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Abstract. We prove the sharp upper bound of at most 52 lines on a complex

K3-surface of degree 4 with a non-empty singular locus. We also classify the

configurations of more than 48 lines on smooth complex quartics.

1. Introduction

Our main goal is to present an approach to study large line configurations on
complex projective K3-quartics. In particular, we prove the following theorem.

Theorem 1.1 (see §7.2). Let X4 ⊂ P3(C) be a degree 4 K3-surface with non-empty
singular locus. Then X4 contains at most 52 lines. Moreover, each K3-quartic with
at least 49 lines contains four coplanar lines.

The above bound is sharp: the existence of a complex K3-quartic with 52 lines
and non-empty singular locus (two simple nodes) was shown by the first named
author in 2016 (via Torelli’s theorem, see [6, Theorem 1.10]) and the equation of
the surface in question was found by D. Veniani, see [25, Example 5.5].

We conjecture that the quartic surface discovered in [6, Theorem 1.10] is the
only quartic that attains the bound of Theorem 1.1, but the proof of this fact is
beyond the scope of this paper.

It is well-known that the complexity of large line configurations on projective
K3-surfaces decreases as the degree d of the polarization grows. In particular, a
complete classification of close to maximal configurations is known for octics (see
[2, Theorem 1.1]) and sextics (to appear in [3]): the respective upper bounds are
32 and 36 in the presence of a singularity vs. 36 and 42 in the smooth case. In
contrast, even though quartic surfaces with singular points have been a subject of
intensive study ever since the 19-th century (see, e.g., the classical treatise [12]),
hardly anything is known about large line configurations on such surfaces. The
main reason is the existence of the so-called triangular configurations on quartics
(see §2.4 for the definition) — a property that drastically increases the complexity
of the problem. Here, we circumvent this difficulty with the help of the so-called
triangular sets introduced in §3.

One can easily check that the degree-d Fermat surface (over C) contains exactly
3d2 lines for d > 2. Moreover, for almost all integers d the Fermat surface is the
best known example of a smooth complex projective surface with many lines, and
the question whether smooth degree-d surfaces with more lines exist remains open.
To illustrate the power of our approach, we refine the results of [8] and classify
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Table 1. Smooth complex quartics with at least 49 lines

Γ |Aut Γ| |SymX4| (r, c) NS(X4)⊥

X64 4608 (192, 1493)6 (1, 0) [8, 4, 8]
X′60 480 (60, 5)2 (1, 0) [4, 2, 16]
X′′60 240 (60, 5)2 (0, 1) [4, 1, 14]
X56 128 (16, 11)4 (0, 1) [8, 0, 8]
Y56 64 (16, 8)2 (1, 0) ∗[2, 0, 32]
Q56 384 (48, 50)2 (1, 0) [4, 2, 16]
X54 384 (24, 12)2 (1, 0) [4, 0, 24]
Q54 48 (8, 5) (1, 0) [4, 2, 20]
X′52 24 (3, 1) (1, 0) [8, 4, 12]
X′′52 36 (6, 1) (1, 0) [4, 2, 20]
X′′′52 320 (20, 3)4 (1, 0) [10, 0, 10]
Xv

52 32 (4, 1)2 (1, 0) [10, 4, 10]
Y′52 8 (4, 1)2 (1, 0) ∗[2, 0, 38]

(0, 1) [8, 2, 10]
Y′′52 8 (4, 2)2 (1, 0) ∗[2, 1, 40]

(0, 1) [4, 1, 20]
(0, 1) [8, 1, 10]

Z52 384 (12, 3)2 (1, 0) ∗U(2)⊕ [24]
(52) 384 (8, 5) (1, 0) [−8]⊕ [4, 2, 4]
Q′52 64 (8, 5) (1, 0) [4, 0, 24]
Q′′52 64 (16, 11) (0, 1) [8, 4, 12]
Q′′′52 96 (4, 1)6 (1, 0) [10, 5, 10]
X51 12 (6, 1) (0, 1) [4, 1, 22]

(1, 0) [6, 3, 16]
X′50 18 (3, 1) (1, 0) [4, 2, 28]
X′′50 12 (3, 1) (2, 0) [4, 0, 24]
X′′′50 16 (2, 1)2 (0, 1) [4, 0, 24]
Z50 160 (10, 1)2 (1, 0) U(5)⊕ [4]
(50) 96 (8, 5) (1, 0) ∗U(2)⊕ [28]
Z49 36 (3, 1) (1, 0) ∗U(2)⊕ [28]

all configurations of at least 49 lines on smooth quartics (i.e., the configurations
that are larger than the one on the Fermat quartic). Remarkably, compared to
[8], we found but three new configurations: one of rank 20 (Q′′′52 previously found
in [6]) and two of rank 19 (designated as (52) and (50) in Table 1). On the other
hand, there are at least 28 configurations of 48 lines on smooth quartics, giving
yet another reason why 48 is a reasonable threshold (cf. also Proposition 5.6 and
Remark 4.11 below).

Theorem 1.2 (see §7.3). Up to isomorphism, there are 26 configurations of at least
49 lines on smooth quartic surfaces, see Table 1. They are realized by 34 singular
(aka projectively rigid) surfaces (18 real and 8 pairs of complex conjugate) and five
connected 1-parameter families.

As a consequence, we answer a question left open in [8, Addendum 1.4].
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Addendum 1.3 (see §7.4). The complete list of values taken by the number of real
lines on a real smooth quartic is

{0, 1, . . . , 49, 50, 52, 56}.
The configurations of more than 48 real lines on a real smooth quartic are those
marked with a ∗ in Table 1.

Listed in Table 1 are:

• the name of the configuration Γ (mostly following [8]); the subscript always
refers to the number of lines (vertices of Γ);
• the size of the group Aut Γ of abstract graph automorphisms of Γ;
• the group SymX4 of simplectic automorphisms of a generic quartic X4 with

the given Fano graph, in the form (size, index), referring to the SmallGroup
library in GAP [9]; the superscript is the index of SymX4 in the full group
Aut(X4, h) of projective automorphisms of X4 (if greater than 1);
• the numbers (r, c) of, respectively, real and pairs of complex conjugate

components of the equilinear moduli space;
• the (generic, if rk > 3) transcendental lattice T := NS(X4)⊥; it is marked

with a ∗ if the corresponding deformation family has a real quartic with all
lines real (see [8, Lemma 3.8]).

If T is not determined by Γ, each lattice is listed in a separate row (following the
main entry), and the numbers (r, c) of components are itemized accordingly.

As in [5], we use the following notation for common integral lattices:

• [a] := Zu is the lattice of rank 1 given by the condition u2 = a;
• [a, b, c] := Zu+ Zv, u2 = a, u · v = b, v2 = c, is a lattice of rank 2; when it

is positive definite, we assume that 0 < a 6 c and 0 6 2b 6 a: then, u is a
shortest vector, v is a next shortest one, and the triple (a, b, c) is unique;

• U := [0, 1, 0] is the unimodular even lattice of rank 2;
• L(n) denotes the lattice obtained by the scaling of a given lattice L by a

fixed integer n ∈ Z.

In general, we maintain the standard notation for various objects associated to a
lattice L (the determinant, discriminant group, etc.) —see, e.g., [1, 16]. The inertia
indices of the quadratic form L⊗ R are denoted by σ±,0(L).

1.1. Contents of the paper. Roughly, the paper consists of two parts: the dis-
crete one (§2–§6) and the geometric one (§7).

Our approach is a refinement of the technique developed in [8, 2], and we recall
the necessary facts and introduce certain technical terms (e.g., acceptable graphs)
in §2. Then, in §3, we define the main technical tool, viz. the triangular set,
and discuss methods of extending a given graph by a collection of triangular sets.
Finally, after those preparations, we present the proof of Proposition 3.12, which is
the discrete counterpart of the most difficult case of Theorem 1.1.
§4 is a digression: we restrict our attention to the case of smooth lattices (i.e.,

we assume that the lattice contains no exceptional divisors) and apply triangular
sets to classify geometric Fano graphs with at least 49 vertices.

In §5 and §6, we turn back to the general case (with exceptional divisors allowed)
and study the properties of triangular free Fano graphs.

Finally, in §7 we recall the definition of the Fano graph (resp. extended Fano
graph) of a surface and its relation to the geometricity of the Fano graph of a
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lattice, see Theorem 7.4 (resp. Theorem 7.7) and prove the principal results of the
paper, viz. Theorem 1.1 and Theorem 1.2.

1.2. History of the problem. As mentioned, configurations of lines (or, more
generally, smooth rational curves) on quartic surfaces in P3 have been a subject of
intensive study ever since the 19-th century. Still, the methods of Italian school were
not efficient enough to deal with the classification of large line configurations on
such surfaces. It was not until the last decade that the theory of elliptic fibrations,
Mordell–Weil groups, Torelli’s theorem and progress in algorithmic methods in the
theory of lattices led to a substantial progress in the case of smooth quartics: sharp
bound for the number of lines over fields of characteristic p 6= 2, 3 (see [20, 18, 8]),
p = 3 (see [17]), p = 2 (see [7]), the classification of large configurations (see [8]),
explicit equations of surfaces with many lines (see [24] and the bibliography therein).
Strangely enough, the Bogomolov–Miyaoka–Yau inequality yields no bounds in the
case of quartics (see [14]).

In contrast, in spite of long interest (see, e.g., the classical text [12]), far less is
known in the case of quartic surfaces with singular points — essentially, it was only
shown that, over a field of characteristic p 6= 2, the number of lines on a quartic
with singularities cannot exceed the maximal number of lines on a smooth quartics
— see [23, 25, 11]. For p = 2 the maximal number of lines on a quartic with
singularities is 68 (vs. 60 in the smooth case, see [22]) and we do know projective
models of surfaces that attain this maximum (see [17]).

A refinement of the method pioneered in [8] led to the complete picture of large
line configurations on smooth degree-d K3-surfaces for d > 2 in [5]. Vinberg’s
algorithms combined with the above methods yield a means to classify the large
configurations of lines on degree-d K3-surfaces with at worst Du Val singularities
for d > 4 (see [2, 3]). The methods of [2] are not sufficient to deal with the case
of quartics (i.e., d = 4): the existence of triangles (i.e., Ã2-configurations) of lines
and the fact that, on quartic surfaces, said triangles may interlace lead to numerous
configurations that are excluded on degree-d K3-surfaces for d > 4. In the present
paper, we discuss an approach to deal with such configurations. However, in order
to keep our exposition compact, we apply our method to find the maximal number
of lines on a complex K3-quartics with non-empty singular locus, but we do not
try to classify all configurations of 52 lines.

1.3. Acknowledgements. This paper was mostly written during our research stay
at the Max-Planck-Institut für Mathematik, Bonn. We are grateful to MPIM for
creating perfect working conditions. S.R. thanks IM PAN (Cracow, Poland) for the
support that enabled him to complete this project.

2. Preliminaries

In this section we recall the main technical tools that we use in our work. To
shorten the exposition, we focus on the case of 4-polarized 2-admissible lattices and
graphs. The details and more general statements can be found in [2]. To keep the
exposition continuous,we assume the reader familiar with the basics of the theory
of K3-surfaces, (−2)-curves, etc. and adopt a formal graph-theoretical language.
The relation of graphs considered in §2–§6 to the problem at hand, i.e., lines on
quartic surfaces, is briefly discussed in §7.1 below, right before the proofs of the
principal results of the paper.



LINES ON K3-QUARTICS VIA TRIANGULAR SETS 5

2.1. Polarized lattices. Recall that a nondegenerate lattice S is called hyperbolic
if σ+S = 1. A polarized lattice S 3 h is a hyperbolic lattice S equipped with a
distinguished vector h of positive square; the square h2 is called the degree of the
polarization and S is said to be h2-polarized. Here we assume h2 = 4, so whenever
we speak of a polarized lattice we mean a 4-polarized lattice. Furthermore, we
confine ourselves to lines and exceptional divisors (resp. only lines in §4), leaving
out smooth rational curves of higher degree.

Remark 2.1. We make frequent use of the following obvious observation: if S is a
hyperbolic lattice, then any sublattice N ⊂ S is either semidefinite (and then one
has rk kerN = 1) or nondegenerate.

For a polarized lattice and n = 0, 1, one defines the sets

rootn(S, h) :=
{
r ∈ S

∣∣ r2 = −2, r · h = n
}
.

As in [2, § 2.2], we put rt(S, h) ⊂ h⊥ ⊂ S (resp. C+(S, h)) to denote the sublattice
generated by root0(S, h) (resp. the positive cone). Recall that every connected
component ∆] of

C+(S, h) r
⋃

r2=−2

r⊥

is a fundamental polyhedron for the group generated by reflections of S.
By definition, rt(S, h) is a root lattice and each fixed Weyl chamber ∆ for (the

group generated by reflections of) rt(S, h) gives rise to a distinguished fundamental
polyhedron ∆]. We put {∆} to denote the ”outward” roots orthogonal to the
walls of ∆ and define the (plain) Fano graph of the polarized lattice (S, h) with a
distinguished Weyl chamber ∆ for rt(S, h) as the set of vertices

(2.2) Fn∆(S, h) := {∆]}1 :=
{
l ∈ root1(S, h)

∣∣ l · e > 0 for all e ∈ {∆}
}
,

with two vertices l1 6= l2 connected by an edge of multiplicity l1 · l2. The bi-colored
extended Fano graph is defined as

(2.3) Fnex
∆ (S, h) := {∆]}1 ∪ {∆},

with the same convention about the multiplicities of the edges and vertices v colored
according to the value v · h ∈ {0, 1}.

Definition 2.4. Let S 3 h be a polarized lattice and let Γ be a subset of root1(S, h).

(1) A Weyl chamber ∆ is called compatible with Γ if Γ ⊂ Fn∆(S, h).
(2) A root r ∈ root0(S, h) is called separating with respect to Γ if there is a

pair of vertices u, v ∈ Γ separated by r, so that r · u > 0 and r · v < 0.

Finally, in order to use general theory of K3-surfaces in the sequel we need the
following definition.

Definition 2.5. A polarized lattice S 3 h is called:

(1) admissible, if there is no vector p ∈ S such that p2 = 0 and p · h = 2;
(2) geometric, if it is admissible and there exists a primitive isometry

S ↪→ L := 2E8 ⊕ 3U.
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2.2. Subgeometric and geometric graphs. Let Γ be a (plain) graph. To Γ we
associate the polarized lattice

(2.6) F(Γ) := (ZΓ + Zh)/ ker, h2 = 4, h · v = 1 for v ∈ Γ.

where ZΓ is the lattice freely generated by the vertices v ∈ Γ, so that u · v = n
when u 6= v are connected by an n-fold edge, and v2 = −2 for each v ∈ Γ.

Convention 2.7. As in [2, § 4], we speak of polarized graphs Γ (omitting the degree
which is fixed to equal 4), and we apply to Γ the lattice theoretic terminology such
as the rank rk Γ := rkF(Γ) etc. Furthermore, we treat the vertices of Γ as vectors
in F(Γ): e.g., u ·v ∈ Z stands for the multiplicity of the edge [u, v], and we say that
u, v ∈ Γ intersect if u · v = 1. The only exception from this rule is the classification
of graphs according to the inertia indices of ZΓ rather than F(Γ) (which is always
assumed hyperbolic): thus, we say that Γ is

• elliptic, if σ+(ZΓ) = σ0(ZΓ) = 0,
• parabolic, if σ+(ZΓ) = 0 and σ0(ZΓ) > 0, and
• hyperbolic, if σ+(ZΓ) = 1 (no assumption on σ0).

Recall that any connected elliptic (resp. parabolic) graph is a Dynkin diagram (resp.
affine Dynkin diagram); as in [5], we order the isomorphism classes of affine Dynkin
diagrams according to their Milnor number, followed by A < D < E. Recall also
that, for each connected parabolic subgraph Σ, there is a unique positive minimal
generator κΣ ∈ kerZΣ; it has the form κΣ =

∑
mcc, c ∈ Σ, with all mc > 0.

We define the perturbation order on the set of (isomorphism classes of) elliptic
and parabolic graphs: Γ′ C Γ′′ if Γ′ is isomorphic to an induced subgraph of Γ′′.

Given an isotropic subgroup K ⊂ discrF(Γ) (aka kernel), we consider the fi-
nite index extension F(Γ,K) of F(Γ) by K (cf. [16]). The pair (Γ,K) is said to
be extensible if it admits a compatible Weyl chamber ∆ for rt(F(Γ,K), h) (see
Definition 2.4):

Γ ⊂ Fn∆ F(Γ,K).

Recall that, by [2, Lemma 3.4], we have

(2.8) (Γ,K) is extensible if and only if F(Γ,K) has no separating roots

(see Definition 2.4); moreover, if this is the case, the compatible Weyl chamber
∆ ⊂ rtF(Γ,K) is unique. Therefore, for an extensible pair (Γ,K) one can define
its saturation and extended saturation

sat(Γ,K) := Fn∆ F(Γ,K), satex(Γ,K) := Fnex
∆ F(Γ,K).

A graph Γ (resp. pair (Γ,K)) is called admissible if it is extensible and the lattice
F(Γ) (resp. F(Γ,K)) is admissible. Then, an isotropic subgroup K ⊂ discrF(Γ) is
called a geometric kernel if the lattice F(Γ,K) is geometric. We follow [2] and put

G(Γ) :=
{
K ⊂ discrF(Γ)

∣∣ K is geometric
}
.

After those preparations we can recall the following definition.

Definition 2.9. Let Γ be a graph.

(1) We call Γ subgeometric if the set G(Γ) is non-empty.
(2) A subgeometric graph Γ is called geometric if Γ ∼= sat(Γ,K) for a certain

kernel K ∈ G(Γ′).
(3) A bi-colored graph Γ′ is geometric if Γ′ ∼= Fnex

∆ (S, h) for some geometric
polarized lattice S 3 h.
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2.3. Algorithms. In many arguments we use computer-aided test to check that a
given graph satisfies certain conditions. All algorithms are found in [2, Appendix].
Given a graph Γ, one can check whether:

(1) F(Γ) is hyperbolic, i.e., σ+F(Γ) = 1; straight as it is, this can often be
done fast in bulk, see [2, Lemmas A.3, A.4];

(2) Γ is extensible and admissible, see the master test in [2, §A.1.1];
(3) Γ is (sub-)geometric, see [2, §A.1.2].

The principal tool of [2] was starting from a sufficiently large initial graph Γ0

and extending it by adding one vertex at a time, see §A.4 in loc. cit. This is what is
done in this paper, too, see §5 and §6, where, without much explanation, we merely
state the updated results. The principal novelty of this paper is §3, where, due to
the more complicated geometric nature of the problem, extra vertices have to be
added in groups of up to three. The details are discussed in §3.3.

Remark 2.10. A technical, but crucial part of our (as well as any lattice-based)
approach is the fact that a geometric graph Γ has rk Γ 6 20. It follows that, if
rk Γ′ = 20, any geometric overgraph Γ ⊃ Γ′ would be of the form sat(Γ′,K) for
some K ∈ G(Γ′), and all such finite index extensions of F(Γ′) can easily be found
using [16] (see the saturation lists in [2, §A.1.3]). Therefore, we introduce another
technical term:

Γ is acceptable if it is subgeometric and rk Γ 6 19.

It is understood that, after each step of every algorithm, only acceptable graphs are
left for the further processing (and, thus, we do not need to add dozens of vertices
to reach line counts over 50), whereas each intermediate graph Γ of rank rk Γ = 20
is excluded upon computing its saturation list and recording all “interesting” (cf.
Remark 3.24 below) geometric overgraphs to a global master list.

2.4. Classification of graphs in terms of girth. Following [5, 8], we subdivide
parabolic and hyperbolic graphs Γ according to the type of the minimal (in the
sense of Convention 2.7) affine Dynkin diagram Σ ⊂ Γ. The most important classes
can also be characterised in terms of the girth girth(Γ) (the length of a shortest
cycle in Γ, with the convention that the girth of a forest is ∞). Thus, Γ is called

• triangular, or Ã2-, if girth(Γ) = 3,
• quadrangular, or Ã3-, if girth(Γ) = 4,
• pentagonal, or Ã4-, if girth(Γ) = 5,
• astral, or D̃4-, if girth(Γ) > 6 and Γ has a vertex of valency > 4.

All other graphs are locally elliptic, i.e., one has val v 6 3 for each vertex v ∈ Γ
(and we assume girth(Γ) > 6 to exclude a few trivial cases).

Given a graph Γ and a distinguished connected parabolic subgraph Σ ⊂ Γ, the
pencil Π induced by Σ is defined as

(2.11) Π := Π(Γ ⊃ Σ) := Σ ∪
{
l ∈ Γ

∣∣ l · c = 0 for all vertices c ∈ Σ
}
.

This graph Π ⊃ Σ is parabolic as it is orthogonal to κΣ (see Convention 2.7 and
Remark 2.1). We have Γ = Π ∪ sec∗, where

(2.12) sec∗ := sec∗(Γ ⊃ Σ) :=
{
l ∈ Γ r Σ

∣∣ l · c = 1 for a vertex c ∈ Σ
}
.

The elements of sec∗ are called the (multi-)sections, or m-sections of Π, where the
integer m := l · κΣ is the multiplicity of a section l. If m = 1, the section is called



8 ALEX DEGTYAREV AND S LAWOMIR RAMS

simple, otherwise, multiple. Fixing an order Σ = (c1, . . . , cn), we also consider

(2.13)
seci := sec(Γ ⊃ Σ 3 ci) :=

{
l ∈ Γ r Σ

∣∣ l · cj = δij for cj ∈ Σ
}
,

sec∗i := sec∗(Γ ⊃ Σ 3 ci) :=
{
l ∈ Γ r Σ

∣∣ l · ci = 1
}
⊃ seci,

where 1 6 i 6 n and δij is the Kronecker symbol. We have

(2.14) each set sec∗i ⊃ seci, i = 1, . . . , n, is either elliptic or parabolic,

as it is orthogonal to the isotropic vector h− ci 6= 0 (see Remark 2.1).
In the future, we almost never use the correct, but long notation referring to the

full flag, as Γ ⊃ Σ = (c1, . . . , cn) are always assumed fixed.

3. Triangular sets

A triangular set, or M-set, is an induced subgraph of an admissible graph whose
all connected components are of type Ã2, A3, A2, or A1. Clearly, each triangular
pencil is a M-set, but not vice versa: a M-set may also be elliptic, i.e., have no
type Ã2 components. Combinatorially, a M-set Θ is uniquely of the form

(3.1) ã2Ã2 ⊕ a3A3 ⊕ a2A2 ⊕ a1A1, (ã2, a3, a2, a1) ∈ N4,

and the coefficient quadruple (ã2, a3, a2, a1) determines Θ up to isomorphism. The
isomorphism classes of M-sets (or coefficient quadruples) are called patterns.

We define the cardinality |θ| of a pattern θ as that of any of its representatives
and introduce the following order on the set of patterns:

(3.2) θ′ ≺ θ′′ iff

{
|θ′| < |θ′′| or

|θ′| = |θ′′| and (ã′2, a
′
3, a
′
2, a
′
1) > (ã′′2 , a

′′
3 , a
′′
2 , a
′′
1),

where the coefficient quadruples are compared lexicographically. (Pay attention to
the reverse lexicographic order!) This order is not to be mixed with the perturbation
order defined in Convention 2.7. The latter, for M-sets, is easily described in terms
of the coefficient quadruples: θ′ C θ′′ if and only if (ã′2, a

′
3, a
′
2, a
′
1) is obtained from

(ã′′2 , a
′′
3 , a
′′
2 , a
′′
1) by a finite sequence of elementary perturbations of the form

(ã2, a3, a2, a1) 7→ (ã2, a3, a2, a1) + δ,

δ ∈
{

(0, 0,−1, 1), (0,−1, 1, 0), (0,−1, 0, 2), (−1, 0, 1, 0)
}

provided that, at each step, the quadruple remains in N4.

3.1. Constructing triangular graphs. Let Γ be a triangular admissible graph,
cf. §2.4. Fix a type Ã2 fiber Σ = (c1, c2, c3) ⊂ Γ and consider the pencil Π and
sets seci, i = 1, 2, 3, see (2.11) and (2.13), respectively.

Lemma 3.3. A triangular pencil Π has at most one multiple section; hence,

0 6 |Γ| − |Π ∪ sec1 ∪ sec2 ∪ sec3| 6 1.

Furthermore, if a multiple section s exists, it is disjoint from each seci, i = 1, 2, 3.

Proof. Consider a multiple section s and let e := h− c1 − c2 − c3 − s.
If s · c1 = s · c2 = s · c3 = 1, then e is orthogonal to h and each ci, i = 1, 2, 3.

Hence, e = 0 (see Remark 2.1) and any other line l intersects exactly one of c1, c2,
c3, s, implying both statements.
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Likewise, if s · c1 = s · c2 = 1 and s · c3 = 0, then e is an exceptional divisor and
e · s = e · c3 = 1 > 0. Hence, any other line l intersects at most one of c1, c2, c3, s,
as otherwise l · e < 0 and e would separate s and l, see (2.8). �

Lemma 3.4. Each set seci, i = 1, 2, 3, is a M-set.

Proof. In view of (2.14), it suffices to rule out the connected components of seci
containing Ã3, A4, or D4. Each of the offending graphs has a chain

s1•−−s2•−−s3•
and another vertex l adjacent to at least one of s1, s2, s3. Then s := s1 + s2 + s3

is a root, s · h = s · ci = 3, and l · s > 0; hence, e := −h + ci + s is an exceptional
divisor separating s1 and l, see (2.8). �

Now, our goal is to describe all geometric graphs Γ of size |Γ| > 53. In view of
Lemma 3.3, it suffices to consider trigonal pencils Σ ⊂ Π ⊂ Γ such that

|Π|+ |sec1|+ |sec2|+ |sec3| > 52.

Clearly, we can also assume that Π ⊂ Γ is maximal with respect to (3.2) and the
edges c1, c2, c3 of Σ are ordered so that sec1 < sec2 < sec3. These assumptions give
rise to the following compatibility conditions on the patterns π 3 Π and θi 3 seci:

π ` θ1 if 3|θ1|+ |π| > 52 and
(
θ1 4 π or θ1 is elliptic

)
;(3.5)

(π ` θ1) ` θ2 if 2|θ2|+ |θ1|+ |π| > 52 and θ2 4 θ1;(3.6)

(π ` θ1 ` θ2) ` θ3 if |θ3|+ |θ2|+ |θ1|+ |π| > 52 and θ3 4 θ2.(3.7)

In (3.5), we assume one of the terms, π or θ1, fixed and treat the condition as a
restriction on the other term. The other two conditions are restrictions on the last
term provided that the parenthesized part is fixed.

Since M-sets appear as sets of sections, for an ordered fiber Ã2
∼= Σ = (c1, c2, c3)

and M-set Θ we define Σ ti Θ, where i = 1, 2, 3, as the graph obtained from the
disjoint union of Σ and Θ by connecting ci to each vertex v ∈ Θ by a simple edge.

This construction extends to patterns, producing an isomorphism class of graphs.
Checking the parameter quadruples (ã2, a3, a2, a1) one-by-one, it is fairly easy to
compute the sets of patterns

P := {subgeometric triangular pencils}/∼=, and

T := {M-sets Θ such that Ã2 ti Θ is subgeometric}/∼=.
(To simplify the computation, for P one can start from Shimada’s list [21] of Jaco-
bian elliptic K3-surfaces, and for T one can take into account the bound val ci 6 20
found in [23].) Then, condition (3.5) becomes a binary relation from P to T . The
other conditions also descend to patterns, as do the rank functions:

(3.8)
rk(π) = |Π| − ã2(Π) + 2, Π ∈ π ∈ P

rk(Ã2 ti θ) = |Θ| − ã2(Θ) + 4, Θ ∈ θ ∈ T ,
where ã2(·) stands for the number of parabolic components.

The next lemma is an immediate consequence of this computation. For the last
statement, we merely list all geometric extensions (e.g. using algorithms from [2,
Appendix A]) of the four graphs of rank 18 or 19, see (3.8); in fact, the sharp bound
in Lemma 3.9(3) is |Γ| 6 29.

Lemma 3.9. In a geometric graph Γ, for any type Ã2 fiber Σ one has:
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(1) |seci| 6 18 for each i = 1, 2, 3;
(2) if seci is elliptic, then |seci| 6 15;
(3) if seci is elliptic and |seci| > 13, then |Γ| 6 52. C

Remark 3.10. In view of Lemma 3.9, the compatibility condition (3.5) simplifies
to the form

π ` θ1 if 3|θ1|+ |π| > 52 and θ1 4 π

more consistent with (3.6) and (3.7). Indeed, if θ1 is elliptic, we can assume that
|θ1| 6 13; then necessarily |π| > 13, see (3.5), and θ1 4 π holds automatically.

Lemma 3.11. If Π ⊂ Γ is a maximal, with respect to (3.2), triangular pencil and
|Γ| > 52, then |Π| > 14.

Proof. As explained in Remark 3.10, in view of Lemma 3.9 we have |Π| > 13 and
|sec3| 6 |sec2| 6 |sec1| 6 |Π|. If |Π| = 13, then |sec3| = |sec2| = |sec1| = 13 by (3.5)
and, moreover, Π must have a multiple section s. Assuming that s · c1 = s · c2 = 1,
so that c1, c2, s constitute a triangle, the union (c1, c2, s) t sec3 ⊂ Γ is a triangular
pencil (see Lemma 3.3) with 16 vertices, contradicting the maximality of Π. �

3.2. Abundant collections. Let Γ0 ⊃ Σ = (c1, c2, c3) ∼= Ã2 be a triangular
graph, i = ∅, 1, 2, 3 a parameter, and θ ∈ P (if i = ∅) or θ ∈ T (otherwise) a
pattern. An overgraph Γ ⊃ Γ0 is said to represent (Γ0, θ)i if

sec(Γ ⊃ Σ 3 ci) ∈ θ and Γ r seci = Γ0, if i = 1, 2, 3

Π(Γ ⊃ Σ) ∈ θ and Γ r Π = Γ0 r Σ, if i = ∅.

A pair (Γ0, θ)i is called abundant if it cannot be represented by an acceptable graph,
see Remark 2.10. Both notions extend to a collection G of graphs: Γ represents
(G, θ)i if it represents (Γ0, θ)i for a graph Γ0 ∈ G, and (G, θ)i is abundant if so
is each (Γ0, θ)i, Γ0 ∈ G. Iterating, we extend both notions to a compatible (i.e.,
satisfying the compatibility conditions from §3.1) collection of patterns

π ∈ P, θi ∈ T , i = 1, . . . , n 6 3.

Clearly, if π ` . . . ` θn is abundant, so is any π′ ` . . . ` θ′n with π C π′, . . . ,
θn C θ′n.

Our proof of Theorem 1.1 essentially reduces to applying the algorithm in §3.3
below to show that any compatible collection π ` θ1 ` θ2 ` θ3 is abundant: indeed,
conditions (3.5)–(3.7) guarantee that on the way we will encounter all subgeometric
graphs Γ such that either |Γ| > 52 or rk Γ = 20, and in the latter case it would
suffice to analyze all geometric saturations of Γ. To this end, we introduce the
inductive notion of a ruled out collection:

• any abundant compatible collection is considered ruled out;
• in general, a compatible collection π ` θ1 ` . . . ` θn, n 6 2, is ruled out if

so is any compatible extension (π ` θ1 ` . . . ` θn) ` θn+1, θn+1 ∈ T .

By a machine aided computation, we establish the following statement; its proof is
given in §3.6, after we collect all the necessary facts in §3.3, §3.4 and §3.5.

Proposition 3.12 (see §3.6). Each compatible pair π ` θ1, where

π ∈ P14 :=
{
π ∈ P

∣∣ |π| > 14
}

and θ ∈ T ,

is ruled out.
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By the very definition, the assertion of Proposition 3.12 means that, for each
representative Γ of any compatible collection π ` θ1 ` θ2 ` θ3, π ∈ P14, one has
either |Γ| = 52 or rk Γ = 20, and, moreover, all such representatives are encountered
in the course of the proof. The latter fact enables us to obtain the complete list
of representatives Γ of compatible collections π ` θ1 ` θ2 ` θ3, π ∈ P14, such that
|Γ| > 52 and rk Γ = 20 (see Addendum 3.23).

3.3. Extending a graph by a triangular set. The heart of the computation is
an algorithm extending a given subgeometric graph Γ0 by a given pattern θ ∈ T , the
goal being listing all subgeometric overgraphs Γ ⊃ Γ0 representing (Γ0, θ)i (where
i = ∅, 1, 2, 3 is also fixed, see §3.2). The elements of Γ r Γ0 are referred to as
sections, whereas the connected components of Γ r Γ0 ∈ θ are polysections. The
algorithm is similar to that of [2], except that we can no longer guarantee that the
sections are pairwise disjoint. Therefore, instead of adding to Γ one section at time,
we fix θ in advance and add whole polysections, in the order Ã2, A3, A2, A1.

Convention 3.13. From now on, following [2, §A.3], we identify a section v with
its support

supp v :=
{
u ∈ Γ0

∣∣ v · u = 1
}

and thus treat it as a subset of Γ0. We also keep the notation

Γ0 t v and Γ0 t v(m)

for a multiset v (which we no longer assume sorted) and (|v| × |v|)-matrix m. As
explained in §2.3, only acceptable graphs are retained after each step.

In practice, we start with computing the group G0 := Aut Γ0 and set

(3.14) S(Γ0) :=
{
s ⊂ Γ0

∣∣ s ∩ Σ = fixed
}

of sections of Γ0 satisfying extra conditions imposed by the problem at hand. (Here,
fixed ⊂ Σ is a certain subset fixed in advance. We can also take into account a
few obvious geometric restrictions, but this is not crucial: “wrong” sections are
immediately ruled out by the preliminary tests in §2.3(1). We omit many other
technical tweaks, referring to the code [4] as the ultimate source.) Then, running
the tests cited in §2.3(2) and (3), we compute the sets

(3.15)
A1(Γ0) :=

{
v ∈ S(Γ0)

∣∣ Γ0 t v is acceptable
}
,

m(Γ0) :=
{
v ∈ A1(Γ0)dimm

∣∣ Γ0 t v(m) is acceptable
}
,

where m = A2, Ã2, 2A1, A3 (in this order). Certainly, the tests are applied to a
single representative of each G0-orbit; in what follows (cf., e.g., Remark 3.19) this
convention is taken for granted. This computation is aborted if a “required” list is
empty (e.g., if A2(Γ0) = ∅ whereas θ contains Ã2 or A3, cf. the next remark).

Remark 3.16 (a technical detail). The set A2(Γ0) is used in the computation of
Ã2(Γ0): we consider only those triples (v1, v2, v3) for which (vi, vj) ∈ A2(Γ0) for
all 1 6 i < j 6 3. Likewise, both A2(Γ0) and 2A1(Γ0) are used in the computation
of A3(Γ0). Furthermore, 2A1(Γ0) is used at all subsequent steps: when iterating

Γn−1 t v(mn) =
(
Γ0 t u(·)

)
t v(mn),

in (3.17) below, we check first that (u, v) ∈ 2A1(Γ0) for all u ∈ u, v ∈ v.
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Now, let θ = ã2Ã2 + a3A3 + a2A2 + a1A1, so that N := ã2 + a3 + a2 + a1 is
the number of components, and let m1 > . . . > mN be the types of the components
of θ ordered via Ã2 > A3 > A2 > A1). Then, we start from

S0 := {Γ0}

and run the computation in up to N steps.

Step n > 1: for each graph Γn−1 ∈ Sn−1, we pick a single representative v of each
(Aut Γn−1)-orbit on mn(Γ0) and use the tests of §2.3(2) and (3) to compute

(3.17) Sn(Γn−1) :=
{

Γv := Γn−1 t v(mn)
∣∣ Γv is acceptable

}
.

The step concludes by uniting all sets Sn(Γn−1), Γn−1 ∈ Sn−1, obtained followed
by retaining a single representative of each graph isomorphism class.

The algorithm terminates either upon the completion of Step N (resulting in
a list SN (Γ0) to be processed by other means) or when one of the previous steps
results in an empty list Sn(Γ0) = ∅, implying that (Γ0, θ) is abundant.

Remark 3.18. Both auto- and isomorphisms of graphs are computed using the
digraph package in GAP [9]. All morphisms are restricted: we assume the fiber Σ
fixed as a set and, typically, one or two edges ci ∈ Σ fixed pointwise, so that the
set S(Γ0) in (3.14) be invariant.

Remark 3.19 (a technical detail). Each time the matrix m changes, i.e., whenever
mn > mn+1, we recompute the (relevant) sets m(Γn) for each graph Γn ∈ Sn and
use these new lists in the subsequent steps. Instead of starting from scratch, as
in the case of Γ0, we merely run the tests on the ready lists m(Γm) for the last
subgraph Γm ⊂ Γn for which they have been computed.

3.4. Processing several patterns. The material of this section is of a purely
technical nature; however, it is the tweak described here that makes the computa-
tion much faster and eventually helps it to terminate reasonably fast.

Typically, we fix a subgeometric graph Γ0 and try to rule out a whole collection
of patterns T (Γ0). Since patterns tend to have similar initial sequences, processing
them all one-by-one would force us to repeat the same steps of the computation over
and over again. To avoid the repetition and remove a number of redundant steps, we
sort the patterns in the direct lexicographic order and process them simultaneously,
organizing the computation into four layers: the outermost Ã2, A3, A2, and the
innermost A1.

Each inner layer starts from a certain intermediate graph Γ and processes a
collection of patterns T (Γ). If the algorithm terminates prematurely, at a certain
pattern θ, we conclude that (Γ, θ) is abundant, and hence so is (Γ, θ′) whenever
θ C θ′. This fact is reported to the previous layer, where the information is consol-
idated and often results in excluding the graph Γ and/or some patterns from the
further consideration. We refer to the code [4] for the precise details (we implement
each next layer as a hook within the previous one, where it is used to modify the
intermediate lists); here, we merely illustrate the paradigm by the following simple
example.

Example 3.20. Assume that the patterns to be considered are

T (Γ0) =
{

2A2 ⊕ 6A1, 3A2 ⊕ 4A1, 4A2 ⊕ 2A1

}
,
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so that only two layers of computation are required. We run the first two steps of
the A2-layer, resulting, say, in a list S2 = {Γ′2,Γ′′2}, and switch to the A1-layer for
each of the two graphs. Assume that this inner layer terminates at

• step 4 for Γ′2 ⇒ (Γ′2, 4A1), (Γ′2,A2 ⊕ 3A1), (Γ′2, 2A2 ⊕ 2A1) are abundant,
• step 5 for Γ′′2 ⇒ (Γ′′2 , 5A1), (Γ′′2 ,A2 ⊕ 4A1) are abundant.

(Obviously, 4A1 C A2 ⊕ 3A1 C 2A2 ⊕ 2A1 and 5A1 C A2 ⊕ 4A1.) We conclude
that Γ′2 can be excluded from S2 and that both 2A2⊕ 6A1 and 3A2⊕ 4A1 can be
excluded from T (Γ0). Therefore, we can run two more steps of the A2-layer on the
new reduced list {Γ′′2}, followed by the A1-layer on the result. (The A1-layer after
Step 3 can be skipped as θ = 3A2 ⊕ 4A1 has already been ruled out!)

If it were not for Γ′′2 (e.g., if the A1-layer terminated at a step 6 4 for each of the
two graphs), we would have stopped immediately, as all elements of T (Γ0) would
have been ruled out by the A1-layer after Step 2.

3.5. The aggressive version. In certain cases, one can argue that, in order to
achieve the goal |Γ| > 53, the overgraph Γ ⊃ Γ0 must be spanned over Γ0 by a few
pairwise disjoint vertices independent over Γ0. (Precisely, this condition means that
F(Γ)⊗Q is generated over F(Γ0)⊗Q by (rk Γ− rk Γ0) pairwise disjoint vertices.)
In this case, we switch to the aggressive version of the algorithm, i.e., we

• add disjoint vertices only (the A1-layer),
• disregard the extra vertices that do not increase rank, and
• check the saturation lists of all intermediate graphs, including Γ0,

cf. the progressive mode in [2, §A.4.4].
Precisely, this approach is used

• in the proof of Lemma 3.9(3): we add up to two disjoint vertices, and
• at the steps fixed = {c2} or {c3} in §3.6 below (cf. also Remark 4.11), when

extending a graph Γ0 of the submaximal rank rk Γ0 = 19.

3.6. Proof of Proposition 3.12. As stated, the proof is an explicit machine aided
computation using the algorithm described in §3.3 and §3.4. It runs in two steps:
first, for each pattern θ1 ∈ T , we rule out almost all compatible patterns π ∈ P14;
the set of these patterns is denoted by P−14(θ1). Then, for each π ∈ P14, we rule
out the remaining patterns θ1 ∈ T such that π ` θ1 and π /∈ P−14(θ1).

Remark 3.21. The choice of the set P−14(θ1) at the first step looks quite arbitrary,
and indeed so it is. As a rule, we let π ∈ P−14(θ1) if π ` θ1 and

rkπ 6 rk(Σ t1 θ1).

However, a few border cases are subject to further manual tweaking, which is based
on experiments. More precisely, depending on the values r := rk(Σt1 θ1), n := |θ1|,
the following coefficient quadruples (ã2, a3, a2, a1) are excluded from P−14(θ1):

(r, n) = (12, 11) : (∗, ∗, ∗, ∗),
(12, 12) : (∗, ∗, ∗, ∗),
(13, 11) : (∗, ∗, ∗, ∗),
(13, 12) : (3, ∗, ∗, ∗), (2, ∗, ∗, ∗), (1, ∗, ∗, ∗),
(13, 13) : (2, ∗, ∗, ∗), (1, ∗, ∗, ∗),
(14, 11) : (∗, ∗, ∗, ∗),
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(14, 12) : (3, ∗, ∗, ∗), (2, ∗, ∗, ∗), (1, ∗, ∗, ∗),
(14, 13) : (2, ∗, ∗, ∗), (1, ∗, ∗, ∗),
(14, 14) : (2, ∗, ∗, ∗), (1, ∗, ∗, ∗),
(15, 11) : (∗, ∗, ∗, ∗),
(15, 13) : (2, 0, 0, ∗), (1, 0, ∗, ∗),
(15, 14) : (2, 1, 0, ∗), (2, 0, ∗, ∗), (1, 0, ∗, ∗),
(15, 15) : (1, ∗, ∗, ∗)

(where, as usual, ∗ means any value).

At the first step, we start with the graph

Γ0 := Σ t1 Θ1, Θ1 ∈ θ1 ∈ T ,
and use §3.4 to find all graphs Γ representing (Γ0, π)∅, π ∈ P−14(θ1). Technically,
we extend Γ0 by a pattern θ such that Ã2 ⊕ θ = π. Thus, we let fixed = ∅ in (3.14)
and use graph auto-/isomorphisms preserving Σ 3 c1 (see Remark 3.18). For each
graph Γ on the resulting list SN , we consider the full set T (Γ) of patterns θ2 ∈ T
satisfying (3.6), and run the same algorithm with fixed = {c2} and graph morphisms
preserving c1 and c2.

Remark 3.22. Strictly speaking, we should have run the algorithm once more,
using fixed = {c3} and patterns θ3 satisfying (3.7). However, our thresholds are
chosen so that the list SN resulting from the first run consists of relatively few
graphs of rank 19 (for which the aggressive version is used, see §3.5) and very few
graphs of rank 18, for which the algorithm terminates fast and rules everything out.

At the second step, we start with a pencil

Γ0 := Π ∈ π ∈ P14

and use §3.4 to find all graphs Γ representing (Γ0, θ1)1, π ` θ1 and π /∈ P−14(θ1). We
let fixed = {c1} in (3.14) and use graph morphisms preserving Σ 3 c1. As above,
the relatively few graphs obtained, all of rank 19 or 18, are ruled out by the next
run, using fixed = {c2} and θ2 ∈ T compatible in the sense of (3.6). This completes
the proof of Proposition 3.12, as well as of Addendum 3.23 below. �

As explained right after Proposition 3.12, before discarding a graph Γ of rank 20,
we analyze its geometric finite index extensions and record those of size greater
than 52. The result of this analysis is stated below.

Addendum 3.23. Let Γ be a geometric representative of a compatible collection
π ` θ1 ` θ2 ` θ3, π ∈ P14, such that rk Γ = 20 and |Γ| > 52. Then Γ is one of the
eight smooth configurations found in [8], see the first eight rows of Table 1. C

Remark 3.24. In order to produce a plethora of examples of large configurations
of lines, when discarding the graphs of rank 20 (see Remark 2.10) we collected
all extended graphs with at least 48 lines or at least six exceptional divisors; the
results are found in [4]. In particular, in addition to the surfaces listed in Table 1,
we found but one quartic with 52 lines and two nodes and two quartics with 50
lines and one node each. Besides, there are quite a few quartics with non-empty
singular locus and 48 lines, suggesting once again that 48 is a reasonable threshold
to cut the classification.
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4. Smooth quartics

In this section we temporarily assume that the polarized lattice S 3 h contains
no exceptional divisors; this will be used later in our study of line configurations
on smooth quartic surfaces X4 ⊂ P3.

In this case, we need to change the notion of admissible lattice/graph. Namely,
a polarized lattice S 3 h is called smooth, or s-admissible, if it contains neither
exceptional divisors (e2 = −2, e · h = 0) nor 2-isotropic vectors (e2 = 0, e · h = 2).
A graph Γ is smooth, or s-admissible, if so is the lattice F(Γ).

If S 3 h is smooth, then rt(S, h) = ∅; hence, automatically, ∆ = ∅ in (2.2) and
we have a well-defined Fano graph

(4.1) Fn(S, h) := Fn∅(S, h) = root1(S, h).

An crucial consequence of (4.1) is the fact that Fn is monotonous:

(4.2) if S′ ⊃ S 3 h are smooth, then Fn(S′, h) ⊃ Fn(S, h).

Lemma 4.3. Let Γ be a smooth graph and Σ = (c1, c2, c3) ⊂ Γ a triangle. Then:

(1) Σ has a unique 3-section c0 := h− c1 − c2 − c3 ∈ Γ;
(2) the pencil Π as in (2.11) and M-sets seci as in (2.13) have no connected

components of types A2 or A3.

Proof. Clearly, c0 as in Statement (1) is a 3-section in the lattice spanned by h
and Σ. By (4.2), it remains a 3-section in any larger smooth lattice/graph.

If the pencil Π has a pair (s1, s2) ∼= A2, by (4.2) it also has s3 := κΣ − s1 − s2,
so that (s1, s2, s3) ∼= Ã2. If Π has (s1, s2, s3) ∼= A3, then κΣ − s1 − s2 − s3 is an
exceptional divisor. The same argument applies to each set seci, i = 1, 2, 3, except
that we replace κΣ with (c0 + . . .+ c3)− ci = κΣ + c0 − ci. �

In view of Lemma 4.3(1), each type Ã2 fiber Σ0 := Σ = (c1, c2, c3) gives rise to
three more, viz. Σi := (c0, . . . , ĉi, . . .), i = 1, 2, 3 (where, as usual, ĉi indicates that
ci has been omitted). Thus, we can shift the paradigm and, instead of considering
a pencil Π and three sets seci, we can speak about “blending” four pencils

Π0 := Π = Π(Γ ⊃ Σ0), Πi := Σi t seci = Π(Γ ⊃ Σi), i = 1, 2, 3.

Assuming, as above, that Π is a maximal pencil in Γ, we can replace (3.5)–(3.7)
with a stronger set of compatibility conditions:

π ` θ1 if 3|θ1|+ |π| > 48 and θ′1 4 π;(4.4)

(π ` θ1) ` θ2 if 2|θ2|+ |θ1|+ |π| > 48 and θ′2 4 θ
′
1;(4.5)

(π ` θ1 ` θ2) ` θ3 if |θ3|+ |θ2|+ |θ1|+ |π| > 48 and θ′3 4 θ
′
2.(4.6)

Here, ′ stands for the operator Θ 7→ Θ′ := Ã2tΘ and its natural descent to the set
of patterns. (Recall also that, for Theorem 1.2, we need to change the threshold to
|Γ| > 49.) In particular, from (4.4)–(4.6) we immediately conclude that

(4.7) |Π| > 15,

cf. Lemma 3.11. Indeed, taking into account the 3-section given by Lemma 4.3, we
can rewrite (4.6) in the form |θ′3| + |θ′2| + |θ′1| + |π| > 57 = 48 + 9, and it remains
to observe that the assumption θ′3 4 θ′2 4 θ′1 4 π implies |θ′3| 6 |θ′2| 6 |θ′1| 6 |π|.
Thus, unlike Proposition 3.12, we do not need to introduce an analogue Ps

15 of the
set P14: the lower bound (4.7) would follow from the compatibility assumptions.
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Now, a computation similar to (but much faster than) that of §3 yields the
following result (cf. Proposition 3.12; we retain the terminology of §3 and denote
by Ps ⊂ P and T s ⊂ T the sets of patterns appearing in smooth graphs).

Proposition 4.8 (cf. §3.6). Each compatible collection π ` θ1 ` θ2 ` θ3, as in
(4.4)–(4.6), with π ∈ Ps and θ1, θ2, θ3 ∈ T s, either is ruled out or has one of the
five graphs

(4.9) Z49, (50), Z50, (52), Z52

(see Table 1) as a geometric representative. C

Similar to Proposition 3.12, this statement means that, with the five exceptions
listed in (4.9), any geometric representative Γ of a collection as in the hypotheses
has rk Γ = 20 and, moreover, all such representatives of rank 20 are encountered
and discarded in the course of the proof. As in §3, prior to discarding a graph
we compute all its geometric finite index extensions, thus arriving at the following
complete list of geometric rank 20 Fano graphs Γ with |Γ| > 48 + 1 (the extra 1
standing for the 3-section given by Lemma 4.3).

Addendum 4.10. Let Γ be a geometric representative of a compatible collection
π ` θ1 ` θ2 ` θ3 as in (4.4)–(4.6), where π ∈ Ps, θ1, θ2, θ3 ∈ T s, and rk Γ = 20.
Then Γ is one of the 21 smooth rank 20 configurations found in Table 1. C

Remark 4.11. Due to the lower threshold |Γ| > 49, occasionally we do have to run
the algorithm till the very last step fixed = {c3}, cf. Remark 3.22. This last step is
quite expensive (as the set of sections to begin with is quite large), but fortunately
it has to be done for four graphs only. This is yet another indication of the fact
that taking the classification down to 48 or fewer lines is hardly feasible.

Remark 4.12. In the smooth case, we can further reduce the overcounting by a
number of tricks based on the monotonicity property (4.2), using all lines present in
the lattice rather than only those added explicitly. Most notably, before switching
to a next step fixed = {ci}, i 6 3, we can replace each graph Γ with the union

Π ∪ sec1 ∪ . . . ∪ seci−1 in Fn(F(Γ))

and then retain a single representative of each isomorphism class of the list obtained.
Furthermore, in the subsequent computation we can impose an extra condition that
the above union should remain fixed. We refer to [5] for further details.

5. Quadrangular graphs

In this section the K3-quartic X4 is allowed to have singular points as in §3.
Consider an Ã3-graph Γ and fix a quadrangle Σ := (c1, c2, c3, c4) ⊂ Γ. We assume
the edges ci ∈ Σ numbered cyclically and ordered consecutively:

ci+4 = ci, ci · ci±1 = 1, ci · ci±2 = 0.

In addition to (2.11)–(2.13), we consider the sets

sec∗ij := sec∗i ∪ sec∗j , i = j ± 2.

The assumption that girth(Γ) = 4 implies that

sec∗13 ∩ sec∗24 = ∅ and each graph sec∗i is discrete.
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The elements of each seci are simple sections of Π, and those of

sec∗i r seci = sec∗j r secj = sec∗i ∩ sec∗j , j = i± 2,

are double sections; the set of all (multi-)sections of Π is sec∗ = sec∗13 ∪ sec∗24.
From now on, we state our results for geometric rather than subgeometric graphs;

in other words, we assume that Γ admits a triangle free geometric saturation.

Lemma 5.1. In a geometric quadrangular graph Γ ⊃ Σ as above, one has

(1) |seci| 6 10 and |sec∗i | 6 10 (sharp bounds),
(2) |sec∗ij | 6 20 (a sharp bound), and
(3) |sec∗| 6 32 (the best known example being 30).

Proof. Statement (1) is a direct computation: since each sec∗i is discrete, the union
Σ ∪ sec∗i depends on just two parameters, which can take the following values:

(5.2)
pi := |seci| = 0 1 2 3 4 5 6 7 8 9 10
qi := |sec∗i r Θi| 6 8 7 6 5 5 4 4 3 2 1 0

The bound in (2) follows from (1) (assuming pi > pj , we have |sec∗ij | 6 2pi + qi),
and its sharpness is established by an explicit construction (obtained in the next
computation). Finally, statement (3) is also obtained by a computation similar to
[2, §B.5]: assuming that

(5.3) |sec1| > |sec3|, |sec2| > |sec4|, |sec∗13| > |sec∗24|,

we start with a “standard” graph Σ ∪ sec∗1, letting (p1, q1) = (10, 0), (9, 1), (9, 0),
(8, 2), (8, 1), or (7, 3), and build all possible consecutive extensions

(5.4) Γ := (Σ ∪ sec∗1) ∪ sec3 ∪ sec2 ∪ (sec∗2 r sec2) ∪ sec4

via discrete sets; the minimal size of each set to be added is determined using (5.2),
(5.3), and the goal |Γ| > 37. In most cases, this algorithm terminates (meaning
that each sufficiently large graph admitting a geometric triangle free saturation is
unacceptable, cf. Remark 2.10) at the very first nontrivial step sec3; in very few
cases we also need to use sec2. �

Remark 5.5. In the proof of Lemma 5.1 and Proposition 5.6 below, the essential
difference from [2] is that we do not limit the number of lines intersecting both given
ones (the presence of biquadrangles and longer “polyquadrangles”); this makes the
computation slightly more involved.

Proposition 5.6. For a geometric quadrangular graph Γ one has |Γ| 6 48.

Remark 5.7. It is unlikely that the bound given by Proposition 5.6 is sharp: the
best example that we found has 39 lines (see also [2, Proposition 6.14]).

Proof of Proposition 5.6. The proof is a computation similar to [2, §C.3]. In view
of Lemma 5.1, it suffices to consider all quadrangular pencils Π of size |Π| > 17;
the list of such pencils admitting a polarization is compiled using [21]. Then, under
the assumptions of (5.3), we must have 4p1 + 2q1 + |Π| > 49. Similar to (5.4), we
start from a pencil Π and build a list of consecutive acceptable extensions

Γ := Π ∪ sec1 ∪ (sec∗1 r sec1) ∪ sec3 ∪ sec2 ∪ (sec∗2 r sec2) ∪ sec4.

Due to our modest goal |Γ| > 49, de facto the algorithm terminates at the first or,
occasionally, second step, so that we never need to consider even sec3. �
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6. Other types of graphs

For the other types (in the sense of §2.4) of graph, the computation runs exactly
as in [2], and we merely state the updated results below. Remarkably, the upper
bounds obtained are exactly the same as in the smooth case (see [5]); furthermore,
unlike the case of octics (see [2]), all extremal configurations are smooth.

6.1. Pentagonal graphs. Recall that the assumption girth(Γ) = 5 implies that,
for a fiber Ã4

∼= Σ ⊂ Γ, one has

• sec∗ = sec1 ∪ . . . ∪ sec5, i.e., all sections are simple;
• each graph sec∗i = seci, i = 1, . . . , 5, is discrete.

The following bounds are sharp, and there are but two geometric pentagonal
graphs with 30 vertices, viz. Φ′30 and Φ′′30 (see [5]). Both represent configurations
of lines on smooth quartic surfaces only.

Lemma 6.1 (cf. [2, Lemma 7.6]). Let Γ be a geometric pentagonal graph, and let
Σ ⊂ Γ be a type Ã4 subgraph. Then:

(1) one has |sec∗| 6 16;
(2) if |sec∗| > 14, then |Γ| 6 29. C

Proposition 6.2. One has |Γ| 6 30 for any geometric pentagonal graph Π.

Proof. In view of Lemma 6.1, it suffices to consider pentagonal pencils Π such that
|Γ| > 17; they can be found using [21]. �

6.2. Astral graphs. We number the vertices (c1, . . . , c5) of a type D4 fiber Σ so
that the central vertex c1 is the one of valency 4 in Σ. Recall that the assumption
girth(Γ) > 6 implies that, for a fiber D̃4

∼= Σ ⊂ Γ one has

• sec∗ = sec1 ∪ . . . ∪ sec5, and
• the graph sec∗ is discrete.

Note though that it is not true that all sections are simple: the elements of sec1

are double sections. (Recall that κΣ = 2c1 + c2 + . . .+ c5.)
The following bounds are sharp, and the only geometric astral graph with 27

vertices is ∆′27 (see [5]); it is represented by a unique smooth quartic surface.

Lemma 6.3 (cf. [2, Lemma 7.3]). Let Γ be a geometric astral graph and Σ ⊂ Γ a
type D̃4 subgraph whose central vertex c1 has maximal valency in Γ. Then:

(1) one has |sec∗| 6 12;
(2) if |sec∗| > 11, then |Γ| 6 27. C

Proposition 6.4. One has |Γ| 6 27 for any geometric astral graph Π.

Proof. In view of Lemma 6.3, it suffices to consider astral pencils Π with |Γ| > 18;
they can be found using [21]. �

6.3. Locally elliptic graphs. Let us recall, that the case of locally elliptic graphs
was considered in [2]. We have the inequality

(6.5) |Γ| 6 29

for all geometric locally elliptic graphs Γ (see [2, (7.1)]). Machine-aided experi-
ments suggest that the sharp bound is |Γ| 6 25 with a unique graph Λ25 that
attains the maximum , but such considerations are of no importance for the proof
of Theorem 1.1.
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7. Proofs

In order to render our exposition self-contained, we recall certain results from [2]
in §7.1, before presenting the proofs of the main results of the paper in §7.2, §7.3.

7.1. Fano graphs of K3-quartics. Let X4 ⊂ P3 be a complex degree-4 surface
with at worst Du Val (aka A–D–E, or simple) singularities and let π : X̃4 → X4

be the minimal resolution of its singularities. Denote h := π∗OX4
(1) ∈ NS(X̃4).

Recall that X̃4 is a K3-surface. In particular, given an irreducible curve C ⊂ X̃4,
we have

(7.1) C · h = 1 and C2 = −2 if and only if π(C) is a degree one curve on X4.

The curves that satisfy (7.1) are called lines on X̃4; they are obviously smooth and
rational. We follow [5] and define the (plain) Fano graph of the quartic X4 as the
loop free graph with vertices

(7.2) Fn(X4) :=
{

(−2)-curves C ⊂ X̃4 with C · h = 1
}

and each pair of vertices v, w ∈ Fn(X4) connected by an edge of multiplicity v · w.
(Here and below, we always consider the intersection form ”·” on NS(X̃4).)

Recall that, by [2, (4.5)],

(7.3) the graph Fn(X4) of a K3-quartic with at least 25 lines is hyperbolic.

General theory of lattice-polarized K3-surfaces (Nikulin [15], Saint-Donat [19];
cf. also [8, Theorem 3.11] and [6, Theorem 7.3]) yields the following statement. (As
in [2, Convention 1.4], we say that the lattice NS(X̃4) is spanned by lines if it is a
finite index extension of its sublattice generated by the classes of lines on X̃4 and
the quasi-polarization h, i.e., it is spanned by lines and h over Q.)

Theorem 7.4 (see [2, Theorem 3.9]). A graph Γ is geometric if and only if one
has Γ ∼= Fn(X4) for a quartic X4 such that NS(X̃4) is spanned by lines. C

Remark 7.5. As in the case of K3-octics, by [2, Lemma 2.8], in order to study the
maximal number of lines we can restrict our attention to the case when the lattice
NS(X̃4) is spanned by lines and exceptional divisors (see also [2, § 8])

Obviously, for a quartic X4 with non-empty singular locus the graph Fn(X4)
does not completely describe the configuration of lines on X4. The latter can be
inferred from the bi-colored extended Fano graph

(7.6) Fnex(X4) :=
{

(−2)-curves C ⊂ X̃4 with C · h 6 1
}
,

with the colour of each vertex C defined as C · h. For such graphs we have a more
general statement.

Theorem 7.7 (see [2, Theorem 3.10]). A bi-colored graph Γ′ is geometric if and
only if Γ′ ∼= Fnex(X4) for a K3-quartic X4 ⊂ P3. C

7.2. Proof of Theorem 1.1. By Theorem 7.7, the assertion of Theorem 1.1 is
equivalent to the statement that there are no

(7.8) geometric bi-colored graphs Γ′ such with |sp1 Γ′| > 53 and |sp0 Γ′| 6= 0,

where spj Γ′ stands for the induced subgraph of Γ′ given by all its vertices of color
j = 0, 1. Moreover, by (7.3), the (plain) graph Γ := sp1 Γ′ is a Σ-graph for a certain
affine Dynkin diagram Σ > Ã2.
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The monotonicity given by [2, Lemma 2.8] combined with the consideration of
§6 implies that the graph Γ is neither pentagonal (see Proposition 6.2), nor astral
(see Proposition 6.4), nor locally elliptic (see (6.5)). Finally, Proposition 5.6 shows
that

Γ is triangular.

Then, by Lemma 3.11 and Proposition 3.12, we necessarily have rk(Γ) = 20, upon
which Addendum 3.23 implies that Γ is one of the eight smooth configurations
found in [8]. For each graph Γ obtained we compute its extended saturation(s)
satex Γ and check that none of the resulting bi-colored graphs has a vertex of color
zero (exceptional divisor), completing the proof of Theorem 1.1. �

7.3. Proof of Theorem 1.2. When dealing with smooth quartics, we can confine
ourselves to the case where the lattice NS(X4) is spanned by lines, see Remark 7.5
and (4.2). Theorem 7.4 reduces the proof to the classification of all graphs Γ such
that

Γ is geometric and |Γ| > 49;

then, by (7.3), the (plain) graph Γ is a Σ-graph for a certain affine Dynkin diagram
Σ > Ã2. As in the proof of Theorem 1.1, we infer that Γ is neither quadrangular
(Proposition 5.6), nor pentagonal (Proposition 6.2), nor astral (Proposition 6.4),
nor locally elliptic (see (6.5)).

For a geometric triangular graph Γ with at least 49 vertices and rk(Γ) < 20, we
apply Proposition 4.8 to show that Γ is one of the five graphs (4.9). Otherwise, by
Addendum 4.10, the graph Γ is one of the rank 20 graphs that appear in Table 1.

To complete the deformation classification, let Γ be one of the graphs in Table 1.
As part of our study of the saturation lists, we observe that the only geometric
finite index extension of F(Γ) is the trivial one; hence, one has

(7.9) NS(X4) = F(Γ) and Oh(NS(X4)) = Aut Γ

for any smooth quartic X4 ⊂ P2 with FnX4
∼= Γ, and the latter group is found

using the digraph package in GAP [9]. According to [8, Theorem 3.9], the equilinear
deformation families of such quartics are in a bijection with the primitive isometric
embeddings

(7.10) S := F(Γ) ↪→ L = 2E8 ⊕ 3U

regarded up to polarized autoisometry of S 3 h and autoisometry of L preserving a
coherent orientation of maximal positive definite subspaces of L⊗R (the so-called
positive sign structure); such a family is real if and only if (7.10) admits a polarized
autoisometry reversing the positive sign structure. Hence, to complete the proof,
we classify embeddings (7.10) using Nikulin’s [16] theory of discriminant forms and
either Gauss [10] theory of binary quadratic forms (in the definite case rkT = 2)
or Miranda–Morrison [13] theory (in the indefinite case rkT > 3). �

Remark 7.11. The groups SymX4 and Aut(X4, h) in Table 1 are computed as
the subgroups of (7.9) that, respectively, act identically on discrS or extend to an
appropriate autoisometry of L: the latter is required to preserve the positive sign
structure (if rkT = 2) or act on T by ±1 (if rkT > 3).
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7.4. Proof of Addendum 1.3. As stated in [8, Addendum 1.4], the number of
real lines does take all values in the range {0, . . . , 48}. Next, we recall that, when
counting the number of real lines on smooth quartics, it suffices to consider only
those quartics X4 whose all lines are real (with respect to a certain real structure
σ : X4 → X4, see [8, Proposition 3.10] or [5, Theorem 2.7]), and the latter is the
case if and only if the generic transcendental lattice T has a sublattice isomorphic
to [2] or U(2), see [8, Lemma 3.8]. Hence, the statement of the addendum follows
from Table 1 which lists all configurations of more than 48 lines and their respective
transcendental lattices. �

References

1. J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der

Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290,
Springer-Verlag, New York, 1988, With contributions by E. Bannai, J. Leech, S. P. Norton,

A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 920369 (89a:11067)
2. A. Degtyarev and S. Rams, Counting lines with Vinberg’s algorithm, 2021, To appear, arXiv:

2104.04583.

3. , Lines on K3-sextics, in preparation, 2021.
4. , Ancillary files for the paper: Lines on K3-quartics via triangular sets, 2022, available

on the arXiv as ancillary files for this preprint.

5. Alex Degtyarev, Lines on Smooth Polarized K3-Surfaces, Discrete Comput. Geom. 62 (2019),
no. 3, 601–648. MR 3996938

6. , Smooth models of singular K3-surfaces, Rev. Mat. Iberoam. 35 (2019), no. 1, 125–

172. MR 3914542
7. , Lines in supersingular quartics, J. Math. Soc. Japan 74 (2022), no. 3, 973–1019.

MR 4484237
8. Alex Degtyarev, Ilia Itenberg, and Ali Sinan Sertöz, Lines on quartic surfaces, Math. Ann.
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