MATH 612 – FIBER BUNDLES I

Semester:	Spring 2006				
Instructor:	Alex Degt	yarev	E-mail:	degt@fen.bilkent.edu.tr	
Office:	Room SA-	130	Phone:	x 2135	
Assistant:					
Exams & Grading:	2 Midterm	as (100 pts each)			
-	• 1 st Midterm		$\sim 5^{\mathrm{th}}$ week	$\sim 5^{\mathrm{th}}$ week	
	• 2^{nd} Midterm		$\sim 10^{\mathrm{th}}$ we	$\sim 10^{\rm th}$ week	
	Final exam (150 pts)				
	• Final Exam		Finals week		
	Homework ($\sim 50 \text{ pts}$)				
Course Schedule:	Tuesday	15:40-16:30	Room SAZ-20		
	Friday	13:40 - 15:30	Room SAZ	-20	
Office Hours:	Tuesday	14:40-15:30			
	Friday	10:40-11:30			
Textbook:	Lecture notes				
Supplementary:	J. W. Milnor, <i>Characteristic classes</i> . Princeton University Press (1974)				

Tentative course contents

- An introduction to (co-)homology (upon request)
- An introduction to homotopy groups (upon request)
- Obstruction theory
- Vector bundles (real, complex, oriented, etc.); basic constructions
- A generalization: G-bundles, sheaf-theoretical approach (??)
- Classical characteristic classes (*via* obstructions)
- Characteristic classes of smooth manifolds; applications to cobordisms; embeddings/immersions to Euclidean spaces
- Classifying spaces; characteristic classes revisited;
- An introduction to topological K-theory
- Cohomology operations and topological Riemann-Roch theorems; Wu classes and Wu formulas; divisibility theorems; other applications

Examples, generalizations, applications, and calculations will be considered whenever applicable. Familiarity with homotopy theory and algebraic topology is assumed (the concept of homotopy and homotopy equivalence; basic understanding of the (co-) homology and homotopy groups); however, a very brief introduction will be given if necessary.

The contents is subject to change without notice.

¹⁹⁹⁸ Faculty of Science, Course Syllabus