Solutions to Midterm I

Problem 1. Find the limits (without using l'Hfpital's rule):
(a) $\lim _{x \rightarrow 0} \frac{\sqrt{\cos 3 x}-1}{x \sin 2 x}$.
(b) $\lim _{x \rightarrow-2} \frac{x^{2}+x-2}{x^{3}+2 x^{2}-2 x-4}$.

SOLUTION:

(a) $\lim _{x \rightarrow 0} \frac{\sqrt{\cos 3 x}-1}{x \sin 2 x}=\left[\begin{array}{l}0 \\ 0\end{array}\right]=\lim _{x \rightarrow 0} \frac{\cos 3 x-1}{x \sin 2 x(\sqrt{\cos 3 x}+1)}=-\lim _{x \rightarrow 0} \frac{2 \sin ^{2}(3 x / 2)}{x \sin 2 x(\sqrt{\cos 3 x}+1)}=$

$$
-\frac{3}{2} \cdot \frac{3}{2} \cdot \lim _{x \rightarrow 0} \frac{\sin (3 x / 2)}{3 x / 2} \cdot \lim _{x \rightarrow 0} \frac{\sin (3 x / 2)}{3 x / 2} \cdot \lim _{x \rightarrow 0} \frac{2 x}{\sin 2 x} \cdot \lim _{x \rightarrow 0} \frac{1}{\sqrt{\cos 3 x}+1}=-\frac{9}{8} .
$$

$$
\begin{equation*}
\lim _{x \rightarrow-2} \frac{x^{2}+x-2}{x^{3}+2 x^{2}-2 x-4}=\left[\frac{0}{0}\right]=\lim _{x \rightarrow-2} \frac{(x+2)(x-1)}{(x+2)\left(x^{2}-2\right)}=\lim _{x \rightarrow-2} \frac{x-1}{x^{2}-2}=-\frac{3}{2} \tag{b}
\end{equation*}
$$

(In (b), once we know that the polynomials vanish at $x=-2$, we factor them by simple division.)
Problem 2. Find the derivatives of the following functions:
(a) $y=4 \sqrt{1+\sin \sqrt{x}}$.
(b) $y=\tan ^{4}\left(\pi x^{3}\right)-\tan ^{4}\left(\pi^{4}\right)$.
(c) $y=\left(\frac{1+\sin x}{1-\cos x}\right)^{2}$.

SOLUTION:

(a)

$$
(4 \sqrt{1+\sin \sqrt{x}})^{\prime}=\frac{4(1+\sin \sqrt{x})^{\prime}}{2 \sqrt{1+\sin \sqrt{x}}}=\frac{2 \cos \sqrt{x} \cdot(\sqrt{x})^{\prime}}{\sqrt{1+\sin \sqrt{x}}}=\frac{\cos \sqrt{x}}{\sqrt{x} \sqrt{1+\sin \sqrt{x}}}
$$

$$
\begin{equation*}
\left(\tan ^{4}\left(\pi x^{3}\right)-\tan ^{4}\left(\pi^{4}\right)\right)^{\prime}=4 \tan ^{3}\left(\pi x^{3}\right) \cdot\left(\tan \left(\pi x^{3}\right)\right)^{\prime}=\frac{4 \tan ^{3}\left(\pi x^{3}\right)}{\cos ^{2}\left(\pi x^{3}\right)} \cdot\left(\pi x^{3}\right)^{\prime}=\frac{12 \pi x^{2} \tan ^{3}\left(\pi x^{3}\right)}{\cos ^{2}\left(\pi x^{3}\right)} \tag{b}
\end{equation*}
$$

$$
\begin{aligned}
& {\left[\left(\frac{1+\sin x}{1-\cos x}\right)^{2}\right]^{\prime}=2 \cdot \frac{1+\sin x}{1-\cos x} \cdot\left(\frac{1+\sin x}{1-\cos x}\right)^{\prime}=} \\
& \\
& \quad \frac{2(1+\sin x)\left((1+\sin x)^{\prime}(1-\cos x)-(1+\sin x)(1-\cos x)^{\prime}\right)}{(1-\cos x)^{3}}= \\
& \frac{2(1+\sin x)\left(\cos x-\cos ^{2} x-\sin x-\sin ^{2} x\right)}{(1-\cos x)^{3}}=\frac{2(1+\sin x)(\cos x-\sin x-1)}{(1-\cos x)^{3}}
\end{aligned}
$$

Problem 3. Find the tangents to the parabola $y=-x^{2}$ passing through the point $(1,3)$.
SOLUTION: The tangent to the parabola at a point $\left(x_{0}, y_{0}\right)$ (where, of course, $y_{0}=-x_{0}^{2}$) has the form $\left(Y-y_{0}\right)=$ $f^{\prime}\left(x_{0}\right)\left(X-x_{0}\right)$, i.e., in our case, $Y+x_{0}^{2}=-2 x_{0}\left(X-x_{0}\right)$. This line should pass through the point $X=1, Y=3$. Plug it in to get $3+x_{0}^{2}=-2 x_{0}\left(1-x_{0}\right)$ and solve this equation for x_{0}. We get $x_{0}^{2}-2 x_{0}-3=0$ and $x_{0}=-1$ or $x_{0}=3$. The corresponding tangents are found from the above equation: $Y=2 X+1$ (for $x_{0}=-1$) and $Y=-6 X+9$ (for $x_{0}=3$).

Problem 4. Find $y^{\prime \prime}$ at the point $(x, y)=(0, \pi)$, where y is a differentiable function of x satisfying the equation $\sin y=x^{2} \cos ^{2} y$.

SOLUTION: Differentiate the given equation: $\cos y \cdot y^{\prime}=2 x \cos ^{2} y+x^{2} \cdot 2 \cos y \cdot(-\sin y) \cdot y^{\prime}$. Collecting the terms with y^{\prime} and cancelling $\cos y$ gives $y^{\prime}\left(1+2 x^{2} \sin y\right)=2 x \cos y$. Call this $(*)$. To find $y^{\prime \prime}$, we need to differentiate it once more. Notice that from $(*)$ it follows that, at the point in question, one has $y^{\prime}=0$. Thus, when differentiating $(*)$, we can disregard all terms (in the result!) containing y^{\prime}, i.e., there is no need to write them down: $y^{\prime \prime}\left(1+2 x^{2} \sin y\right)+y^{\prime}(\ldots)=2 \cos y+(\ldots) y^{\prime}$. Now plug in $x=0, y=\pi$, and $y^{\prime}=0$ to get $y^{\prime \prime}=-2$.

Problem 5. A highway patrol plane flies 3 mi above a level, straight road at a steady $120 \mathrm{mi} / \mathrm{h}$. The pilot sees an oncoming car and with radar determines that at the instant the line-of-sight distance from plane to car is 5 mi the line-of-sight distance is decreasing at the rate of $160 \mathrm{mi} / \mathrm{h}$. Find the car's speed along the highway.
solution: As usual (the Galileo principle), we can assume that the plane is standing still, find the speed of the car, and add 120 to the result.

Let $h=3 \mathrm{mi}$ be the (constant) plane altitude, $x=x(t)$, the distance between the car and the projection of the plane to the highway, and $D=D(t)$, the line-of-sight distance. Then the given data amount to $D=5$ and $d D / d t=-160$ (the distance is decreasing), and we need to find $d x / d t$. The Pythagorean theorem gives us a relation: $x^{2}+h^{2}=D^{2}$. Differentiate it to get $2 x(d x / d t)=2 D(d D / d t)$. Here, D and $d D / d t$ are given, and $x=\sqrt{D^{2}-h^{2}}$ is found from the original relation. Thus, $d x / d t=D(d D / d t) / \sqrt{D^{2}-h^{2}}$. Now use the numeric data $(d x / d t=5 \cdot(-160) / 4=-200)$, do not forget to add 120 , and take absolute value (as the police would not accept negative speed in the report). Finally, car's speed is $80 \mathrm{mi} / \mathrm{h}$. Extra credit question: how much will this cost to the driver?

