The Dirac Delta in Curvilinear Coordinates

The Dirac delta is often defined by the property
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There is no restriction in the number of dimensions involved and f(r) can be a scalar function or a
vector function. However, it is rather obvious that f(r) must be defined at the point Py(xo,yo,20). If
the function f(r) is a constant, e.g., unity, then one sees that the delta is normalized. As a result, it is
customary to speak of the delta as a symbolic representation for a unit source. However, the source is of
a unit magnitude in the sense that the integral of the delta over the coordinates involved is unity. If we
consider a three dimensional orthogonal curvilinear coordinate system with coordinates (&1, &2, &3) and
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then one expresses the Dirac delta d(r — rg) as follows:
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In spherical polar coordinates: & =1, &2 = 0, £&3 = ¢, we have
x=rsinfcosy, y=rsinfsinp, z=rcosh,

and
hi=1, hg=r, hg=rsin, dv=r’sinddrdddy,

and the corresponding Dirac delta is given by
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If one considers spherical coordinates with azimuthal symmetry, the p—integral must be projected out,
and the denominator becomes
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and consequently
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If the problem involves spherical coordinates, but with no dependence on either ¢ or 6, the denominator
becomes
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and one has
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Similarly, in cylindrical coordinates we have &1 = g, & = ¢, €3 = z, we have
hy =1, ho=p, hs3=1, dv= ododpdz,

and the corresponding forms for the Dirac delta are given by
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examples:
e The charge density due to a spherical shell with uniform charge @ is given by
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e Consider a ring of charge () and radius a oriented to lie in the xy plane with its centre coincident with
the origin.
> The charge density function expressed in cylindrical coordinates is
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> In spherical coordinates the charge density is

_ Qélp—a)5(0— /2

27r2sin 0

p(r)

To find the electric potential at an on-axis point: r = 2z, one refers to the expression
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Using spherical coordinates, and setting
dv' = r'?sin®dr'do’d¢’
r = 7'sin@ cosd’x +1'sin@ sin 'y + 1’ cos @'z
one obtains
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