TRANSCENDENTAL FUNCTIONS

Math 101

Contents

1. Exponential and logarithmic functions 1
2. Logarithmic differentiation 1
2.1. Example 1
2.2. Example 1
3. Inverse trigonometric functions 2
4. Hyperbolic functions 2
4.1. Remark 2

1. Exponential and logarithmic functions

By definition, let $\ln x=\int_{1}^{x} d x / x$ and $\exp x=e^{x}=\ln ^{-1} x$ (the inverse function). If x is a rational number, then e^{x} does coincide with the x-th power of the number $e=\exp (1)$. Other powers are defined via $a^{x}=e^{x \ln a}$ (for $a>0$). The following identities hold:

$$
\begin{array}{lll}
(\ln x)^{\prime}=1 / x, & \left(a^{x}\right)^{\prime}=a^{x} \ln a, & (a b)^{x}=a^{x} b^{x}, \\
\ln (x y)=\ln x+\ln y, & a^{x+y}=a^{x} a^{y}, & (a / b)^{x}=a^{x} / b^{x} . \\
\ln (x / y)=\ln x-\ln y, & a^{x-y}=a^{x} / a^{y}, & \\
\ln \left(x^{n}\right)=n \ln x, & a^{n x}=\left(a^{x}\right)^{n}, &
\end{array}
$$

$\ln x$ is defined for $x>0$ and takes all real values. e^{x} is defined for all real x and takes all positive values. Both the functions are increasing. One has

$$
\begin{aligned}
& \ln 0=1, \quad \lim _{x \rightarrow+\infty} \ln x=+\infty, \quad \lim _{x \rightarrow 0^{+}} \ln x=-\infty, \\
& e^{0}=1, \quad \lim _{x \rightarrow+\infty} e^{x}=+\infty, \quad \lim _{x \rightarrow-\infty} e^{x}=0 .
\end{aligned}
$$

See also integrals involving exponential and hyperbolic functions and integration by parts.

2. LOGARITHMIC DIFFERENTIATION

Sometimes it is easier to find the derivative of the function $\ln f(x)$ and then use the formula $f^{\prime}(x)=$ $f(x)(\ln f(x))^{\prime}$.
2.1. Example. Let $f(x)=(x+2)^{5}\left(x^{2}-1\right)^{7}(x+3)^{9}$. Then $\ln f(x)=5 \ln (x+2)+7 \ln \left(x^{2}-1\right)+9 \ln (x+3)$ and

$$
f^{\prime}(x)=(x+2)^{5}\left(x^{2}-1\right)^{7}(x+3)^{9}\left(\frac{5}{x+2}+\frac{14 x}{x^{2}-1}+\frac{9}{x+3}\right)
$$

Remark. Strictly speaking, the calculation is only valid when $x+2>0, x^{2}-1>0$, and $x+3>0$. However, the final result (without logarithms) holds for all values of x.
2.2. Example. Let $f(x)=x^{x^{2}}$. Then $\ln f(x)=x^{2} \ln x,(\ln f(x))^{\prime}=2 x \ln x+x$, and $f^{\prime}(x)=x^{x^{2}}(2 x \ln x+x)$. Remark. Logarithmic differentiation is the only way to do this one. Do not try to use $\left(x^{n}\right)^{\prime}=n x^{n-1}$ (which assumes $n=$ const) or $\left(a^{x}\right)^{\prime}=a^{x} \ln a$ (which assumes $a=$ const)!

3. Inverse trigonometric functions

The important ones are $\arcsin x=\sin ^{-1} x, \arccos x=\cos ^{-1} x$, and $\arctan x=\tan ^{-1} x$. (Do not confuse the inverse function $\sin ^{-1} x$ and the reciprocal $(\sin x)^{-1}=1 / \sin x$!) Here are some properties. (I also list the inverse hyperbolic functions here; see below.)

Function	Derivative	Domain	Range	Alternative formula
$\sin ^{-1} x$	$\frac{1}{\sqrt{1-x^{2}}}$	$[-1,1]$	$[-\pi / 2, \pi / 2]$	
$\cos ^{-1} x$	$-\frac{1}{\sqrt{1-x^{2}}}$	$[-1,1]$	$[0, \pi]$	
$\tan ^{-1} x$	$\frac{1}{1+x^{2}}$	$(-\infty, \infty)$	$(-\pi / 2, \pi / 2)$	
$\sinh ^{-1} x$	$\frac{1}{\sqrt{x^{2}+1}}$	$(-\infty, \infty)$	$(-\infty, \infty)$	$\ln \left(x+\sqrt{x^{2}+1}\right)$
$\cosh ^{-1} x$	$\frac{1}{\sqrt{x^{2}-1}}$	$[1, \infty)$	$[0, \infty)$	$\ln \left(x+\sqrt{x^{2}-1}\right)$
$\tanh ^{-1} x$	$\frac{1}{1-x^{2}}$	$(-1,1)$	$(-\infty, \infty)$	$\frac{1}{2} \ln \frac{1+x}{1-x}$

4. Hyperbolic functions

The functions are defined via $\sinh x=\left(e^{x}-e^{-x}\right) / 2, \cosh x=\left(e^{x}+e^{-x}\right) / 2, \tanh x=\sinh x / \cosh x$. They share most of the properties of the trigonometric functions, but beware of the signs!

Trigonometric identities

1. $(\sin x)^{\prime}=\cos x, \quad(\cos x)^{\prime}=-\sin x$
2. $\sin ^{2} x+\cos ^{2} x=1$
3. $1+\tan ^{2} x=1 / \cos ^{2} x$
4. $\quad \sin (x \pm y)=\sin x \cos y \pm \cos x \sin y$
5. $\quad \cos (x \pm y)=\cos x \cos y \mp \sin x \sin y$
6. $\sin 2 x=2 \sin x \cos x$
7. $\cos 2 x=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1$

$$
=1-2 \sin ^{2} x
$$

8. $\sin ^{2} x=(1-\cos 2 x) / 2$
9. $\cos ^{2} x=(1+\cos 2 x) / 2$
10. $\quad \sin x \sin y=-\frac{1}{2}(\cos (x+y)-\cos (x-y))$
11. $\cos x \cos y=\frac{1}{2}(\cos (x+y)+\cos (x-y))$
12. $\sin x \cos y=\frac{1}{2}(\sin (x+y)+\sin (x-y))$

Hyperbolic identities

$(\sinh x)^{\prime}=\cosh x, \quad(\cosh x)^{\prime}=\sinh x$
$\cosh ^{2} x-\sinh ^{2} x=1$
$1-\tanh ^{2} x=1 / \cosh ^{2} x$
$\sinh (x \pm y)=\sinh x \cosh y \pm \cosh x \sinh y$
$\cosh (x \pm y)=\cosh x \cosh y \pm \sinh x \sinh y$
$\sinh 2 x=2 \sinh x \cosh x$
$\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x=2 \cosh ^{2} x-1$

$$
=1+2 \sinh ^{2} x
$$

$\sinh ^{2} x=(\cosh 2 x-1) / 2$
$\cosh ^{2} x=(\cosh 2 x+1) / 2$
$\sinh x \sinh y=\frac{1}{2}(\cosh (x+y)-\cosh (x-y))$
$\cosh x \cosh y=\frac{1}{2}(\cosh (x+y)+\cosh (x-y))$
$\sinh x \cosh y=\frac{1}{2}(\sinh (x+y)+\sinh (x-y))$
4.1. Remark. For those familiar with complex numbers: all the hyperbolic identities can easily be obtained from the corresponding trigonometric ones by a formal substitution. In fact, the two sets of functions are closely related: one has

$$
\begin{array}{lll}
\sinh x=-i \sin (i x), & \cosh x=\cos (i x), & \tanh x=-i \tan (i x), \\
\sin x=-i \sinh (i x), & \cos x=\cosh (i x), & \tan x=-i \tanh (i x),
\end{array}
$$

(where $i^{2}=-1$. These formulas do make sense, but we will not go too deep into the details.)
Example. Consider the identity $\cos 2 y=\cos ^{2} y-\sin ^{2} y$ and express the trigonometric functions in terms of their hyperbolic counterparts: $\cosh 2 i y=\cosh ^{2} i y-(-i \sin i y)^{2}$. Now let $i y=x$ and notice that $i^{2}=-1$; we get $\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x$.

Example. Similarly, from the identity $\sin 2 y=2 \sin y \cos y$ we get $-i \sinh 2 x=-2 i \sinh x \cosh x$, and it remains to cancel $-i$ to get the hyperbolic identity.

See also integrating trigonometric and hyperbolic expressions and trigonometric/hyperbolic substitutions.

