Solutions to Midterm II

Problem 1. Graph the function $y=\frac{4 x}{x^{2}+4}$; find (and indicate on the graph) the critical points, intervals of increasing and decreasing, inflection points, concavity, x - and y-intercepts, and asymptotes.
solution: We have

$$
y^{\prime}=-\frac{4\left(x^{2}-4\right)}{\left(x^{2}+4\right)^{2}}=-\frac{4(x-2)(x+2)}{\left(x^{2}+4\right)^{2}}, \quad y^{\prime \prime}=\frac{8 x\left(x^{2}-12\right)}{\left(x^{2}+4\right)^{3}}=\frac{8 x(x-2 \sqrt{3})(x+2 \sqrt{3})}{\left(x^{2}+4\right)^{3}}
$$

Both y^{\prime} and $y^{\prime \prime}$ are defined for all values of x. The solutions to $y^{\prime}=0$ (critical points) are $x= \pm 2$; the solutions to $y^{\prime \prime}=0$ are $x=0$ and $x= \pm 2 \sqrt{3}$. Determine the signs of y^{\prime} and $y^{\prime \prime}$:

x		$-2 \sqrt{3}$		-2		0		2		$2 \sqrt{3}$	
y^{\prime}	-		-	0	+		+	0	-		-
$y^{\prime \prime}$	-	0	+		+	0	-		-	0	+
y	\searrow	\frown	\searrow	min	\nearrow		\nearrow	\max	\searrow		\searrow
	\frown	$-\sqrt{3} / 2$	\smile	\smile		\frown	1	\frown	$\sqrt{3} / 2$	\smile	

Thus, $x=-2$ is a (local) minimum, $x=2$ is a (local) maximum, and $x=0$ and $\pm 2 \sqrt{3}$ are inflection points. Intervals of increasing/decreasing and concavity are shown in the table.

The function is continuous for all x; hence, the graph has no vertical asymptotes. One has $\lim _{x \rightarrow \infty} y=0$; hence, the line $y=0$ (the x-axis) is a horizontal asymptote (both at $x \rightarrow+\infty$ and $x \rightarrow-\infty$). The graph is straightforward now.

Problem 2. The region bounded below by the parabola $y=x^{2}$ and above by the line $y=4$ is to be partitioned into two subsections of equal area by cutting across it with the horizontal line $y=c$. Find c and the area of the resulting subsections.

SOLUTION: Let $A(c)(c>=0)$ be the area of the region bounded below by the parabola $y=x^{2}$ and above by the line $y=c$. Then

$$
A(c)=\int_{-\sqrt{c}}^{\sqrt{c}}\left(c-x^{2}\right) d x=\left.\left(c x-x^{3} / 3\right)\right|_{-\sqrt{c}} ^{\sqrt{c}}=\frac{4}{3} c^{3 / 2} .
$$

(Limits are found as points of intersection of the parabola and the line, i.e., solutions to $x^{2}=c$.) The area of the whole region is $A(4)=32 / 3$, and c is found from the equation $A(c)=\frac{1}{2} A(4)$, i.e., $c^{3 / 2}=4$. Thus, one has $c=2 \sqrt[3]{2}$ and the area of the subsections is $A(2 \sqrt[3]{2})=16 / 3$.

Problem 3. Suppose that x and y are related by the equation

$$
x=\int_{0}^{y} \frac{1}{\sqrt{1+4 t^{2}}} d t
$$

Show that $d^{2} y / d x^{2}$ is proportional to y and find the constant of proportionality.
SOLUTION: Use implicit differentiation (and the fundamental theorem of calculus):

$$
\frac{d x}{d x}=y^{\prime} \cdot \frac{d}{d y} \int_{0}^{y} \frac{1}{\sqrt{1+4 t^{2}}} d t, \quad \text { or } \quad 1=y^{\prime} \cdot \frac{1}{\sqrt{1+4 y^{2}}}
$$

Thus, $y^{\prime}=\sqrt{1+4 y^{2}}$. Differentiate once again:

$$
y^{\prime \prime}=y^{\prime} \cdot \frac{d}{d y} \sqrt{1+4 y^{2}}=\sqrt{1+4 y^{2}} \cdot \frac{4 y}{\sqrt{1+4 y^{2}}}=4 y .
$$

Problem 4. The region bounded by the graph $y=\sqrt{x}$, the horizontal line $y=c$, and the vertical lines $x=0$ and $x=4$ is revolved about the line $y=c$ to generate a solid. Find the volume of the resulting solid (as a function of c). Find the value of c that minimizes the volume.

SOLUTION: Let $V(c)$ be the volume of the solid. Using the disk method, one has

$$
V(c)=\int_{0}^{4} \pi(\sqrt{x}-c)^{2} d x=\int_{0}^{4} \pi\left(x-2 c \sqrt{x}+c^{2}\right) d x=\left.\pi\left(\frac{x^{2}}{2}-\frac{4 c x^{3 / 2}}{3}+c^{2} x\right)\right|_{0} ^{4}=\frac{4 \pi}{3}\left(3 c^{2}-8 c+6\right)
$$

(Note that, for the disk method, we do not need to know which parts of the parabola lie above/below the axis.) We need to minimize the above function $V(c)=4 \pi\left(3 c^{2}-8 c+6\right) / 3$ on the whole real line. (There are no restrictions on c.) Differentiate to get $V^{\prime}(c)=4 \pi(6 c-8) / 3$. The only critical point is $c=4 / 3$, and this is a point of minimum. Hence, the absolute minimum of the volume is $V(4 / 3)=8 \pi / 9$ is taken on at $c=4 / 3$.

Problem 5. Evaluate:
(a) $\int_{0}^{\pi / 3} \frac{\tan x}{\sqrt{2 \sec x}} d x$
(b) $\int \frac{d x}{1+\cos x}$

SOLUTION:
(a) $\int_{0}^{\pi / 3} \frac{\tan x}{\sqrt{2 \sec x}} d x=\left[\begin{array}{l}u=\sec x \\ d u=\tan x \sec x\end{array}\right]=\int_{1}^{2} \frac{d u}{\sqrt{2 u^{3}}}=-\left.\frac{\sqrt{2}}{\sqrt{u}}\right|_{1} ^{2}=\sqrt{2}-1$. .
(b) $\int \frac{d x}{1+\cos x}=\int \frac{d x}{2 \cos ^{2}(x / 2)}=. \int \sec ^{2} \frac{x}{2} d\left(\frac{x}{2}\right)=\tan \frac{x}{2}+C$.

