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1. Anti-derivatives and indefinite integrals

A function F (x) is called an anti-derivative of f(x) if F ′(x) = f(x). Any continuous function has anti-
derivatives. Any two anti-derivatives of a given function differ by a constant. The set of all anti-derivatives
of f(x) is called the indefinite integral of f(x); the typical notation is

∫
f(x) dx = F (x) + C, where F (x) is

one of the anti-derivatives.
Important Remark: As in the case of derivatives, the variable of integration (indicated by the dx
pattern) is very important! In an expression like

∫
(ax + x2)da the letter x should be treated as a

constant; thus,
∫

(ax+ x2)da = 1
2a

2x+ x2a+ C, whereas
∫

(ax+ x2)dx = 1
2ax

2 + 1
3x

3 + C.

2. Riemann sums, definite integrals

The expression
∑n
i=1 f(ci)∆xi is called the Riemann sum of f(x). (Here a = x0 < x1 < x2 < . . . < xn = b

is a partition of a segment [a, b], ci ∈ [xi−1, xi] are some points, and ∆xi = xi − xi−1.) The limit

lim
max ∆xi→0

n∑
i=1

f(ci)∆xi

is called the definite integral of f(x) from a to b and is denoted by
∫ b
a
f(x) dx. The variable of integration

(= dummy variable) is important (see the remark in 1), although it disappears in the result: the result of
evaluation of a definite integral in respect to x must not contain x! For example,∫ 1

0

(ax+ x2)da =
1
2
x+ x2 (no a),

∫ 1

0

(ax+ x2)dx =
1
2
a+

1
3

(no x).
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If f is continuous on [a, b], the integral exists. (See also 8 for improper integrals.) Geometrically, the integral
is the (signed) area of the region bounded by the graph of f , the x-axis, and the vertical lines x = a and
x = b.

2.1. Main properties:.
(1)

∫ a
a
f(x) dx = 0 (definition);

(2)
∫ b
a
f(x) dx = −

∫ a
b
f(x) dx (definition);

(3)
∫ b
a
f(x) dx+

∫ c
b
f(x) dx =

∫ c
a
f(x) dx;

(4)
∫ b
a
c1f1(x) + c2f2(x))dx = c1

∫ b
a
f1(x) dx+ c2

∫ b
a
f2(x) dx, where c1, c2 = const;

(5) if a 6 b and f(x) > g(x) for all x ∈ [a, b], then
∫ b
a
f(x) dx >

∫ b
a
g(x) dx;

(6) if a 6 b and m 6 f(x) 6 M for all x ∈ [a, b], then m(b− a) 6
∫ b
a
f(x) dx 6 M(b− a);

(7) if f is continuous on [a, b], then there is a point c ∈ [a, b] such that
∫ b
a
f(x) dx = f(c)(b − a) (the

mean value theorem).

3. The fundamental theorem of integral calculus

If f(x) is continuous, then
d

dx

∫ x

a

f(t) dt = f(x),

i.e., the integral with variable upper limit is an anti-derivative of f .

3.1. Corollary (differentiation of an integral with variable limits).

d

dx

∫ ψ(x)

ϕ(x)

f(t) dt = f(ψ(x))ψ′(x)− f(ϕ(x))ϕ′(x).

This formula is a direct consequence of the fundamental theorem, chain rule, and property 2(2).

Example. Given that x =
∫ y

0

dt

(t2 + 1)
, find

dy

dx
. We use the formula above and implicit differentiation to

get 1 = y′/(y2 + 1); hence, y′ = y2 + 1.

3.2. Corollary (the Newton-Leibniz formula; calculation of definite integrals).∫ b

a

f(x) dx = F (b)− F (a) = F (x)
∣∣∣b
a
, where F is any anti-derivative of f.

This is our principal tool for evaluating definite integrals.

Important Remark: In applications one often needs to find an integral of the form
∫ b
a
|f(x)| dx,

whereas it is not easy to find an anti-derivative of |f(x)| (i.e., function involving absolute value). In
this case one subdivides [a, b] into smaller intervals [ai, bi] (by the roots of f) so that f keeps sign
within each [ai, bi] and finds the integral as the sum of

∫ bi

ai
±f(x) dx.

4. Applications of definite integrals

Assume that we want to calculate a quantity S given by the näıve law S = Ax (which holds whenever A
does not depend on x). If A does depend on x, A = A(x), then we proceed as follows: divide the interval
[a, b] where x changes into small subintervals. Within each small subinterval ∆xi one can assume that A
does not change much and, hence, ∆Si = A(xi)∆xi. Passing to the limit, one gets S =

∫ b
a
A(x) dx. More

precisely, for the integral formula to hold the error in the approximate formula ∆Si ≈ A(xi)∆xi must be
‘much smaller’ than ∆xi (i.e., of order (∆xi)2 or higher).

Below are some particular formulas.

5. Geometric applications

5.1. Area of a plane region. Subdivide the region to represent it as the union/difference of simple regions,
each bounded by the graphs of two functions f(x) > g(x) and two vertical lines x = a and x = b. The area
of one such simple region is

∫ b
a
(f(x)− g(x))dx.

Sometimes it is easier to use regions bounded by two curves x = f(y) and x = g(y), f(y) > g(y), and two
horizontal lines y = a and y = b. Then the area is

∫ b
a
(f(y)− g(y))dy (see the remark in 1).

Both approaches can be combined with each other and with formulas from elementary geometry (when
some of the regions are triangles or rectangulars).



INTEGRALS 3

Important Remark: Draw a picture to visualize the region! The condition f(x) > g(x) in the
integral formulas is important: otherwise some parts of the region will contribute to the area with the
minus sign. In fact, the formula is

∫ b
a
|f(x)− g(x)| dx (see remark in 3).

5.2. Arc length. The length of a curve is given by L =
∫
ds, where the arc length element ds is given by

ds =
√
dx2 + dy2 (infinitesimal ‘Pythagorean theorem’). Here are special cases:

The graph y = f(x), a 6 x 6 b : L =
∫ b

a

√
1 + (f ′)2dx.

The graph x = g(y), a 6 y 6 b : L =
∫ b

a

√
1 + (g′)2dy.

Parametric representation x = x(t), y = y(t), α 6 t 6 β : L =
∫ β

α

√
(x′)2 + (y′)2dt.

5.3. Volume of a solid of revolution. The volume of the solid generated by revolving the region bounded
by the graph of a function f(x), the x-axis, and the vertical lines x = a and x = b is given by:

V =
∫ b

a

πf2(x) dx (disk method ; rotation about the x-axis), or

V =
∫ b

a

2πxf(x) dx (shell method ; rotation about the y-axis; must have f(x) > 0).

In the former case (disk method), the region is sliced into vertical segments (perpendicular to the axis
of revolution); the method applies to revolution about any horizontal axes. The region must be made of
vertical segments with one end on the axis of revolution, and one has

V =
∫ b

a

πR2dx,

where R = R(x) is the length of the vertical segment through x.
In the latter case (shell method), the region is also sliced into vertical segments (which are now parallel

to the axis of revolution); the method applies to revolution about any vertical axes. The formula takes the
form

V =
∫ b

a

2πd(x)l(x) dx,

where l(x) is the length of the vertical segment through x and d(x) is its distance from the axis of revolution.
Make sure that l(x) and d(x) are positive.

Important Remark: Each method has its own advantages and disadvantages. In the disk method,
the sign of R(x) is not important, but the region should be ‘adjacent’ to the axis of revolution. If there
are ‘holes’, the volume is found as difference/sum of volumes of simpler solids. In the shell method,
the region is arbitrary, but one should make sure that the expressions for l(x) and d(x) are positive
(see remark in 3).
Important Remark: In both cases, avoid overlaps, which may result from a region ‘intersecting’
the axis of revolution.

A more complicated region should be subdivided into simple ones as when calculating areas. Of course,
the disk method can be applied to a vertical axis and the shell method can be applied to a horizontal axis;
in this case, one slices the region into horizontal segments and integrates with respect to y.

5.4. Area of a surface of revolution. The area of the surface generated by revolving a curve y = f(x),
a 6 x 6 b, is given by

S =
∫ b

a

2πf(x)
√

1 + (f ′)2dx (rotation about the x-axis), or

S =
∫ b

a

2πx
√

1 + (f ′)2dx (rotation about the y-axis).

The general formula (for arbitrary curve) is

S =
∫ b

a

r ds,

where r is the distance from a point of the curve to the axis of revolution and ds is the arc length element
at this point (see arc length).
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5.5. General volume formula. The volume of a solid is given by V =
∫ b
a
S(x) dx, where S(x) is the area

of the cross-section through x perpendicular to the x-axis and a and b are the x-coordinates of, respectively,
the leftmost and the rightmost points of the solid.

6. Applications to physics [advanced]

6.1. Work. The work of a force F (x) directed along the x-axis on the segment a 6 x 6 b isW =
∫ b
a
F (x) dx.

6.2. Fluid force. The total force of a fluid of density w against one side of a submerged vertical plate
running from depth y = a to depth y = b is F =

∫ b
a
wyL(y) dy, where L(y) is the horizontal extent of the

plate (measured along the plate) at depth y. (In this formula the y-axis is assumed to point downwards.)

6.3. Moments, mass, center of gravity. The coordinates (xc, yc) of the center of gravity of a system
are given by xc = Mx/M , yc = My/M , where M is the mass of the system and Mx, My are its moments
about the y-axis and x-axis, respectively. Here are some special cases:

Thin rod along the x-axis of linear density δ(x).

M =
∫ b
a
δ(x) dx, Mx =

∫ b
a
xδ(x) dx, My = 0.

Thin wire along the graph y = f(x), a 6 x 6 b, of linear density δ(x).

M =
∫ b
a
δ(x)

√
1 + (f ′)2dx, Mx =

∫ b
a
xδ(x)

√
1 + (f ′)2dx, My =

∫ b
a
f(x)δ(x)

√
1 + (f ′)2dx.

More generally, the formulas are
M =

∫ b
a
δ ds, Mx =

∫ b
a
xδ ds, My =

∫ b
a
yδ ds, see arc length.

Thin flat plate bounded by the graphs of f(x) > g(x) and the vertical lines x = a, x = b, of surface density
δ(x, y). 1

M =
∫ b
a

(∫ f(x)

g(x)
δ(x, y) dy

)
dx, Mx =

∫ b
a

(∫ f(x)

g(x)
xδ(x, y) dy

)
dx, My =

∫ b
a

(∫ f(x)

g(x)
yδ(x, y) dy

)
dx.

Thin flat plate bounded by the curves x = f(y), x = g(y), f(y) > g(y), and the horizontal lines y = a,
y = b, of surface density δ(x, y). 1

M =
∫ b
a

(∫ f(y)

g(y)
δ(x, y) dx

)
dy, Mx =

∫ b
a

(∫ f(y)

g(y)
xδ(x, y) dx

)
dy, My =

∫ b
a

(∫ f(y)

g(y)
yδ(x, y) dx

)
dy.

In the last two cases be very careful about the variable in respect to which you integrate! (See remark
in 1.) Say, in the last case, after the inner integral (with respect to x, with y treated as a constant) is
evaluated, the expression must no longer contain x, and the outer integration is in respect to y.

More complicated regions should be subdivided into simple ones of one of the two above forms. Mass
and moments are additive. Keep in mind that mass must always be positive, while moments can take
negative values as well.

Important Remark: Use symmetry whenever possible! If both the plate and the density are sym-
metric with respect to an axis, the corresponding moment is 0.

7. Techniques of integration

See integration.pdf.

8. Improper integrals [advanced]

A definite integral is called improper if either it has infinite limits or the integrand is discontinuous (or
both). To evaluate an improper integral, split the interval of integration into subintervals so that each
subinterval has at most one singularity (i.e., an infinite endpoint or a point of discontinuity of the integrand,
which must coincide with one of the endpoints of the subinterval).

8.1. Example.
∫ ∞

−∞

dx

x
should be split into

∫ −1

−∞

dx

x
+

∫ 0

−1

dx

x
+

∫ 1

0

dx

x
+

∫ ∞

1

dx

x
. The subdivision points

−1 ∈ (−∞, 0) and 1 ∈ (0,∞) are chosen arbitrarily.

1In fact, these are so called double integrals; they are considered in Math 102
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Now an integral with one singularity is defined as follows:

∫ ∞

a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx (infinite upper limit),∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a

f(x) dx (infinite lower limit),∫ b

a

f(x) dx = lim
b′→b−

∫ b′

a

f(x) dx (f(x) is discontinuous at b),∫ b

a

f(x) dx = lim
a′→a+

∫ b

a′
f(x) dx (f(x) is discontinuous at a).

If the limit exists, the integral is said to converge; otherwise it is said to diverge. An integral with several
singularities converges if and only if so does each of the integrals over the subintervals.

8.2. Example.
∫ ∞

1

dx

x2
= lim
b→∞

− 1
x

∣∣∣b
1

= lim
b→∞

(
1− 1

b

)
= 1 converges;

∫ 1

0

dx

x2
= lim
a→0+

− 1
x

∣∣∣1
a

= ∞ diverges.

Important Remark: Do not try to apply the Newton-Leibniz formula
∫ b
a
f(x) dx = F (x)

∣∣b
a

to dis-
continuous functions! First, it doesn’t make sense, second, it may give a wrong result. For example,∫ 1

−1
dx/x =

∫ 0

−1
dx/x +

∫ 1

0
dx/x diverges (as limx→0+ lnx = −∞), while the Newton-Leibniz formula

would give 0.
In many cases it is only important to know whether the integral converges or not. The following re-

marks/tests may help to decide this. (For simplicity we consider singularity at infinity; the limit ∞ below
can be replaced with a point of discontinuity of f .)

8.3. Independence of the limits. The integrals
∫∞
a
f(x) dx and

∫∞
a
f(x) dx converge or diverge simul-

taneously provided that f is continuous on [a, b]. (Of course, the value of the integral does depend on the
limits.)

8.4. The domination test. Assume that 0 6 f(x) 6 g(x) for all sufficiently large x. Then
(1) if

∫∞
a
g(x) dx converges, so does

∫∞
a
f(x) dx, and

(2) if
∫∞
a
f(x) dx diverges, so does

∫∞
a
g(x) dx.

8.5. The limit comparison test. Assume that f(x) and g(x) are positive functions and

lim
x→+∞

f(x)
g(x)

= L, 0 < L <∞.

Then
∫∞
a
g(x) dx and

∫∞
a
f(x) dx converge or diverge simultaneously.

The following integrals are useful for comparison:∫ ∞

1

dx

xp
converges for p > 1 and diverges for p 6 1,∫ 1

0

dx

xp
converges for p < 1 and diverges for p > 1,∫ ∞

0

eax dx converges for a < 0 and diverges for a > 0.

[advanced] This topic has been omitted or moved to Math 102


