLSON ON FILTRATIONS OF MODULES 7

Ω2n−2i+2(k) ↑G
H and Ω2n−2i+1(k) ↑G

H . For each i = 1, . . . , n, let Ni be the kG-module satisfying
Mi−1 ⊆ Ni ⊆ Mi with Ni/Mi−1

∼= Ω2n−2i+2(k) ↑G
Hi

and Mi/Ni
∼= Ω2n−2i+1(k) ↑G

Hi
. By taking

L2i = Mi and L2i−1 = Ni, tensoring everything with Ω−2n(k), and cancelling the projective
summands on the sections, we obtain a filtration

0 = L0 ⊆ · · · ⊆ L2n = k ⊕ Ω1−2n(k)⊕ (proj)

where
Lj/Lj−1

∼= Ω1−j(k) ↑G
Hi

when j = 2i or j = 2i− 1. This completes the proof. �

Now, we explain briefly how Theorem 1.1 follows from Theorem 1.2. The details of this
argument can be found on page 166 of [7]. First note that it is enough to prove Theorem
1.1 for M = k. The general case follows by tensoring everything with M . Also note that
if P is a Sylow p-subgroup of G, then k is a summand of k ↑G

P . So, it is enough to prove
Theorem 1.1 for p-groups. To see this, suppose that there is a kP -module V such that k⊕V
has a filtration whose sections are induced from elementary abelian p-subgroups. Inducing
the entire filtration to G, we get a filtration for k ↑G

P ⊕V ↑G
P , and hence conclude that k

is a direct summand of a finitely generated module which has a filtration with the desired
properties.

When G is a p-group, and M is the trivial module k, Theorem 1.1 follows from Theorem
1.2 by an induction. Note that by Theorem 1.2, there is a filtration

0 = L0 ⊆ L1 ⊆ · · · ⊆ Ln
∼= k ⊕ Ω1−n(k)⊕ (proj)

where Li/Li−1
∼= Ω1−i(k) ↑G

Hi
for i = 1, . . . , n. If any of the subgroups Hi is not an elementary

abelian p-group, then we can apply Theorem 1.2 to Hi and refine the above sequence further
until we reach the stage that all the subgroups involved are elementary abelian p-subgroups.

We note that the following version of Theorem 1.1 is also true.

Theorem 3.2 (Carlson [5]). There exists a finitely generated kG-module V such that k ⊕ V
has a filtration

0 = L0 ⊆ L1 ⊆ · · · ⊆ Ln = k ⊕ V

where for every i = 1, . . . , n, the sections Li/Li−1 are isomorphic to Ωni(k) ↑G
Ei

for some
integer ni and some maximal elementary abelian p-subgroup Ei of G.

We will use this version later in Section 5.

4. A Filtration Theorem for Lζ-Modules

The main purpose of this section is to prove Theorem 1.3 stated in the introduction. We
also prove an important corollary which will be useful later in Section 5.

Definition 4.1. Let E be an n-fold extension of kG-modules with extension class α in
Extn

kG(A,B). Suppose that Ẽ : 0 → Ω−n+1(B) → M → A → 0 is an extension whose class is
associated to α under the isomorphism

Extn
kG(A,B) ∼= Ext1kG(A, Ω−n+1(B)).

Then, we say Ẽ is a contraction of E.
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Lemma 4.2. Let E be an n-fold extension of kG-modules

E : 0 → B → Mn−1 → Mn−2 → · · · → M0 → A → 0

and let
Ẽ : 0 → Ω−n+1(B) → M → A → 0

be a contraction of E. Then, M ⊕ (proj) has a filtration

0 = L0 ⊆ L1 ⊆ · · · ⊆ Ln = M ⊕ (proj)

with Li/Li−1
∼= Ω1−i(Mi−1) for i = 1, . . . , n.

Proof. Consider the following commutative diagram

0 −−−−→ B −−−−→ Mn−1 −−−−→ Mn−2 −−−−→ Mn−3 −−−−→ ...∥∥∥ y y ∥∥∥
0 −−−−→ B −−−−→ I(Mn−1) −−−−→ Kn−2 −−−−→ Mn−3 −−−−→ ...y y

Ω−1(Mn−1) Ω−1(Mn−1)

where Kn−2 is the push out and I(Mn−1) is the injective hull of Mn−1. From the second
horizontal exact sequence, we obtain an extension

E′ : 0 → Ω−1(B)⊕ (proj) → Kn−2 → Mn−3 → · · · → M0 → A → 0

whose extension class corresponds to α under the isomorphism

Extn−1
kG (A,Ω−1(B)) ∼= Extn

kG(A,B).

Let
Ẽ : 0 → Ω−n+1(B) → M → A → 0

be a contraction of E. Note that Ẽ is also a contraction of E′. So, by induction, M ⊕ (proj)
has a filtration

0 = L0 ⊆ L1 ⊆ · · · ⊆ Ln−1 = M ⊕ (proj)

with Li/Li−1
∼= Ω1−i(Mi−1) for i = 1, . . . , n− 2 and Ln−1/Ln−2

∼= Ω2−n(Kn−2).
To finish the proof, we need to refine the above filtration at the Ln−1/Ln−2 section. For

this, consider the exact sequence 0 → Mn−2 → Kn−2 → Ω−1(Mn−1) → 0. After tensor-
ing this exact sequence with Ω2−n(k), and cancelling projective summands from both ends
of the sequence, we get a filtration for Ω2−n(Kn−2) ⊕ (proj) with sections isomorphic to
Ω2−n(Mn−2) and Ω1−n(Mn−1). By adding projective summands to Ln if necessary, we can
assume Ln−1/Ln−2 also have a similar filtration. So, there exists a kG-module L̃n−1 such
that

0 = L0 ⊆ L1 ⊆ · · · ⊆ Ln−2 ⊆ L̃n−1 ⊆ Ln−1 = M ⊕ (proj)

is a filtration having the desired properties. �

Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let ζ be the cohomology class in Hn(G, k) which is represented by
the extension

E : 0 → k → Mn−1 → Mn−2 → · · · → M0 → k → 0.
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Tensoring the exact sequence in Lemma 2.2 with Ω1−n(k), and cancelling the projective
summands from both ends, we obtain a short exact sequence

Ẽ : 0 → Ω1−n(k) → Ω−n(Lζ)⊕ (proj) → k → 0

with extension class corresponding to ζ under the isomorphism

Extn
kG(k, k) ∼= Ext1kG(k, Ω1−n(k)).

So, Ẽ is a contraction of E. Applying Lemma 4.2, we obtain a filtration

0 = T0 ⊆ T1 ⊆ · · · ⊆ Tn = Ω−n(Lζ)⊕ (proj)

with Ti/Ti−1 = Ω1−i(Mi−1) for i = 1, . . . , n. Tensoring the entire system with Ωn(k), and
eliminating the projective summands if necessary, gives the desired filtration. �

Note that Theorem 1.2 follows from Theorem 1.3 as a corollary. To see this, first observe
that for a p-group which is not elementary abelian, there is a sequence of maximal subgroups
H1, . . . ,Hn and an exact sequence

E : 0 → k → C2n−1 → · · · → C1 → C0 → k → 0

such that C2i−2
∼= C2i−1

∼= k ↑G
Hi

for i = 1, . . . , n and the class of E in Ext2n
kG(k, k) is zero.

This is just a consequence of Serre’s theorem (see Corollary 3.4 in Carlson [5]). We now apply
Theorem 1.3 to this sequence and conclude Theorem 1.2.

In the rest of the section, we study some consequences of Theorem 1.3. We first intro-
duce some more terminology: Given a kG-module M , let JG(M) denote the kernel of the
homomorphism

M ⊗k − : Ext∗kG(k, k) → Ext∗kG(M,M)
defined by tensoring an extension with M (over k). Note that JG(M) can also be considered as
the annihilating ideal of Ext∗kG(M,M) as a Ext∗kG(k, k)-module. We now recall the following
well known theorem.

Theorem 4.3. Let ζ ∈ Hn(G, k) and let M be a kG-module. Then, ζ ∈ JG(M) if and only
if

Lζ ⊗M ∼= Ωn(M)⊕ Ω(M)⊕ (proj).

Proof. See Proposition 9.7.5 in [7]. �

Combining this theorem with Theorem 1.3, we obtain

Corollary 4.4. Let M be a finitely generated kG-module such that JG(M) includes a product
of Bocksteins of one dimensional classes. Then, for each integer s, there exists a finitely
generated kG-module V such that Ωs(M)⊕ V has a filtration

0 = L0 ⊆ L1 ⊆ · · · ⊆ Lm = Ωs(M)⊕ V

where for every i = 1, . . . ,m, we have Li/Li−1
∼= Ωs+i−1(M ↓G

Hi
) ↑G

Hi
for some maximal

subgroup Hi of G.

Proof. Suppose that ζ = β(u1) · · ·β(un) ∈ JG(M) where ui’s are one dimensional classes in
H1(G, Fp). Note that ζ is represented by an extension which is the Yoneda splice of extensions
of the form

0 → k → k ↑G
Hi
→ k ↑G

Hi
→ k → 0

where Hi is the kernel of ui. So, by Theorem 1.3, there is a filtration for Lζ ⊕ (proj)

0 = L0 ⊆ L1 ⊆ · · · ⊆ L2n = Lζ ⊕ (proj)
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where the jth section Lj/Lj−1 is isomorphic to Ωn+1−j(k) ↑G
Hi

when j = 2i or j = 2i − 1.
Tensoring Li’s with M , we obtain a filtration

0 = (L0 ⊗M) ⊆ (L1 ⊗M) ⊆ · · · ⊆ (L2n ⊗M) = (Lζ ⊗M)⊕ (proj)

such that

(Lj ⊗M)/(Lj−1 ⊗M) ∼= (Ωn+1−j(k) ↑G
Hi

)⊗M ∼= Ωn+1−j(M ↓G
Hi

) ↑G
Hi
⊕(proj)

where j = 2i or j = 2i − 1. By Theorem 4.3, we have Lζ ⊗M ∼= Ωn(M) ⊕ Ω(M) ⊕ (proj).
So, tensoring the entire system with Ωs−n(k), and eliminating the projective summands, we
obtain the desired filtration. �

Note that the filtration length m in Corollary 4.4 depends on the number of one dimensional
classes whose product of Bocksteins is in JG(M). This suggests the following definition:

Definition 4.5. The cohomology length of a kG-module M , denoted by chlG(M), is defined
as the smallest positive integer n such that there exist non-zero elements u1, u2, . . . , un ∈
H1(G, Fp) such that

u1u2 · · ·un ∈ JG(M) if p = 2,

β(u1)β(u2) · · ·β(un) ∈ JG(M) if p > 2.

If no such integer exists, then we set chlG(M) = ∞.

It is easy to see that if chlG(M) = n, then there is a filtration as in Corollary 4.4 of length
2n. Note that for p = 2, we have a filtration of length n. So, the cohomology length of a
module is an interesting invariant to consider if one is interested in finding filtrations like in
Corollary 4.4 of shortest length.

Note that there is a notion of cohomology length for p-groups (which are not elementary
abelian) as a consequence of Serre’s theorem. The cohomology length of a p-group G, denoted
by chl(G), is defined as the minimal m such that the product in Serre’s theorem vanish. We
can declare chl(G) = ∞ for groups where the Serre’s theorem does not hold. Then, it is clear
that chl(G) = chlG(k). Also note that for any kG-module M , we have chlG(M) ≤ chl(G). In
general, the cohomology length of a kG-module M can be much smaller then the cohomology
length of G. For example, if G is an elementary abelian p-group and H a maximal subgroup
of G, then chl(G) = ∞ whereas chlG(k ↑G

H) = 1.

5. Varieties of Modules

In this section we introduce the varieties of modules, and prove Theorem 1.4 and Corollary
1.5 stated in the introduction. As in the previous sections, k denotes a field of characteristic
p > 0. We do not assume that k is algebraically closed and denote the algebraic closure of k
by K. Let VG(k) denote the maximal ideal spectrum of H•(G, k) where H•(G, k) = H∗(G, k)
for p = 2, and H•(G, k) = Hev(G, k), the ring of even dimensional classes, for p > 2. Since
H•(G, k) is a finitely generated commutative k-algebra, VG(k) is a finite dimensional homo-
geneous affine variety, where a point in VG(k) can be viewed as a k-linear ring homomorphism
H•(G, k) → K. Two such ring homomorphisms correspond to the same point in VG(k) if and
only if they are in the same orbit under the Galois action of Autk(K).

¿From the above description, it is easy to see that any ring homomorphism f : H•(G, k) →
H•(H, k) induces a continuous map f∗ : VH(k) → VG(k) of corresponding varieties. In
particular, for every H ≤ G, the restriction homomorphism resG,H : H•(G, k) → H•(H, k)
induces a map res∗G,H : VH(k) → VG(k) on varieties.
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For a finitely generated kG-module M , the support variety of M , denote by VG(M), is
defined as the variety of the ideal JG(M) where JG(M) is the annihilator of Ext∗kG(M,M) in
H•(G, k). Observe that we have res∗G,H(VH(M)) ⊆ VG(M) as a consequence of the obvious
inclusion for ideals resG,H

(
JG(M)

)
⊆ JH(M). So, res∗G,H induces a map res∗G,H : VH(M) →

VG(M) on the varieties of the module M .
The following is a list of properties of varieties which we will need in this section.

Lemma 5.1. Suppose that k is a field of characteristic p > 0, G is a finite group, and H is
a subgroup of G. Let M , M1, M2, M3 be kG-modules, and N a kH-module.

(i) VG(M) = 0 if and only if M is projective.
(ii) VG(M) = VG(Ωn(M)) for all integers n.
(iii) If 0 → M1 → M2 → M3 → 0 is exact, then VG(M2) ⊆ VG(M1)

⋃
VG(M3). In

particular VG(M1 ⊕M2) = VG(M1)
⋃

VG(M2).
(iv) VG(N ↑G

H) = res∗G,H(VH(N)).
(v) (res∗G,H)−1(VG(M)) = VH(M ↓G

H).
(vi) VG(M1 ⊗M2) = VG(M1) ∩ VG(M2).
(vii) Let ζ ∈ Extn

kG(k, k). Then VG(Lζ) = VG(ζ) where VG(ζ) is the variety of the ideal
generated by ζ.

Proofs of these statements can be found in [2], [4], [7], and [8]. Note that the above
properties hold for an arbitrary field if and only if they hold for an algebraically closed field.
To see this, observe that the ring homomorphism φ : H•(G, k) → H•(G, K) ∼= H•(G, k)⊗k K
defined by φ(ζ) = 1 ⊗ ζ induces a map φ∗ : VG(K) → VG(k) on varieties which is finite to
one. For a kG-module M , we have JG(K ⊗M) ∼= K ⊗ JG(M), which gives VG(K ⊗M)) =
(φ∗)−1(VG(M)). Thus proving these results for VG(M ⊗K) will give corresponding results
for VG(M). For details of this argument, we refer the reader to Theorem 10.4.2 and Remark
10.4.3 in [7].

Lemma 5.2. Let E be an elementary abelian p-group, and M be a collection of the maximal
subgroups of E. Suppose M is a finitely generated kG-module such that

VE(M) =
⋃

D∈M
res∗E,D(VD(M ↓E

D)).

Then, JE(M) includes a product of Bocksteins of one dimensional classes in H1(E, Fp) whose
kernels are in M.

Proof. Applying (φ∗)−1 to the given equality, we obtain

VE(K ⊗M) ⊆
⋃

D∈M
res∗E,D(VD(K ⊗M ↓E

D)) ⊆
⋃

D∈M
res∗E,D(VD(K)).

For each D ∈M, choose a one dimensional class xD ∈ H1(E, Fp) such that the kernel of xD

is D. Then, it is clear that β(xD) is in the kernel of the restriction map resE,D, so we have

res∗E,D(VD(K)) = VE(ker resE,D) ⊆ VE(β(xD))

for each D. This gives
VE(K ⊗M) ⊆ VE(

∏
D∈M

β(xD)).

By Hilbert’s Nullstellensatz,

u = (
∏

D∈M
β(xD))r ∈ JE(K ⊗M)
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for some r > 0. Since JE(K ⊗M) = K ⊗ JE(M) and u ∈ H•(E, Fp), u lies in JE(M). �

Now, we are ready to prove Theorem 1.4, which is our main result in this section.

Proof of Theorem 1.4. (ii) ⇒ (i) Suppose that there exists a kG-module V such that M ⊕V
has a filtration

0 = L0 ⊆ L1 ⊆ · · · ⊆ Ln = M ⊕ V

where for each i = 1, . . . , n, the ith section Li/Li−1 is isomorphic to Wi ↑G
Hi

for some subgroup
Hi ∈ H and some kHi-module Wi. Applying the properties (ii) − (iv) listed in Lemma 5.1,
we obtain

VG(M) ⊆
⋃
i

VG(Wi ↑G
Hi

) =
⋃
i

res∗G,Hi
(VHi(Wi))

which gives
VG(M) ⊆

⋃
H∈H

res∗G,HVH(k).

Note that by property (v), we have

VG(M) ∩ res∗G,H(VH(k)) = res∗G,H(VH(M ↓G
H))

for all H ∈ H, so we obtain

VG(M) =
⋃

H∈H
res∗G,H(VH(M ↓G

H))

as desired.
(i) ⇒ (ii) Note that by Theorem 3.2, there exists a finitely generated kG-module V such

that k ⊕ V has a filtration

0 = L0 ⊆ L1 ⊆ · · · ⊆ Ln = k ⊕ V

where for every i = 1, . . . , n, the sections Li/Li−1 are isomorphic to Ωni(k) ↑G
Ei

for some
integer ni and some maximal elementary abelian p-subgroup Ei of G. Tensoring this system
with M , we obtain a filtration

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M ⊕ (M ⊗ V )

where Mi = M ⊗ Li, and hence

Mi/Mi−1
∼= (Li/Li−1)⊗M ∼= Ωni(k) ↑G

Ei
⊗M ∼= (Ωni(M ↓G

Ei
)⊕ Pi) ↑G

Ei

where Pi is a projective kEi-module. Since Ei is a p-group, Pi is a free kEi-module. Thus,

Mi/Mi−1
∼= Ωni(M ↓G

Ei
) ↑G

Ei
⊕Fi

for some free kG-module Fi.
If for some i ∈ {1, . . . , n}, the ideal JEi(M ↓G

Ei
) includes a product of Bocksteins of one

dimensional classes, then by Corollary 4.4 there is a finitely generated kEi-module W such
that Ωni(M ↓G

Ei
)⊕W has a filtration

0 = T0 ⊆ T1 ⊆ · · · ⊆ Tm = Ωni(M ↓G
Ei

)⊕W

with
Tj/Tj−1

∼= Ωmj (M ↓G
Dj

) ↑Ei
Dj

where for j = 1, . . . ,m, we have mj = ni + j − 1 and Dj is a maximal subgroup of Ei.
Inducing the entire filtration to G, we obtain a filtration

0 = S0 ⊆ S1 ⊆ · · · ⊆ Sm = Ωni(M ↓G
Ei

) ↑G
Ei
⊕W ↑G

Ei
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where Sj = Tj ↑G
Ei

and
Sj/Sj−1

∼= Ωmj (M ↓G
Dj

) ↑G
Dj

.

Finally, adding the free summand Fi to the last section, we obtain a filtration

0 = U0 ⊆ U1 ⊆ · · · ⊆ Um = (Mi/Mi−1)⊕W ↑G
Ei

where
Uj/Uj−1

∼= Ωmj (M ↓G
Dj

) ↑G
Dj
⊕Fj

for some free summand Fj (only the last section has a nontrivial free summand).
We can use this filtration to refine the original filtration for M ⊕ (M ⊗ V ) as follows: Let

Ûj denote the pre-image of Uj under the quotient map Mi ⊕W ′ → (Mi ⊕W ′)/Mi−1 where
W ′ = W ↑G

Ei
. We have

Mi−1 = Û0 ⊆ Û1 ⊆ · · · ⊆ Ûm = Mi ⊕W ′

with
Ûj/Ûj−1

∼= Uj/Uj−1
∼= Ωmj (M ↓G

Dj
) ↑G

Dj
⊕Fj .

Splicing this into the filtration

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mi−1 ⊆ Mi ⊕W ′ ⊆ Mi+1 ⊕W ′ ⊆ · · · ⊆ Mn ⊕W ′ = M ⊕ V ′

where V ′ = (M ⊗ V ) ⊕W ′, we obtain a new filtration for M ⊕ V ′ where the ith section is
replaced by a sequence of modules with quotients induced from maximal subgroups of Ei.
Applying this process to every section, we can assume that there is a kG-module V such that
M ⊕ V has a filtration

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M ⊕ V

with
Mi/Mi−1

∼= Ωni(M ↓G
Ei

) ↑G
Ei
⊕Fi

where Fi is a free kG-module and Ei is an elementary abelian p-group such that the ideal
JEi(M ↓G

Ei
) does not have any element which is a product of Bocksteins of one dimensional

classes. Note that by Proposition 5.2, this implies that for any collection of maximal sub-
groups Mi of Ei

VEi(M ↓G
Ei

) 6=
⋃

D∈Mi

res∗Ei,D(VD(M ↓Ei
D )).

We claim that this forces Ei to be conjugate to a subgroup H in H. To see this, consider
the following calculation. We have

VEi(M ↓G
Ei

) = (res∗G,Ei
)−1(VG(M)) ⊆

⋃
H∈H

(res∗G,Ei
)−1

(
res∗G,H(VH(k))

)
which gives

VEi(M ↓G
Ei

) ⊆
⋃

H∈H
VEi(k ↑G

H↓G
Ei

) =
⋃

H∈H

( ⋃
H\G/Ei

VEi(k ↑
Ei
gH∩Ei

)
)
.

From this we obtain
VEi(M ↓G

Ei
) =

⋃
L

res∗Ei,L(VL(M ↓Ei
L ))

where L runs over the subgroups of the form gH ∩ Ei over the set of double coset H\G/Ei

and over H ∈ H. But, no such equality exists for a collection of proper subgroups, so we
must have Ei = gH ∩Ei ≤ gH for every g ∈ H\G/Ei and H ∈ H. Thus Ei is conjugate to a
subgroup of some H ∈ H for all i = 1, . . . , n.
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To complete the proof, we observe that Ωni(M ↓G
Ei

) ↑G
Ei
∼= Ωni(M ↓G

Eg
i
) ↑G

Eg
i

for all g ∈ G,
so by replacing Ei’s with their conjugates, we can assume Ei’s are subgroups of H. Thus
M ⊕ V has a filtration with sections induced from subgroups in H. �

From the above proof it is clear that the following is also true.

Corollary 5.3. Let M be a kG-module, and H a collection of subgroups in G. Suppose that
there is a kG-module V such that M ⊕ V has a filtration

0 = L0 ⊆ L1 ⊆ · · · ⊆ Lm−1 ⊆ Lm = M ⊕ V

such that for each i = 1, 2, . . . ,m, the quotient module Li/Li−1 is induced from subgroups in
H. Then there exists a kG-module U such that M ⊕ U has a filtration

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M ⊕ U

such that for i = 1, . . . , n,

Mi/Mi−1
∼= Ωni(M ↓G

Ei
) ↑G

Ei
⊕Fi

where Fi is a free kG-module, and Ei is an elementary abelian p-group included in a subgroup
H in H.

In particular this tells us that if we have a filtration for a kG-module M where the sections
are induced modules, then there is a kG module U such that M ⊕ U has a filtration whose
sections are given in terms of M up to a free module. This could be useful for proving
theorems by induction for modules with complexity strictly smaller than the p-rank of the
group.

We conclude the paper with the proof of Corollary 1.5 stated in the introduction.

Proof of Corollary 1.5. It is enough to prove the result under the assumption that k is al-
gebraically closed. By Theorem 1.3, we have a filtration for Lζ with sections isomorphic to
Heller shifts of Mi’s. Thus

VG(Lζ) ⊆
n−1⋃
i=0

VG(Mi).

Since the modules M0, . . . ,Mn−1 are direct sums of modules induced from proper subgroups,
there is a collection M = {H1, . . . ,Hm} of maximal subgroups of G such that

VG(Lζ) ⊆
⋃
j

res∗G,Hj
(VHj (k)).

As in the proof of Lemma 5.2, we can choose one dimensional classes x1, . . . , xm ∈ H1(G, F2)
such that the kernel of xj is Hj for each j = 1, . . . ,m, and replace each res∗G,Hj

(VHj (k)) with
VG(xj). Note that by property (vii), we have VG(ζ) = VG(Lζ), so we obtain

VG(ζ) ⊆ VG(x1x2 · · ·xm).

Since H•(G, k) = H∗(G, k) is a polynomial algebra, we can apply Hilbert’s Nullstellensatz,
and conclude that there exists an integer t > 0, such that (x1x2 · · ·xn)t ∈ (ζ). This means
(x1x2 · · ·xn)t = a · ζ for some a ∈ H∗(G, k). Thus, ζ = xt1

1 · · ·xtn
n for some integers ti ≥ 0.

Let Xi be a two point G-set with isotropy Hi. Now, consider the G-sphere X defined as
the join of G-spheres Xi where we take ti copies of Xi for each i. The cellular homology of
X with coefficients in k gives an extension

0 → Hm(X, k) → Cm(X, k) → · · · → C1(X, k) → C0(X, k) → H0(X, k) → 0
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where each Cm(X, k) is a kG-module and m =
∑

i ti. Note that both H0(X, k) and Hm(X, k)
are isomorphic to k. We say a k by k extension E comes from a geometric group action on
a sphere if after choosing appropriate isomorphism for H0(X, k) ∼= k and Hm(X, k) ∼= k, the
resulting extension is equivalent to E. Since the Euler class of join of spheres is the product
of Euler classes, we can choose these isomorphisms to make the extension class equal to ζ. �

For p > 2, the situation is more complicated. In this case H•(G, k) is not a polynomial
algebra, so we do not have unique factorization. For example, if x1 and x2 are two one
dimensional classes then, we have (β(x1)+x1x2)p = β(x1)p. On the other hand, if we assume
that ζ is a class lying in the subalgebra generated by Bocksteins of one dimensional classes,
then there is a similar conclusion for ζ, namely, ζ is of the form λβ(x1) · · ·β(xn) for some
scalar λ ∈ k and one dimensional classes x1, . . . , xn in H1(G, Fp). A linear action on a sphere
such that the associated k-invariant is this product can easily be constructed using a direct
sum of one dimensional complex representations. Note that since for every ζ ∈ H•(G, k)
the p-th power ζp lies in the polynomial subalgebra, we can also conclude that for every ζ
satisfying the conditions of Corollary 1.5, the class ζp is a scalar multiple of a product of
Bocksteins of one dimensional classes in H1(G, Fp).

Acknowledgments: We thank the referee for careful reading of the manuscript and pointing
out a mistake in the earlier version of Corollary 1.5.
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