MATH 533 – DIFFERENTIAL GEOMETRY

Semester:	Spring 200)9		
Instructor:	Alex Degtyarev		E-mail:	degt@fen.bilkent.edu.tr
Office:	Room SA-130		Phone:	x 2135
Assistant:				
Exams & Grading:	 2 Midterms (100 pts each) 1st Midterm 2nd Midterm Final exam (150 pts) Final Exam Homework (~ 50 pts) 		$\sim 5^{\rm th}$ week $\sim 10^{\rm th}$ week Finals week	
Course Schedule:	Tuesday	13:40-15:30	Room SAZ	-01
	Friday	13:40-14:30	Room SAZ	-01
Office Hours:	Tuesday	10:40-11:30		
	Friday	10:40-11:30		
Textbook: Supplementary:	Lecture notes J. W. Milnor, <i>Morse Theory</i> . Princeton University Press (1963)			

Tentative course contents

- Differentiable manifolds and maps, tangent vectors, tensors, differentials of maps
- Riemannian geometry: metric, connection/covariant derivative, curvature
- Geodesics: basic properties and completeness
- The energy function and Jacobi vector fields
- Morse theory: Morse functions, related lemmas, recovering the homotopy type of a manifold from a Morse function
- Applications of Morse theory: examples, Morse inequalities, Lefschetz hyperplane section theorem
- Finite dimensional approximations of the space of paths; applications of Morse theory to geodesics

Examples, generalizations, applications, and calculations will be considered whenever applicable. Familiarity with algebraic topology is assumed (basic understanding of the (co-)homology groups); however, a very brief introduction will be given if necessary.

The contents is subject to change without notice.