MATH 431 – Introduction to Algebraic Geometry

Semester: Instructor: Office: Assistant:	Spring 200 Alex Degty Room SA-	9 varev 130	E-mail: Phone:	degt@fen.bilkent.edu.tr x2135
Exams & Grading:	 2 Midterms (100 pts each) 1st Midterm 2nd Midterm Final exam (150 pts) Final Exam Homework (~ 50 pts) 		$\sim 5^{\rm th}$ week $\sim 10^{\rm th}$ week Finals week	
Course Schedule: Office Hours:	Tuesday Friday Tuesday Friday	8:40-10:30 8:40-9:30 10:40-11:30 10:40-11:30	Room SAZ- Room SAZ-	01 19
Textbook: Supplementary:	Lecture notes Phillip A. Griffiths Introduction to Algebraic Curves. Trans. Math. Monographs, Volume 76, American Mathematical Society (1989)			

Tentative course contents

- Complex projective plane and projective algebraic curves •
- Abstract Riemann surfaces; holomorphic functions and differentials •
- Complex manifolds and algebraic varieties; maps •
- Smooth vs. singular points, tangent spaces; singularities of plane curves •
- The Normalization theorem (resolution of singularities for curves) •
- Divisors, intersection numbers, the Bézout theorem; the Riemann-Hurwitz • formula; the genus formula
- The Riemann-Roch theorems; applications to small genera •
- Abel's theorem and its applications

The contents is subject to change without notice.

¹⁹⁹⁸ Faculty of Science, Course Syllabus