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Abstract. The slope is an isotopy invariant of colored links with a distinguished
component, initially introduced by the authors to describe an extra correction term
in the computation of the signature of the splice. It appeared to be closely related
to several classical invariants, such as the Conway potential function or the Kojima
η-function (defined for two-components links). In this paper, we prove that the slope
is invariant under colored concordance of links. Besides, we present a formula to
compute the slope in terms of C-complexes and generalized Seifert forms.

1. Introduction

The slope is an isotopy invariant defined for so-called (1, µ)-colored links K ∪L (with
a distinguished component K given color 0) in rational homology spheres. It is closely
related to several classical invariants [DFL17, DFL22, DFL21], such as the Conway
potential and Kojima-Yamasaki η-function (defined for two-components links [KY79,
Jin88, Coc85]). To certain C×-valued characters of the group π1(S ⊂ L), viz. those trivial
on [K], see (2.2), the slope associates a complex number (possibly infinite). The torus of
characters preserving the coloring is naturally identified with the complex torus (C×)µ,
and the slope is a function on (a Zariski open subset of) the variety A(K/L) ⊂ (C×)µ

of admissible characters. This function is rational away from a certain singular locus
determined by the Alexander module of K ∪ L; however, in general, the values of the
slope are not determined by the Alexander module.

The aim of this paper is to show that the slope is invariant under colored concordance
of links, see Theorem 3.2, and to present a method to compute the slope in terms of
the Seifert forms of the colored link L with an extra piece of data, see Theorem 4.3. In
the case of algebraically split links of two components, the invariance of the slope under
colored concordance was known for certain values, viz. those where it: coincides with the
η-function [DFL22, Corollary 3.24]. In this paper we show that, outside a certain subset
of (C×)µ, the Knottennullstellen [NP17, CNT17], concordant links have the same slope.
More generally, for algebraically split links with an arbitrary number of components,
our result implies that a certain quotient of the Conway functions of K ∪ L and L is
invariant under colored concordance of K ∪ L (see Corollary 3.4), whereas the Conway
functions themselves are not concordance invariants (see [Kaw96]).

One can compute the slope directly from the definition using the Fox calculus; this is
explained in [DFL22, Section 3.2]. While allowing for easy computer assisted computa-
tions, this approach is not particularly useful when dealing with families of examples. In
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certain cases, the slope can also be computed as a quotient of the Conway polynomials
(see [DFL22, Theorem 3.1]), but this formula is inconclusive at the common roots of the
numerator and denominator (l’Hôpital’s rule does not work); in particular, it leaves wide
open the most interesting case where both polynomials vanish identically. In this paper
we suggest yet another method of computing the slope, using C-complexes. These were
introduced by Cooper [Coo82] and extended, in very recent years, by different groups
to compute many link invariants ([Cim04, CF08, CFT18, Mer21] among others) and to
study their properties ([DR17, DMO21, AADG20] among others).

The computation of the slope using C-complexes is particularly powerful when dealing
with families of examples as in [DFL22, Example 3.28] and [DFL21, Example 5.5]. For
the moment, our formula only works in the special case of K algebraically unlinked
from each monochrome component Li. For an algebraically split two component link,
the C-complex used in the computation is merely a Seifert surface.

The paper is organized as follows. In Section 2 we recall the construction and the basic
properties of the slope. Section 3 is devoted to the proof of the concordance invariance.
In Section 4 the computation of the slope in terms of (generalized) Seifert forms is given,
and the main formula is proved in Section 5.

2. Slopes

A µ-colored link is an oriented link L in S3 equipped with a surjective map π0(L)�
{1, . . . , µ}, called coloring. The union of the components of L given the same color
i = 1, . . . , µ is denoted by Li. Each link has a canonical maximal coloring, where each
component is given a separate color. In this special case, each Li is a knot.

We denote by X := S3 r TL the complement of a small open tubular neighborhood
of L. The group H1(X) is free abelian, generated by the classes mC of the meridians
of the components C ⊂ L. By convention, mC is oriented so that mC ◦ `C = 1 in ∂TC ,
where `C is a longitude and the orientation on ∂TC is that induced from X. The coloring
induces an epimorphism

ϕ : π1(X)� H :=

µ⊕
i=1

Zti

sending mC to ti whenever C ⊂ Li. A multiplicative character ω : π1(X) → C× is
determined by its values on the meridians, and the torus of characters preserving the
coloring (i.e., those that factor through ϕ) is naturally identified with the complex torus
(C×)µ. Through this identification, we set ωi := ω(ϕ(ti)) and, with a certain abuse of
the language, speak about a character ω = (ω1, . . . , ωµ). We define

ω−1 := (ω−11 , . . . , ω−1µ ), ω̄ := (ω̄1, . . . , ω̄µ), ω∗ := ω̄−1.

A character ω is called unitary if ω∗ = ω, i.e., |ωi| = 1 for all i = 1, . . . , µ. Unitary
characters constitute a torus (S1)µ ⊂ (C×)µ.

Given a topological space X and a multiplicative character ω : π1(X)→ C×, we denote
by H∗(X;C(ω)) the homology of X with coefficient in the local system C(ω) twisted
by ω. See [DFL22, Section 2] for more details.
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In this paper, we consider mainly colored links with a distinguished component. They
are (1, µ)-colored links, defined as (1 + µ)-colored links of the form

K ∪ L = K ∪ L1 ∪ . . . ∪ Lµ,

where the knot K is the only component given the distinguished color 0. The linking
vector of a (1, µ) colored link is `k(K,L) := (λ1, . . . , λµ) ∈ Zµ, where λi := `k(K,Li).

Definition 2.1. A character ω : π1(X) −→ C× on a (1, µ)-colored link K ∪ L is called
admissible if ω([K]) = 1; it is called non-vanishing if ωi 6= 1 for all i = 1, . . . , µ.

The variety of admissible characters is denoted A(K/L), and A◦(K/L) ⊂ A(K/L) is
the subvariety of admissible non-vanishing characters. Letting λ := `k(K,L), we have

(2.2) A(K/L) =
{
ω ∈ (C×)µ

∣∣ ωλ = 1
}
, A◦(K/L) = A(K/L) ∩ (C×r 1)µ,

where ωλ :=
∏
ωλii . In particular, if λ = 0, then A◦(K/L) = (C×r 1)µ.

Let XK = S3 r TK∪L be the complement of an open tubular neighborhood of K ∪L.
We abbreviate m := mK and ` := `K , where `K is the preferred (viz. unlinked with K)
longitude, also called Seifert longitude.

Remark 2.3. Any character ω ∈ (C×)µ extends to a natural character π1(XK) → C×
sending m to 1; for short, this extension is also denoted ω. In this language, the original
character ω is admissible if and only if ω(`) = 1.

We denote by ∂KXK = ∂TK the intersection of ∂XK with the closure of TK and
consider the inclusion

i : ∂KXK ↪→ ∂XK ↪→ XK .

If ω ∈ A◦(K/L), the induced homomorphism

(2.4) i∗ : H1(∂KXK ;C(ω))
'−→ H1(∂XK ;C(ω)) −→ H1(XK ;C(ω))

can be regarded as that induced by the inclusion ∂XK ↪→ XK of the boundary and the
space H1(∂KXK ;C(ω)) ' C2 is generated by the meridian m and Seifert longitude `.

Definition 2.5 (see [DFL22]). If Ker i∗ in (2.4) has dimension one, it is generated by a
single vector am+ b` for some [a : b] ∈ P1(C), and the slope of K ∪ L at ω ∈ A◦(K/L)
is defined as the quotient

(K/L)(ω) := −a
b
∈ C ∪∞.

This notion is extended to all characters ω ∈ A(K/L) by “patching” the components Li
on which ωi = 1. (This operation results in patching with solid tori the corresponding
boundary components of the manifold X := S3 r TL.)

Proposition 2.6 (see [DFL22]). The slope at a character ω ∈ A◦(K/L) is well defined
if and only if the two inclusion homomorphisms H1(K;C(ζ))→ H1(S

3rL;C(ζ)), ζ = ω
or ω∗, are either both trivial or both nontrivial. The slope is finite, (K/L)(ω) ∈ C, if
and only if both homomorphisms are trivial. C
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Note also (see [DFL22, Section 2.4] for details) that the slope is always defined on
a unitary character ω ∈ (S1)µ: in this case, by twisted Poincaré duality, Ker i∗ is a
Lagrangian subspace of

H1(∂KXK ;C(ω)) = H1(∂XK ;C(ω)),

cf. (2.4), with respect to the twisted intersection form and, hence, dim Ker i∗ = 1.
Recall (see, e.g., [Lib01]) that the characteristic varieties associated with a µ-colored

link L are the jump loci

Vr(L) :=
{
ω ∈ (C×)µ

∣∣ dimH1(X;C(ω)) > r
}
, r > 0.

They are indeed nested algebraic subvarieties:
A: We have never
introduced ∆L. We
decide it’s “classic
enough”? Who are
we to explain ∆ to
knot theorists? :)

(2.7) (C×)µ = V0 ⊃ V1 ⊃ V2 ⊃ . . . , with V1(L) =
{
ω
∣∣ ∆L(ω) = 0

}
.

The first proper characteristic variety, i.e., the first member Vr of the sequence (2.7) such
that Vr 6= (C×)µ, is denoted by Vmax := Vmax(L). This variety depends on L only and,
if λ := `k(K,L) = 0, it is a proper algebraic subvariety of the torus A(K/L) = (C×)µ
of admissible characters.

Is it a divisor by
any chance?
good idea to explain
the relation to K;
extended a little

Remark 2.8. If λ := `k(K,L) 6= 0, the situation is slightly more involved. Let λ = nλ′,
where λ′ ∈ Zµ is a primitive vector. In view of (2.2), the variety A(K/L) of admissible
characters (depending on λ only) splits over Q into irreducible components

Ad :=
{

Φd(ω
λ′) = 0

}
, d | n,

where Φd stands for the cyclotomic polynomial, and we should speak about a separate

first proper characteristic variety Vλ,dmax(L) ( Ad for each component Ad. In general,

Vλ,dmax(L) 6= Vmax(L)∩Ad as Vmax(L) may contain Ad. To keep the notation uniform, we

occasionally extend it to the case λ = 0 via A0 := A(K/L) and V0,0max(L) := Vmax(L).

Theorem 2.9 (see [DFL22, Theorems 3.19 and 3.21]). Let λ := `k(K,L). For each
notation fixed
throughout

rational component Ad ⊂ A(K/L), the slope restricts to a rational function, possibly

identical ∞, on the complement A◦d r V
λ,d
max(L). In other words, the slope gives rise to

an element of the extended function field Q(Ad) ∪∞.

If Vλ,dmax(L) = V1(L) ∩ Ad, i.e., ∆L does not vanish identically on Ad, one has

(K/L)(ω) = −∇
′(1,
√
ω)

2∇L(
√
ω)
∈ C ∪∞,

where ∇′ is the derivative of ∇K∪L(t, ·) with respect to t. C

3. Concordance of links

Two oriented µ-colored links L0 and L1 are concordant if there exists a collection of
properly embedded disjoint locally flat cylinders A := A1 t . . . t Aµ in S3 × [0, 1] such
that

∂Ai ∩ (S3 × 0) = −L0
i and ∂Ai ∩ (S3 × 1) = L1

i

for all i = 1, . . . , µ. (In general, each Ai is a union of cylinders.)
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3.1. The concordance invariance. In the study of knot and link concordance, there is
a subset of the complex numbers of particular relevance, the so-called Knotennullstellen.
This was first introduced in [NP17] for knots and extended to the multi-component link
case in [CNT17]. For our purposes, we only need the following definition. Consider the
subset of Laurent polynomials

U :=
{
p ∈ Z[t±11 , . . . , t±1µ ]

∣∣ p(1, . . . , 1) = ±1
}
.

An element ω ∈ A(K/L) is called a concordance root if there is a polynomial p ∈ U such
that p(ω) = 0. We denote by Ac(K/L) ⊂ A(K/L) the subset of admissible characters
that are not concordance roots and abbreviate A◦c(K/L) := Ac(K/L)∩A◦(K/L). Note
that these sets are larger than the set T! used in [CNT17], since we allow for non-unitary
characters.

Remark 3.1. If `k(K,L) = 0, the set Ac(K/L) is dense in A(K/L) = (C×)µ, as it is
a countable intersection of Zariski open sets. In general, Ac(K/L) is only dense in the
components Ad (see Remark 2.8) for which d is a prime power (or d = 1 as a special
case). Indeed, if d is not a prime power, then Φd(·) ∈ U and, hence, each point of Ad is
a concordance root.

Theorem 3.2. Let K0 ∪ L0 and K1 ∪ L1 be two concordant (1, µ)-colored links. Then
Ac(K0/L0) and Ac(K1/L1) coincide as subsets of (C×)µ and one has

(K0/L0)(ω) = (K1/L1)(ω)

for any character ω ∈ Ac(K0/L0).

The proof of Theorem 3.2 is postponed till §3.2. The next few corollaries are direct
consequences of Theorem 3.2 and Theorem 4.3 below.

Corollary 3.3. Let K0∪L0 and K1∪L1 be two concordant (1, µ)-colored links such that
`k(Ks, Ls) = 0, s = 0, 1. Then the slopes K0/L0 and K1/L1 are equal as elements of
the extended function field Q

(
(C×)µ

)
∪∞. In particular, (K0/L0)(ω) = (K1/L1)(ω) for

each character ω in the complement of the (common) first proper characteristic variety
Vmax(L0) = Vmax(L1). C

Proof. If L0 and L1 are concordant, their nullities coincide (see [CF08, Theorem 7.1]);
hence, so do their first proper characteristic varieties. Therefore, the statement is an im-
mediate consequence of Theorem 3.2, the rationality of the slope given by Theorem 2.9,
and the density of Ac(K/L) discussed in Remark 3.1. �

Corollary 3.4 (of Corollary 3.3 and Theorem 2.9). Let K0 ∪ L0 and K1 ∪ L1 be two
concordant (1, µ)-colored links such that `k(Ks, Ls) = 0 and ∆Ls 6≡ 0, s = 0, 1. Then

∇′K0∪L0(1, t̄)

∇L0(t̄)
=
∇′K1∪L1(1, t̄)

∇L1(t̄)
, t̄ := (t1, . . . , tµ). C

Remark 3.5. A priori, the conclusions of Corollaries 3.3 or 3.4 do not need to hold if

λ := `k(Ks, Ls) 6= 0: it is not even obvious that the first proper varieties Vλ,dmax(Ls) or
even their indices in (2.7) should coincide if d is not a prime power. (Note though that
we do not know any counterexample, as that would require going far beyond the known
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link tables.) The precise statements, based on Remarks 2.8 and 3.1 and Theorems 3.2
and 2.9, are left to the reader.

Recall that a link is slice if it is concordant to an unlink. It is a boundary link if the
components bound a collection of mutually disjoint Seifert surfaces in S3.

Corollary 3.6. If K ∪ L is a slice link, then (K/L)(ω) = 0 for all ω in Ac(K/L). C

Corollary 3.7. If K ∪ L is concordant to a boundary link, then (K/L)(ω) = 0 for all
ω in Ac(K/L) (and for any coloring used to define the slope). C

Corollary 3.7 is in fact a particular case of the following statement (see [CF08] or §4.1
below for the definition of C-complex).

Corollary 3.8. If K ∪ L is concordant to a (1, µ)-colored link K ′ ∪ L′ admitting a C-
complex F for L and a Seifert surface S for K disjoint from F , then (K/L)(ω) = 0 for
all ω ∈ Ac(K/L). C

The following example illustrates that the values of the slope at concordance roots,
that is outside the set Ac(K/L), might not be invariant under concordance. We observe
a similar pattern with knot signatures: Knotennullstelle unitary characters are precisely
where they fail to be concordance invariants [CL04, NP17]. See [CNT17] for the case of
colored links.

Example 3.9. Let K ∪L be the (1, 1)-colored two-component slice link L10n36, where
K is the unknotted component. One has ∇K∪L(t, t1) = 0 and ∇L(t1) = (t1 − 1 + t−11 )2;
hence, by Theorem 3.21 in [DFL22], (K/L)(ω) = 0 unless ω is one of the two roots α± of
∇L, which agrees with Theorem 3.2 and Corollary 3.4. (By definition, α± /∈ Ac(K/L).)
A computation using Fox calculus (see §3.2 in [DFL22]) gives us (K/L)(α±) =∞.

In the proof of Theorem 3.2 we will need the following lemma. We state it in our
more general setting of arbitrary, not necessarily unitary, characters, but the proof found
in [CNT17] extends literally as it relies on simple homological algebra.

Lemma 3.10 (Lemma 2.16 in [CNT17]). Let k > 0 be an integer. If (X,Y ) is a CW-
pair over BZµ such that Hi(X,Y ;Z) = 0 for all 0 6 i 6 k, then also Hi(X,Y ;C(ω)) = 0
for all 0 6 i 6 k and any character ω ∈ (C×)µ that is not a concordance root. C

3.2. Proof of Theorem 3.2. To save space, we abbreviate Hω
∗ (−) := H∗(−;C(ω)).

Let D ∪ A ⊂ S3 × [0, 1] be the concordance, ∂D = −K0 t K1, and consider an
open tubular neighborhood TD∪A of D ∪ A with a fixed trivialisation extending Seifert
framings (in the tubular neighborhoods TKs∪Ls := TD∪A ∩ (S3 × s), s = 0, 1) of the
links. Denote

U := S3 × [0, 1] r TA, UK := S3 × [0, 1] r TD∪A

and let
Xs := U ∩ (S3 × s), Xs

K := UK ∩ (S3 × s)
for s = 0, 1. The inclusions Xs

K ↪→ UK send the meridians of Ks ∪Ls to those of D∪A.
The relative Mayer–Vietoris exact sequences applied to

(S3 × I, S3 × s) = (UK , X
s
K) ∪ (T̄D∪A, T̄Ks∪Ls) = (U,Xs) ∪ (T̄A, T̄Ls)

http://katlas.math.toronto.edu/wiki/L10n36
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(where T̄∗ stands for the closure of a tubular neighborhood T∗) give us

(3.11) H∗(UK , X
s
K) = H∗(U,X

s) = 0

for s = 0, 1. In particular, the inclusions Xs
K ↪→ UK induce isomorphisms

(3.12) H1(X
0
K)

'−→ H1(UK)
'←− H1(X

1
K)

preserving the meridians and, thus, identify the three character tori. Since the trivial-
ization of TD homotopes `0 to `1, we have Ac(K0/L0) = Ac(K1/L1) (cf. Remark 2.3).

From now on, patching, if necessary, a few components of both links (and the con-
cordance), we can assume the character ω non-vanishing, ω ∈ A◦c(K0/L0). Referring to
Remark 2.3 and using the above identification of the character tori, we can regard ω as
a homomorphism π1(UK) → C×. The twisted Mayer–Vietoris sequence applied to the
pairs

(U,Xs) = (UK , X
s
K) ∪ (T̄D, T̄Ks)

gives us, for all i,

→ Hω
i (D × S1,Ks × S1)→ Hω

i (UK , X
s
K)⊕Hω

i (T̄D, T̄Ks)→ Hω
i (U,Xs)→,

where {·} × S1 are the meridians of Ks and D, on which ω is trivial. Since

Hω
∗ (D × S1,Ks × S1) = 0 and Hω

∗ (UK , X
s
K) = Hω

∗ (U,Xs) = 0,

the latter by Lemma 3.10 and (3.11), we obtain Hω
∗ (UK , X

s
K) = 0 and the inclusions

Xs
K ↪→ UK induce isomorphisms

Hω
1 (X0

K)
'−→ Hω

1 (UK)
'←− Hω

1 (X1
K)

preserving the meridians and, similar to (3.12), taking the class of `0 to that of `1. It
follows that am0 + b`0 = 0 ∈ Hω

1 (X0
K) if and only if am1 + b`1 = 0 ∈ Hω

1 (X1
K). �

4. Computation with Seifert forms

In this section, unless specified otherwise, we abbreviate

H∗(−) := H∗(−;C), H∗(−) := H∗(−;C), Hω
∗ (−) = H∗(−;C(ω)).

For a character ω ∈ (C×r 1)µ, we also abbreviate ω̃i := (1− ω−1i ), 1 6 i 6 µ.

4.1. Seifert forms. Let L = L1 ∪ . . .∪Lµ ⊂ be an oriented µ-colored link in S3. A C-
complex F for L is a collection of Seifert surfaces F1, . . . , Fµ for the sublinks L1, . . . , Lµ
that intersect only along (a finite number of) clasps. Each class in H1(F ;Z) can be
represented by a collection of proper loops, i.e., loops α : S1 → F such that the pull-
back of each clasp is a single segment (possibly empty). We routinely identify classes,
loops, and their images.

Given a vector ε ∈ {±1}µ, the push-off αε of a proper loop α is the loop in S3 r F
obtained by a slight shift of α off each surface Fi in the direction of εi. (If α runs along
a clasp c ⊂ Fi ∩ Fj , the shift respects both directions εi and εj .) Due to [CF08], this
operation gives rise to a well-defined homomorphism

Θε : H1(F ;Z)→ H1(S
3 r F ;Z) = H1(F ;Z)
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(we use Alexander duality), which can be computed by means of the Seifert forms

θε : H1(F ;Z)⊗H1(F ;Z)→ Z, α⊗ β 7→ `k(α, βε).

Now, given a character ω ∈ (C×r 1)µ, we define

Π(ω) :=

µ∏
i=1

(1− ωi) ∈ C×, A(ω) :=
∑

ε∈{±1}µ

µ∏
i=1

εiω
(1−εi)/2
i Θε : H1(F )→ H1(F )

and let

(4.1) E(ω) := Π(ω−1)−1A(ω−1) : H1(F )→ H1(F ).

Throughout the text we will use the shortcut notation KerE(ω)⊥ to denote the subset
of H1(F ) defined as Ann KerE(ω). It is straightforward that

E∗(ω) = E(ω−1), Ē(ω) = E(ω̄),

where: E∗ is the adjoint in the sense of linear algebra over an arbitrary field, and for
a linear map L : U ⊗ C → V ⊗ C between two complexified real vector spaces, we let
L̄ : u 7→ L(ū). In particular, if ω ∈ (S1 r 1)µ is unitary, the operator E(ω) is Hermitian,
i.e., Ē∗(ω) = E(ω); thus, it has a well-defined signature. Furthermore, if ω is unitary,
the operator E(ω−1) differs from H(ω) considered in [CF08] by the positive real constant
Π(ω)−1Π(ω̄)−1; hence, the two have the same signature and nullity and E can be used
instead of H in the following theorem.

Theorem 4.2 (see [CF08]). If ω ∈ (S1r1)µ is a non-vanishing unitary character, then
one has σL(ω) = signE(ω) and ηL(ω) = dim KerE(ω) + b0(F )− 1.

In the case of a 1-colored link L, the C-complex reduces to a single Seifert surface F ,
so that θ := θ+ and Θ := Θ+ are the classical Seifert form and operator, respectively.
Since, in this case, we obviously have θ− = θ∗ and, hence, Θ− = Θ∗, the operator E
takes the classical form

E(ω−1) = (1− ω)−1(Θ− ωΘ∗).

4.2. The statement. Let K ∪ L be a (1, µ)-colored link. Assume that λ, the linking
vector between K and L, vanishes and fix a C-complex F for L disjoint from K. By
Alexander duality H1(S

3 r F ;Z) = H1(F ;Z), there is a well-defined cohomology class

κ := [K] ∈ H1(F ;Z) ⊂ H1(F ), κ : α 7→ `k(α,K).

Theorem 4.3. Under the above assumptions, for any character ω ∈ A◦(K/L), consider
the operator E(ω) : H1(F )→ H1(F ), see (4.1). Then

(K/L)(ω) =


−〈α, κ〉, if κ ∈ ImE(ω) ∩KerE(ω)⊥,

∞, if κ /∈ ImE(ω) ∪KerE(ω)⊥,

undefined, otherwise,

where, in the first case, α ∈ H1(F ) is any class such that E(ω)(α) = κ.
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a

K

a′

b

b′

L

F

Figure 1. The Whitehead link K ∪ L with a C-complex F for L (a
Seifert surface in this case) and chosen bases {a, b} and {a′, b′} of H1(F )
and H1(S

3 r F ) = H1(F ) respectively.

Example 4.4. Consider the Whitehead link K ∪ L with the C-complex F depicted
in Figure 1, which is simply a genus one Seifert surface for the knot L. We want to
compute the slope (K/L)(ω) using Theorem 4.3 and to this end we fix the basis {a, b}
of H1(F ) and {a′, b′} of H1(S

3 r F ) = H1(F ) which are illustrated in Figure 1. With
respect to these bases we have:

θ+ =

[
0 0
1 1

]
, A(ω) =

[
0 −ω
1 1− ω

]
, E(ω) =

[
0 (1− ω)−1

(1− ω−1)−1 1

]
.

It is evident from the figure that κ is the same class as a′. One can easily compute a
class α ∈ H1(F ) such that E(ω)(α) = κ:

E(ω)

[
(1− ω−1)(ω − 1)

1− ω

]
=

[
1
0

]
= κ

Finally, we calculate the slope as −〈α, κ〉, that is,

(K/L)(ω) = (1− ω)(1− ω−1),
which coincides with previous computations using Fox calculus (see [DFL22]).

5. Proof of Theorem 4.3

5.1. Geometry of C-complexes. The notation and maps introduced in this section
are illustrated in Figure 2. Let L be a µ-colored link and F , a C-complex for L. Given
a pair i 6= j of indices, let Cij := Fi ∩ Fj and Cij := π0(Cij) be the set of clasps in the
intersection of the surfaces Fi and Fj . Denote also C :=

⋃
Cij and C :=

⋃
Cij .

By convention, each clasp c ∈ Cij is oriented from c ∩ Li to c ∩ Lj , if i < j. The sign
of c, denoted by sg c ∈ {±1}, is the local intersection index Li ◦ Fj = Lj ◦ Fi at the
corresponding endpoint of c.

Fix a regular open neighborhood V ⊂ F of the union of all clasps, denote by V̄ its
closure, and let F ◦i := Fi r V for all i. Then, we have ∂F ◦i = ∂LF

◦
i ∪ ∂CF ◦i , where

∂LF
◦
i := ∂F ◦i ∩ L, ∂CF

◦
i := ∂F ◦i ∩ V̄ .

Given a clasp c ∈ Cij , let V̄c be the connected component of V̄ containing c, and let
ci ∈ H1(F

◦
i , ∂LF

◦
i ) be the arc F ◦i ∩ V̄c, with its boundary orientation induced from V , as

well as the class realized by this arc.
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α++
1

Θ−+α−Θ++α

L1 L2

F1 F2

α

b

c

+ +

c1 c2

b1 b2

Figure 2. This minimal example shows a two colored link L = L1 ∪L2

bounding a C-complex with two positive claps. In this example C =
C12 = {c, b}. The lined subset is the open set V with two connected
components Vc and Vb. The relative class α++

1 ∈ H1(F
◦
1 , ∂LF

◦
1 ) and the

element Θ−+α − Θ++α = rel++
1 α ∈ H1(F ) are identified through the

isomorphism in Lemma 5.1.

The following statement is a formalization of the intuitive fact that any class in H1(F )
can be represented as the intersection index with a certain surface S ⊂ S3 such that
∂S ∩ F = ∅; on the other hand, any such surface can be made disjoint from C and,
when doing so, each clasp can be “circumvented” in two ways.

Lemma 5.1. The intersection pairing establishes an isomorphism

H1(F ) =

µ⊕
i=1

H1(F
◦
i , ∂LF

◦
i )
/{

ci + cj = 0
∣∣ c ∈ Cij , 1 6 i < j 6 µ

}
.

Proof. Since all groups involved are torsion free, the statement follows from the exact
sequence of the pair (F, V̄ ):

0 −→ H1(F ) −→ H1(F, V̄ ) −→ H0(V̄ ) −→ H0(F ),

where H1(F, V̄ ) =
⊕

iH1(F
◦
i , ∂CF

◦
i ). Then, there remains to apply Poincaré–Lefschetz

duality H1(F ◦i , ∂CF
◦
i ) = H1(F

◦
i , ∂LF

◦
i ). �

Let ε ∈ {±1}µ. Pick a class α ∈ H1(F ), represent it by a proper loop, and denote by
αεi ∈ H1(F

◦
i , ∂LF

◦
i ) the class realized by the arc α ∩ Fi pushed off each clasp c ∈ Cij in

the direction prescribed by εj . Passing further to the image in H1(F ), see Lemma 5.1,
we obtain a well-defined homomorphism relεi : H1(F ) → H1(F ). It is easily seen that
relεi is independent of εi. In fact,

relεi α = Θε[−i]α−Θε[+i]α,

where ε[±i] is obtained from ε by replacing the i-th component by ±1. Furthermore,
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ci

Fi Fj

relij α

α

+ +

ci

Fi Fj

relij α

α

+ −

Figure 3. In this figure, the element α ∈ H1(F ) is depicted with both
possible orientations. The orientation of the element relij α depends on
the sign of the clasp, as illustrated. Remark that the element relij α is
by definition in H1(F ): the green curve depicted is a representative of
that element via Lemma 5.1.

for an index j 6= i, we have

(5.2) rel
ε[+j]
i α− rel

ε[−j]
i α = relij α :=

∑
c∈Cij

sg c · 〈α, ci〉ci.

For the reader’s convenience a local illustration is presented in Figure 3. (Note that
〈α, ci〉ci = 〈α, cj〉cj for each clasp c ∈ Cij and, hence, relij α = relji α as elements
of H1(F ).) Let − := [−1, . . . ,−1] ∈ {±1}µ. Then, applying the last two equations
inductively, for each ε ∈ {±1}µ we get

(5.3) Θεα−Θ−α = −
∑
i : εi>0

rel−i α−
∑

i<j : εi=εj>0

relij α.

Remark 5.4. It follows from (5.3) that, as in the classical case of a single Seifert
surface, all operators Θε are almost determined by any one of them, as the relativization
homomorphisms relεi and relij are intrinsic to the abstract C-complex F with prescribed
signs sg c of the clasps. In the classical case, (5.3) takes the well-known form

Θ∗ −Θ = rel : H1(F )→ H1(F, ∂F ) = H1(F ),

which explains the notation rel.

Now, given a character ω ∈ (C×r 1)µ, observe that

A(ω) = Π(ω)Θ− +
∑

ε∈{±1}µ

µ∏
i=1

εiω
(1−εi)/2
i (Θε −Θ−).

Hence, using (5.3), rearranging the terms, and using the definition ω̃i = 1 − ω−1i , we
arrive at

(5.5) E(ω) = Θ− −R(ω), R(ω) :=

µ∑
i=1

ω̃−1i rel−i +
∑

16i<j6µ

ω̃−1i ω̃−1j relij .

5.2. Reference sheets. We briefly recall how twisted homology can be computed via
coverings. Consider a connected CW-complex X, an abelian group G, and an epimor-
phism ϕ : π1(X) � H1(X;Z) � G. The kernel of ϕ, which is a normal subgroup of

π1(X), gives rise to a Galois G-covering X̃ → X, where the deck transformation g ∈ G
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Figure 4. A minimal example of the set FL = (F ∪ T̄ )rT consisting of
the gray shaded surface together with the two depicted tori. The lined
subset is V̄L. To the right we have a copy of a connected component of
V̄L with the subset ∂LV̄L highlighted in red.

sends a point x̃ ∈ X̃ to the other endpoint of the arc that begins at x̃ and covers a
loop representing an element of ϕ−1(g). This model induces a structure of Z[G]-module

on C∗(X̃) and, for each multiplicative character ω : G→ C×, there is a canonical chain
isomorphism of complexes of C(ω)-modules

C∗(X;C(ω)) ' C∗(X̃)⊗ZG C(ω).

Occasionally, the homomorphism ϕ : H1(X;Z)→ G might not necessarily be surjective.
(Typically, this situation occurs when we restrict the construction to a subcomplex

Y ⊂ X.) Then, letting G′ := Imϕ, the G-covering X̃ consists of [G : G′] connected

components, each isomorphic to the G′-covering X̃ ′, and we have

C∗(X̃) ' C∗(X̃ ′)⊗ZG′ ZG.

However, this isomorphism is no longer canonical: to make it such, we need to fix a
reference component X̃ ′ ⊂ X̃. An important special case is that where the restriction
of ω to X is trivial. Then we have an isomorphism

H∗
(
C∗(X̃)⊗ZG C(ω)

)
' Hω

∗ (X) = H∗(X),

canonical provided that a reference sheet X in the trivial covering X̃ → X is fixed.
Back to the original set-up, when dealing with the twisted homology, we need to avoid

the ramification locus L. Hence, we fix pairwise disjoint tubular neighborhoods Ti ⊃ Li
and, denoting by T̄i the closure of Ti and letting T :=

⋃
i Ti, T̄ :=

⋃
i T̄i, introduce

SL := S3 r T, FL := (F ∪ T̄ ) r T ⊂ SL, CL := C r T,

V̄L := V̄ r T, ∂LV̄L := V̄L ∩ T̄ ,

see Figure 4. Here, V ⊃ C is the neighborhood introduced in §5.1, and we assume the
radius of T so small that Fi ∩ T̄j ⊂ V for each i 6= j.

Formally, we also need to shrink the surfaces F ◦i to F ◦i r T , changing the boundary
∂LF

◦
i to (F ◦i r T ) ∩ T̄ ; however, using the obvious isomorphisms in (co-)homology, we

keep the notation (F ◦i , ∂LF
◦
i ) for these new pairs.
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We make use of the isomorphisms

Hω
∗ (SL, FL) ' H∗(SL, FL) = H∗(S, F ),(5.6)

Hω
∗ (F ◦i , ∂LF

◦
i ) ' H∗(F ◦i , ∂LF ◦i ),(5.7)

Hω
∗ (V̄L, ∂LV̄L) = Hω

∗ (CL, ∂CL) ' H∗(CL, ∂CL) = H∗(C, ∂C),(5.8)

etc., and, in order to fix the (not quite canonical in the context of a common G-covering)
isomorphisms denoted by ', we need a coherent choice of reference sheets, upon which
we change the notation to =. (The other isomorphisms are standard combinations of
excision and homotopy equivalences and, thus, are canonical.) To this end, we consider a
“negative” collar (trace of the push-off in the negative direction) N := (−δ, 0)×(F rT ),
δ � radius(T̄ ), and, letting S′L := SL rN , use excision to identify

H∗(SL, FL) = H∗(S
′
L, ∂S

′
L), Hω

∗ (SL, FL) = Hω
∗ (S′L, ∂S

′
L).

Since the covering is obviously trivial over S′L, we can choose and fix a reference sheet

S′L ⊂ S̃L and use it for (5.6). There remains to observe that this sheet contains a single
copy of each of F ◦i and CL, which are used for (5.7) and (5.8), respectively.

Convention 5.9. We have then Hω
2 (SL, FL) = H2(SL, FL) and H1(FL) = Hω

1 (FL). For
the twisted boundary operators like

H2(SL, FL)→ H1(FL),

we assume that ∂ω =
∑

i(∂
− + ω−1i ∂+), where ∂+ is the lower boundary (the + super-

script is related to the orientation conventions.)

Convention 5.10. The “reference lift” of a loop is the loop in the covering whose end
point is in the reference sheet.

5.3. The homology of F . Throughout this section, we assume that F is connected
and that κ 6= 0. Recall from Lemma 5.1 that H1(F ) is a quotient of

⊕
H1(F

◦
i , ∂LF

◦
i )

by relations of the form ci + cj = 0. We deduce the following description of the twisted
homology of F .

Lemma 5.11. The assignment τ : H1(F )→ Hω
1 (FL, ∂T̄ ) = Hω

1 (FL)

µ∑
i=1

αi 7−→ inclusion∗

µ⊕
i=1

ω̃iαi, αi ∈ H1(F
◦
i , ∂LF

◦
i ),

is a well-defined isomorphism.

Proof. The isomorphisms Hω
∗ (FL, ∂T̄ ) = Hω

∗ (FL) follow from the assumption ωi 6= 1 for
each i and, hence, Hω

∗ (∂T̄ ) = 0. We compute Hω
1 (FL, ∂T̄ ) using the relative Mayer–

Vietoris sequence associated to the decomposition F r T = V̄L ∪
(⋃µ

i=1 F
◦
i

)
:

(5.12) Hω
1 (∂V̄L, ∂LV̄L) −→ Hω

1 (V̄L, ∂LV̄L)⊕
µ⊕
i=1

Hω
1 (F ◦i , ∂LF

◦
i )

p−→ Hω
1 (FL, ∂T̄ )→ 0,

the last term being Hω
0 (∂V̄L, ∂LV̄L) = 0, see (5.8) and Figure 4. By (5.8), we also

have Hω
1 (∂V̄L, ∂LV̄L) =

⊕
Cci, the summation running over all c ∈ Cij and all pairs
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mj ωjmj

mi

ωimi

ω2
imi

c

ω−1j c

ωic

ω−1i c

ωjc

cjci

c

mimj

Fi
Fj

ω−1j mj

Figure 5. To the left is a local picture of a positive clasp with i < j. To
the right, the schematics of the behavior of the lifted curves on a covering
space. Shown in red are the chosen reference lifts.

1 6 i 6= j 6 µ. The inclusions induce the homomorphisms

(5.13)
ci 7→ ci ∈ Hω

1 (F ◦i , ∂LF
◦
i ) = H1(F

◦
i , ∂LF

◦
i ), see (5.7),

ci 7→ sg(j − i) · sg c · ω̃jc ∈ Hω
1 (V̄L, ∂LV̄L) =

⊕
c∈CCc.

(To follow the above formulas, the reader might find helpful the schematics of the behav-
ior of the twisted homology in Figure 5.) Identifying the two images of each generator ci,
we conclude that the inclusions F ◦i ↪→ FL induce an isomorphism

µ⊕
i=1

H1(F
◦
i , ∂LF

◦
i )
/{
ω̃ici + ω̃jcj = 0

∣∣ c ∈ Cij
}

= Hω
1 (FL, ∂T̄ ),

and the isomorphism in the statement follows from Lemma 5.1. �

Corollary 5.14 (of the proof). Given a proper loop α ⊂ F , consider its push-off α−

and its “trace” S− ⊂ S3, i.e., a cylinder contained in a regular neighborhood of α and
such that S− ∩ F = α and ∂S− = α − α−. Then, the twisted boundary ∂ωS− + α− is
equal to τ

(
R(ω)(α)

)
∈ Hω

1 (FL), see (5.5) and Lemma 5.11.

Proof. Clearly, ∂ωS− + α− is homologous to the image under p in (5.12) of the cycle
µ∑
i=1

rel−i α+
∑

16i<j6µ

∑
c∈Cij

〈α, ci〉c,

(see Figure 6 for a simple example.) Then, by (5.13), for all i < j and c ∈ Cij , we have

c = sg c · ω̃−1j ci in Hω
1 (FL) and, using (5.2), we obtain

µ∑
i=1

rel−i α+
∑

16i<j6µ

ω̃−1j
∑
c∈Cij

sg c〈α, ci〉ci
(5.2)
===

µ∑
i=1

rel−i α+
∑

16i<j6µ

ω̃−1j relij α

=

µ∑
i=1

ω̃i

(
ω̃−1i rel−i α+

µ∑
j=i+1

ω̃−1i ω̃−1j relij α︸ ︷︷ ︸
Ri

)
.
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rel−1 α

L1 L2

F1 F2

α

〈α, c1〉c
+ +

c1 c2

b1 b2

rel−2 α

α−

〈α, b1〉b

Figure 6. The push off α− is to be thought of as located “behind” the
surface F1 ∪ F2. With the orientations depicted, together α and −α−
are the obvious boundary of the cylinder S− (not in the picture). The
different elements of the cycle described at the beginning of the proof of
Corollary 5.14, rel−i α and 〈α, ci〉c, are highlighted.

Now, by (5.5), each Ri is the i-th component of (a representative of) R(ω)(α), and the
statement follows from the definition of τ in Lemma 5.11. �

We proceed with the computation of the twisted homology of SL and SL r K. We
have fixed isomorphisms

Hω
∗ (SL, FL) = H∗(S, F ), Hω

∗ (SL rK,FL) = H∗(S rK,F ),

see (5.6). In particular,

Hω
1 (SL, FL) = Hω

1 (SL rK,FL) = 0

(recall that we assume F connected and κ 6= 0) and, by the respective exact sequences
of pairs (S, F ) and (S rK,F ),

Hω
2 (SL, FL) = H1(F ), Hω

2 (SL rK,FL) = Kerκ ⊂ H1(F ).

Now, from the corresponding twisted exact sequences, and with the isomorphism τ given
by Lemma 5.11 taken into account, we arrive at

(5.15) Hω
1 (SL) = H1(F )/ Im d, Hω

1 (SL rK) = H1(F )/d(Kerκ),

where d is the composed map

(5.16) d : H1(F )
∂−1

−→ H2(S, F ) = Hω
2 (SL, FL)

∂ω−→ Hω
1 (FL)

τ−1

−→ H1(F ).

5.4. The twisted homomorphisms. We still assume that F is connected and κ 6= 0.
By (5.15), for X := SL or X := SL rK, we have natural epimorphisms

(5.17) πX : H1(F ) −� Hω
1 (X).

Composing the inclusion with Alexander duality, we obtain a homomorphism

D: Hω
1 (X r FL) = H1(X r FL)→ H1(S

3 r F )
'−→ H1(F ).
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Consider also the “orthogonal projection”

prX : Hω
1 (X r FL) −→ Hω

1 (X r FL),

α 7−→ α if X = SL,

α 7−→ α− `k(α,K)m if X = SL rK.

Lemma 5.18. For X = SL or SL rK and any class α ∈ Hω
1 (X r FL), the image of

prX(α) under the inclusion homomorphism Hω
1 (X r FL)→ Hω

1 (X) is πX(D(α)).

Proof. The statement is a geometric version of Lemma 5.11. The class α′ := prX(α) is
represented by a cycle in X r FL, which bounds a Seifert surface G ⊂ S3 rK. (This is
why we subtract `k(α,K)m in the case X = SL rK: we want a Seifert surface disjoint
from K.) Set GL := G ∩ SL. We can choose the surface GL so that it cuts on F a
collection of arcs αi ⊂ F ◦i with ∂αi ⊂ ∂LF ◦i . Then, D(α′) is represented by

µ∑
i=1

αi ∈
µ⊕
i=1

H1(F
◦
i , ∂LF

◦
i ) −→ H1(F ),

see Lemma 5.1, whereas the twisted boundary is

(5.19) ∂ωGL − α′ = −
µ∑
i=1

ω̃iαi = −τ(D(α)),

cf. Lemma 5.11, implying that α′ = τ(D(α)) in Hω
1 (X). �

Corollary 5.20. For X = SL or SL rK, let α ∈ Hω
1 (X rFL) be the class of [K] or `,

respectively. Then, the image of α in Hω
1 (X) is πX(κ). C

Lemma 5.21. The homomorphism d in (5.16) equals −E(ω).

Lemma 5.22. For each α ∈ H1(F ), one has

πSLrK
(
E(ω)(α)

)
= −〈α, κ〉m

in Hω
1 (SL rK), see (5.17).

Proof of Lemmas 5.21 and 5.22. Let α ⊂ F be a proper loop and consider its push-off
α− ⊂ S3 r (K ∪ F ). Let S− be the trace cylinder as in Corollary 5.14, and let G be
a Seifert surface bounded by α−. (For Lemma 5.22, we replace α− with its projection
pr(α−) = α− − 〈α, κ〉m in order to keep S in S3 rK; details are left to the reader.)

Defining GL := G ∩ SL and letting S̄ := GL ∪ S−, we have ∂S̄ = α. On the other
hand, the twisted boundary

∂ωS̄ = (∂ωS− + α−) + (∂ωGL − α−) = τ
(
R(ω)(α)

)
−τ
(
Θ−(α)

)
is given by Corollary 5.14 and (5.19), and the statements follow from (5.5). �

Corollary 5.23 (of Lemma 5.21 and (5.15)). There are canonical, up to multiplication
by integral powers of ωi’s, isomorphisms

Hω
1 (SL) = H1(F )/ ImE(ω), Hω

1 (SL rK) = H1(F )/E(ω)(Kerκ). C
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β

F F ′

Figure 7. To the left a local picture of a disconnected C-complex F .
To the right, the complex F ′, obtained by adding a pair of close clasps
to F . We have H1(F

′;Z) = H1(F ;Z)⊕ Zβ.

Proof of Theorem 4.3. If κ = 0, then K bounds a Seifert surface disjoint from F and,
hence, K/L ≡ 0, which agrees with the statement of the theorem.

Therefore, till the rest of the proof we assume that κ 6= 0. Assume also that F is
connected, so that we can use the results of §5.3 and §5.4. Abbreviate E := E(ω), so
that E∗ = E(ω−1) and KerE⊥ = ImE∗. Then, in view of Corollary 5.23, the last two
cases in the statement, as well as the finiteness of the slope in the first case, are given by
Proposition 2.6. To compute this finite slope in the first case, we compare Corollary 5.20
and Lemma 5.22: if κ = E(α), then ` = −〈α, κ〉m in Hω

1 (SL rK).
Finally, if F is not connected, we can reduce inductively the number of components by

introducing pairs of close clasps as in Figure 7. If F ′ is obtained from F by introducing
one such pair, connecting two distinct components, then H1(F

′;Z) = H1(F ;Z) ⊕ Zβ,
where β is a small proper loop running through the two clasps, and, extending the
existing pair of dual bases by β ∈ H1(F ) and β∗ ∈ H1(F ), the other data are

Θ′ε = Θε ⊕ [0], κ′ = κ⊕ [0].

Obviously, this modification does not affect the result of the computation. �
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Marginal notes

1/ 4: A: We have never introduced ∆L. We decide it’s “classic enough”? Who are we to
explain ∆ to knot theorists? :)

2/ 4: Is it a divisor by any chance? good idea to explain the relation to K; extended a
little

3/ 4: notation fixed throughout
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