Abstract for the Eurasia-Pacific Summer School and Conference 2012 (Invited talk)

Neutron Scattering Study on the New Iron Selenide Superconductors

Wei Bao

Department of Physics, Renmin University of China, Beijing 100872, China

We determine using neutron and x-ray diffraction method the sample composition, crystalline structure and magnetic order of the recently discovered A₂Fe₄Se₅ superconductors (A=K, Rb, Cs, Tl/K or Tl/Rb). Contrary to initial belief derived from ARPES experiments that these materials are heavily electron-doped variety of the BaFe₂As₂ family of the Fe-based superconductors, they are almost charge balanced with the Fe valence close to 2+ as in the 11 family of iron selenide superconductors, and crystalize in an Fe vacancy-ordered lattice structure ^[1,2]. Coexisting with superconductivity is a novel block antiferromagnetic order which conforms to the tetragonal crystalline symmetry, different from all previous families of iron-based superconductor materials, and possesses a very large ordered magnetic moment $3.3\mu_{\rm B}$ per Fe and a very high ordering temperature above 500 K ^[3]. Such Fe vacancy ordered crystal structure and the block antiferromagnetism occur in all 5 types of new iron selenide superconductors discovered so far, discounting the initial incorrect quantum-critical-point picture. With Fe vacancy number departs from the chemical formulas $A_2Fe_4Se_5$, an imperfect version of the Fe vacancy order results at base temperature while phase separation into two vacancy-ordered phases exists at the intermediate temperature range ^[4]. The Fe site disorder renders the materials insulating through the Anderson weak localization mechanism and destroys the superconductivity, like spin-glass disorder does in previous 11 iron selenide superconductors ^[5].

References:

- [1] W. Bao et al., Chin. Phys. Lett. 28, 086104 (2011).
- [2] P. Zavalij etal., Phys. Rev. B 83, 132509 (2011).
- [3] F. Ye et al., Phys. Rev. Lett. 107, 137003 (2011).
- [4] W. Bao et al., arXiv: 1102.3674 (2011).
- [5] T.J. Liu et al., Nat. Materials 9, 716 (2010).